
Synthesis of Asynchronous Hardware from Petri

Nets

Josep Carmona1, Jordi Cortadella1, Victor Khomenko2 and Alex Yakovlev2

1 Universitat Politècnica de Catalunya, Barcelona, Spain
jcarmona@ac.upc.es, jordicf@lsi.upc.es

2 University of Newcastle, Newcastle upon Tyne NE1 7RU, UK
{Victor.Khomenko,Alex.Yakovlev}@ncl.ac.uk

Abstract. As semiconductor technology strides towards billions of tran-
sistors on a single die, problems concerned with deep sub-micron process
features and design productivity call for new approaches in the area of be-
havioural models. This paper focuses on some of recent developments and
new opportunities for Petri nets in designing asynchronous circuits such
as synthesis of asynchronous control circuits from large Petri nets gen-
erated from front-end specifications in hardware description languages.
These new methods avoid using full reachability state space for logic syn-
thesis. They include direct mapping of Petri nets to circuits, structural
methods with linear programming, and synthesis from unfolding prefixes
using SAT solvers.

1 Introduction

1.1 Semiconductor Technology Progress

The International Technology Roadmap for Semiconductors (ITRS) [1] predicts
the end of this decade will be marked by the appearance of a System-on-a-Chip
(SoC) containing four billion 50-nm transistors that will run at 10GHz. With
a steady growth of about 60% in the number of transistors per chip per year,
following the famous Moore’s law, the functionality of a chip doubles every 1.5
to 2 years. Such a SoC will inevitably consist of many separately timed commu-
nicating domains, regardless of whether they are internally clocked or not [1].
Built at the deep sub-micron level, where the effective impact of interconnects
on performance, power and reliability will continue to increase, such systems
present a formidable challenge for design and test methods and tools.

The key point raised in the ITRS is that design cost is the greatest threat to
the continued phenomenal progress in microelectronics. The only way to over-
come this threat is through improving the productivity and efficiency of the de-
sign process, particularly by means of design automation and component reuse.
The cost of design and verification of processing engines has reached the point
where thousands of man-years are spent to a single design, yet processors reach
the market with hundreds of bugs [1].

2 Carmona, Cortadella, Khomenko, Yakovlev

1.2 Self-timed systems and design tools

Getting rid of global clocking in SoCs offers potential added values, tradition-
ally quoted in the literature [60]: greater operational robustness, power savings,
electro-magnetic compatibility and self-checking. While the asynchronous design
community continues its battle for the demonstration of these features to the
semiconductor industry investors, the issue of design productivity may suddenly
turn the die to the right side for asynchronous design. Why?

One of the important sub-problems of the productivity and reuse problem
for globally clocked systems is that of timing closure. This issue arises when
the overall SoC is assembled from existing parts, called Intellectual Property
(IP) cores, where each part has been designed separately (perhaps even by a
different manufacturer) for a certain clock period, assuming that the clock signal
is delivered accurately, at the same time, to all parts of the system. Finding the
common clocking mode for SoCs that are built from multiple IP cores is a very
difficult problem to resolve.

Self-timed systems, or less radical, globally asynchronous locally synchronous
(GALS) systems [11, 70], are increasingly seen by industry as a natural way
of composing systems from predesigned components without the necessity to
solve the timing closure problem in its full complexity. As a consequence, self-
timed systems highlight a promising route to solving the productivity problem as
companies begin to realise. But they also begin to realise that without investing
into design and verification tools for asynchronous design the above promise will
not materialise. For example, Philips, whose products are critical to the time-
to-market demands, is now the world leader in the exploitation of asynchronous
design principles [27]. Other microelectronics giants such as Intel, Sun, IBM
and Infineon, follow the trend and gradually allow some of their new products
involve asynchronous parts. A smaller ‘market niche’ company Theseus Logic
has been successful in down-streaming the results of their recent investment in
asynchronous design methods (Null-Convention Logic) [26].

1.3 Design flow problem

The major obstacle now is the absence of a flexible and efficient design flow,
which must be compatible with commercial CAD tools, such as for example the
Cadence toolkit. A large part of such a design flow would be typically concerned
with mapping the logic circuit (or sometimes macro-cell) netlist onto silicon
area using place and route tools. Although hugely important this part is outside
our present scope of interest, as it is essentially the same as in the traditional
design flow. What we are concerned with is the stage in which the behavioural
specification of a circuit is converted into the logic netlist implementation.

The pragmatic approach to this stage suggests that the specification should
appear in the form of a high-level Hardware Description Language (HDL). Ex-
amples of such languages are the widely known Vhdl and Verilog, as well as
Tangram [2] or Balsa [22] that are more specific for asynchronous design. The

Hardware Synthesis with Petri Nets 3

latter are based on the concepts of processes, channels and variables, similar to
Hoare’s CSP.

We can in principle be motivated by the success of behavioural synthesis
achieved by synchronous design in the 90s. However, for synchronous design the
task of translating an HDL specification to logic (see, e.g., [47]) is fairly different
from what we may expect in the asynchronous case.

Its first part was concerned with the so-called architectural synthesis, whose
goal was the construction of a register-transfer level (RTL) description. This
required extracting a control and data flow graph (CDFG) from the HDL, and
performing scheduling and allocation of data operations to functional data path
units in order to produce an FSM for a controller or sequencer. The FSM was
then constructed using standard synchronous FSM synthesis, which generated
combinational logic and rows of latches.

Although some parts of architectural synthesis, such as CDFG extraction,
scheduling and allocation, might stay unchanged for self-timed circuits, the de-
velopment of the intermediate level, an RTL model of a sequencer, and its sub-
sequent circuit implementation, would be quite different.

1.4 How can Petri net help?

Two critical questions arise at this point. Firstly, what is the most adequate
formal language for the intermediate (still behavioural) level description? Sec-
ondly, what should be the procedure for deriving logic implementation from such
a description?

The present level of development of asynchronous design flow suggests the
following options to answer those questions:

(1) Avoid (!) answering them altogether. Instead, follow a syntax-driven
translation of the HDL directly into a netlist of hardware components, called
handshake circuits. This sort of silicon-compilation approach was pursued at
Philips with the Tangram flow [2]. Many computationally hard problems in-
volving global optimisation of logic were also avoided. Some local ‘peephole’
optimisation was introduced at the level of handshake circuit description. Petri
nets were used for that in the form of Signal Transition Graphs (STGs) and their
composition, with subsequent synthesis using the Petrify tool [52, 18]. Similar
sort of approach is currently followed by the designers of the Balsa flow, where
the role of peephole optimisation tools is played by the FSM-based synthesis
tool Minimalist [12]. The problem with this approach is that, while being very
attractive from the productivity point of view, it suffers from the lack of global
optimisation, especially for high-speed requirements, because direct mapping of
the parsing tree into a circuit structure may produce very slow control circuits.

(2) Translate the HDL specification into a STG for controller part and then
synthesise this it using Petrify. This approach was employed in [4], where the
HDL was Verilog. This option was attractive because the translation of the
Verilog constructs preserved the natural semantical execution order between
operations (not the syntax structure!) and Petrify could apply logic optimisa-
tion at a fairly global level. If the logic synthesis stage was not constrained by

4 Carmona, Cortadella, Khomenko, Yakovlev

the state space explosion inherent in Petrify, this would have been an ideal
situation.

However, the state space explosion becomes a real spanner in the works, be-
cause the capability of Petrify to solve the logic synthesis problem is limited
by the number of logic signals in the specification. STGs involving 40–50 binary
variables can take hours of CPU time. The size of the model is critical not only
for logic minimisation but, more importantly, for solving state assignment and
logic decomposition problems. The state assignment problem often arises when
the STG specification is extracted automatically from an HDL. This forces Pet-

rify into solving Complete State Coding (CSC) using computationally intensive
procedures involving calculation of regions in the reachability graph.

While the logic synthesis powers of Petrify should not be underestimated,
one should be realistic where they can be applied efficiently. Thus the solution lies
where the design productivity similar to that of (1) can be achieved together with
the circuit optimality offered by (2). We believe that the way to such a solution
is through finding more efficient ways of logic synthesis in the framework of the
design flow shown in Fig. 1.

HDL Specification

Control/data splitting

Datapath Spec

Data logic synthesis

Data Logic

Control & data interfacing

HDL Implementation

Present Focus

PN to circuit synthesis Signal Refinement

Control Spec (Petri net)

 Control Logic

Fig. 1. Design Flow with Logic Synthesis from Petri nets.

The original HDL specification is syntactically and semantically analysed,
giving rise to control and data path specifications. Data path can be synthesised
using standard RTL-based (synchronous) design flow, applied to the main frag-
ments of the data path, namely combinational logic and registers. There exist
methods of converting such logic to self-timed implementations, e.g., [43]. This
aspect of design is outside our scope here. The control specification is assumed

Hardware Synthesis with Petri Nets 5

to be extracted from the HDL in the form of a Petri net, which will thus act
as the intermediate behavioural representation. Such an extraction is in gen-
eral non-trivial and relies on rigorous semantic relationship between control-flow
constructs used in typical behavioural HDLs and their equivalents in Petri nets.
For example, if one uses Balsa, such constructs basically include sequencing,
parallelisation, two-way and multi-way selection, arbitration and (forever, while
and for) loops, as well as macro and procedure calls. Those can be translated
into Petri nets quite efficiently as done for example in PEP [3] for the translation
of basic high-level programming language notation, B(PN)2, into Petri nets.

1.5 Methods for Logic Synthesis from Petri nets

The question of what kind of Petri nets is appropriate for subsequent logic syn-
thesis of control depends on the method used for synthesis. Roughly, synthesis
methods are split into two main categories. The first category comprises tech-
niques of direct mapping of Petri net constructs to logic. In various forms it
appeared in [51, 20, 32, 68, 74, 6, 58]. In the framework of 1-safe Petri nets and
speed-independent circuits this problem was solved in [68], however only for au-
tonomous (no inputs) specification where all operations were initiated by the
control logic specified by a labelled Petri net. Another limitation was that the
technique did not cover nets with arbitrary dynamic conflicts. Hollaar’s one-hot
encoding method [32] allowed explicit interfacing with the environment but re-
quired fundamental mode timing conditions, use of internal state variables as
outputs and could not deal with conflicts and arbitration in the specifications.
Patil’s method [51] works for the whole class of 1-safe nets. However, it produces
control circuits whose operation uses 2-phase (non-return-to-zero) signalling.
This results in lower performance than what can be achieved for 4-phase circuits
used in [68].

The second category considers the Signal Transition Graph refinement of the
Petri net control specification. These methods usually perform an explicit logic
synthesis, by deriving Boolean equations for the output signals of the controller
using the notion of next state functions obtained from the STG [14, 18]. It should
be noted that sometimes the STG specification for control can be obtained di-
rectly from the original specifications, e.g., if those are provided in the form of
Timing Diagrams.

In this paper we will not concentrate on the problem of synthesis of Petri nets
for logic synthesis of controllers and refer the reader to most recent literature,
such as [4].

Our focus will be on the most recent advances in logic synthesis from Petri
nets and Signal Transition Graphs. These methods try to avoid using the state
space generated by the Petri net model directly. They follow two possible ap-
proaches. The first one, called a structural approach, performs graph-based trans-
formations on the STG and deals with the approximated state space by means
of linear algebraic representations. The second one, called an unfolding-based
method, represents the state space in the form of true concurrency (or partial
order) semantics provided by Petri net unfoldings.

6 Carmona, Cortadella, Khomenko, Yakovlev

y := 0;
loop

x := READ (IN);
WRITE (OUT, (x + y)/2);
y := x;

end loop

Ain

Rin
Aout

Rout

OUT
filter

IN

Fig. 2. High-level specification of a filter.

The remaining structure of the paper is as follows. Section 2 introduces the
problem of synthesis of control circuits from Petri net based specifications. It will
do it in an informal way by considering two characteristic examples of control
logic to be designed by this sort of methodology. Section 3 provides an overview
of the traditional state-based synthesis, which is currently implemented in the
Petrify tool. Section 4 describes structural methods and use of integer linear
programming in logic synthesis. Section 5 presents how Petri nets unfoldings
and Boolean satisfiability problem (SAT) solvers can be used in the synthesis
of asynchronous control logic. Section 6 briefly overviews some other related
methodologies and outlines the important current and future research directions.

2 Synthesis Problem: Simple Examples and Signal

Transition Graph Definition

We shall introduce the problem of synthesis of control circuits from Petri nets
specifications using two simple but realistic design examples. This will also help
us to present the two main types of control hardware that can be designed with
the methods described in this paper. The first example, a simple data processing
controller, will illustrate the design flow starting from an algorithmic, HDL-
based, specification. The second one, an interface controller, will show the design
starting from a waveform, Timing Diagram based, specification. Algorithmic and
waveform specifications are most popular forms of behavioural notation amongst
hardware designers. While describing the second example we will introduce our
main specification model, Signal Transition Graph (STG).

2.1 A simple filter controller

We illustrate a typical design flow by means of the example shown in Fig. 2. The
algorithm describes a simple filter that reads data items from an input channel
(IN) and writes the filtered data into an output channel (OUT) by averaging
the last two samples, x and y. (Note that the first output value in this case may
be invalid and should be ignored by the environment.) The interaction with the
environment is asynchronous, using a four-phase protocol implemented by a pair
of 〈Request,Acknowledge〉 signals, as shown in Fig. 3.

One of the possible implementations of the filter is depicted in the block
diagram of Fig. 4. It contains two level-sensitive latches, x and y, and one adder

Hardware Synthesis with Petri Nets 7

DATA

Req

Ack

item i item i+1

Fig. 3. Four-phase handshake protocol.

(the averaging of x and y is achieved simply by a one-bit right shift of the bits
of the sum x + y). Each of the components operates according to a four-phase
protocol as follows:

– The latches are transparent when R is high and opaque when low. A being
high indicates that the data transfer through the latch has been completed.

– The adder starts its operation when R goes high. After a certain delay,
signal A will be asserted, indicating that the addition has been finished and
the output is valid. After that, R and A go low to complete the four-phase
protocol.

Rin
Ain

AxRx Ry Ay Ra Aa

Aout

Rout

+
x y

control

IN
OUT

Fig. 4. Block diagram for the filter.

The acknowledge signals of the latches and the adder can be implemented
in many different ways, depending on how the blocks are designed. One way
of doing that is by simply inserting a delay between R and A that mimics the
worst-case delay of the corresponding block, as typically done for bundled-data
components in micropipelines [64].

The signals 〈Rin, Ain〉 and 〈Rout, Aout〉 perform the synchronisation of the
IN and OUT channels, respectively. Rin indicates the validity of IN. After Ain

goes high, the environment is allowed to modify IN. On the other side, Rout and
Aout should be able to control a level-sensitive latch in a similar way as described
above for the latches x and y.

Synthesis of control The synchronisation of the functional units depicted in
Fig. 4 is performed by the control block, which is responsible for circulating the
data items in the data-path in such a way that the required computations are
performed as specified by the algorithm.

In this paper, we use a specially interpreted Petri nets, called Signal Transi-
tion Graphs (STGs), to specify the behaviour of asynchronous controllers. The

8 Carmona, Cortadella, Khomenko, Yakovlev

Ain+

Rin+

Rin−

Ain−

Rx+

Ax−

Rx−

Ax+

Ry+

Ay−

Ry−

Ay+

Ra+

Aa−

Ra−

Aa+

Rout+

Aout+

Rout−

Aout−

Fig. 5. Behavioural specification of the control.

transitions represent signal events (i.e., rising or falling edges of signals), whereas
the arcs and places represent the causality relations among the events.

Fig. 5 describes one possible behaviour of the control that results in a correct
operation of the circuit. In this cases, the behaviour can be described by a
marked graph, a subclass of Petri nets without choice. Marked graphs are often
represented by omitting the places between transitions.

Each pair of req/ack signals commit a four-phase protocol, determined by
the arcs R+ → A+ → R− → A− → R+. The rest of the arcs are the ones that
define how data items move along the data-path. For the sake of brevity, only a
couple of them are discussed.

The arc R+
in → R+

x indicates that the latch x can become transparent when
there is some valid data at the IN channel. Moreover, the data can only be read
once the latch y has captured the previous data from x. This is guaranteed by
the arc A−

y → R+
x .

On the other hand, the adder will start a new operation every time the latch
x has acquired new data. This is indicated by the arc A+

x → R+
a . The result will

be sent to the OUT channel when the addition has completed (arc A+
a → R+

out).

CAin

inR

Rout

Aout

Rx Ax Ay Ry Ra Aa

Fig. 6. Asynchronous controller for the filter.

From the specification of the control, a logic circuit can be synthesised. The
circuit shown in Fig. 6 has been obtained by the Petrify tool.

2.2 VME bus controller

Our second example is a fragment of a VME bus slave interface [75]. It will
help us to illustrate how the STG specification of an asynchronous controller

Hardware Synthesis with Petri Nets 9

can be derived from its original Timing Diagram specification. Fig. 7(a) depicts
the interface of a circuit that controls data transfers between a VME bus and
a device. The main task of the bus controller is to open and close the data
transceiver through signal d according to a given protocol to read/write data
from/to the device.

VME Bus

Controller

Transceiver
Data

dsr

dsw

dtack

lds

ldtack

d
Device

Bus

(a)

dsr

lds

ldtack

d

dtack

(b)

lds+

d+

dtack+ lds-

dsr-

d-

dtack-

dsr+ ldtack+ ldtack-

(c)

Fig. 7. VME bus controller: interface (a), the timing diagram for the read cycle (b)
and the STG for the read cycle (c).

The input and output signals of the bus controller are as follows:

– dsr and dsw are input signals that request to do a read or write operation,
respectively.

– dtack is an output signal that indicates that the requested operation is ready
to be performed.

– lds is an output signal to request the device to perform a data transfer.
– ldtack is an input signal coming from the device indicating that the device

is ready to perform the requested data transfer.
– d is an output signal that enables the data transceiver. When high, the data

transceiver connects the device with the bus. The direction of the transfer
(read or write) is defined by the high or low level of a special (RW) signal,
which is part of the address/data bundle.

Fig. 7(b) shows a timing diagram of the read cycle. In this case, signal dsw
is always low and not depicted in the diagram. The behaviour of the controller
is as follows: a request to read from the device is received by signal dsr . The
controller transfers this request to the device by asserting signal lds . When the
device has the data ready (ldtack high), the controller opens the transceiver
to transfer data to the bus (d high). Once data has been transferred, dsr will
become low indicating that the transaction must be finished. Immediately after,
the controller will lower signal d to isolate the device from the bus. After that,
the transaction will be completed by a return-to-zero of all interface signals,
seeking for a maximum parallelism between the bus and the device operations.

10 Carmona, Cortadella, Khomenko, Yakovlev

Our controller also supports a write cycle with a slightly different behaviour.
For the sake of simplicity, we have described in detail only the read cycle.

The model that will be used to specify asynchronous controllers is based on
Petri nets [53, 49]. It is called Signal Transition Graph (STG) [55, 13]. Roughly
speaking, an STG is a formal model for timing diagrams . Now we explain how
to derive an STG from a timing diagram.

From Timing Diagrams to Signal Transition Graphs A timing diagram specifies
the events (signal transitions) of a behaviour and their causality relations. An
STG is a formal model for this type of specifications. In its simplest form, an STG

can be considered as a causality graph in which each node represents an event
and each arc a causality relation. An STG representing the behaviour of the read
cycle for the VME bus is shown in Fig. 7(c). Rising and falling transitions of a
signal are represented by the superscripts + and −, respectively.

Additionally, an STG can also model all possible dynamic behaviours of the
system. This is the rôle of the tokens held by some of the causality arcs. An
event is enabled when it has at least one token on each input arc. An enabled
event can fire, which means that the event occurs. When an event fires, a token
is removed from each input arc and a token is put on each output arc. Thus,
the firing of an event produces the enabling of another event. The tokens in the
specification represent the initial state of the system.

The initial state in the specification of Fig. 7(c) is defined by the tokens on
the arcs dtack− → dsr+ and ldtack− → lds+. In this state, there is only one
event enabled, viz. dsr+. It is an event on an input signal that must be produced
by the environment. The occurrence of dsr+ removes a token from its input arc
and puts a token on its output arc. In that state, the event lds+ is enabled. In
this case, it is an event on an output signal, that must be produced by the circuit
modelled by this specification.

After firing the sequence of events ldtack+, d+, dtack+, dsr− and d−, two
tokens are placed on the arcs d− → dtack− and d− → lds−. In this situation,
two events are enabled and can fire in any order independently from each other,
i.e., these events are concurrent, which is naturally modelled by the STG .

Choice in Signal Transition Graphs In some cases, alternative behaviours, or
modes, can occur depending on how the environment interacts with the sys-
tem. In our example, the system will react differently depending on whether the
environment issues a request to read or a request to write.

Typically, different behavioural modes are represented by different timing
diagrams. For example, Fig. 8(a) and 8(b) depict the STG s corresponding to
the read and write cycles, respectively. In these pictures, some arcs have been
split and circles inserted in between. These circles represent places that can hold
tokens. In fact, each arc going from one transition to another has an implicit
place that holds the tokens located in that arc.

By looking at the initial markings, one can observe that the transition dsr+

is enabled in the read cycle, whereas dsw+ is enabled in the write cycle. The

Hardware Synthesis with Petri Nets 11

ldtack-

lds-

dsr+

dtack+1

dsr-

dtack-

lds+

ldtack+

d+

d-

(a)

ldtack-

dsw+

dsw-

dtack-

d+

lds+

ldtack+

d-

dtack+

lds-

(b)

ldtack-

lds-

dsr+

lds+/1

ldtack+/1

d+/1

dtack+1

dsr-

d-/1

dsw+

d+/2

lds+/2

ldtack+/2

d-/2

dtack+/2

dsw-

dtack-

Read cycle Write cycle

(b)

Fig. 8. VME bus controller: read cycle (a), write cycle (b), read and write cycles (c).

combination of both STG s models the fact that the environment can non-
deterministically choose whether to start a read or a write cycle.

This combination can be expressed by a single STG with a choice place,
as shown in Fig. 8(c). In the initial state, both transitions, dsr+ and dsw+,
are enabled. However, when one of them fires, the other is disabled since both
transitions are competing for the token in the choice place. This type of choice
is called free choice because the transitions, dsr+ and dsw+, connected to the
choice place have no other input places that could affect the process of choice
making.

Here is where one can observe an important difference between the expres-
siveness of STG s and timing diagrams: the former are capable of expressing
non-deterministic choices while the latter are not.

2.3 More formal definition of Signal Transition Graphs

To be able to introduce the methods of synthesis of asynchronous circuits in
subsequent sections, we will need a more formal definition of an STG . STG s are
a particular type of labelled Petri nets, where transitions are associated with the
changes in the values of binary variables. These variables can for example be
associated with wires, when modelling interfaces between blocks, or with input,
output and internal signals in a control circuit.

12 Carmona, Cortadella, Khomenko, Yakovlev

A net is a triple N
df

= (P, T, F) such that P and T are disjoint sets of respec-
tively places and transitions, and F ⊆ (P × T) ∪ (T × P) is a flow relation. A
marking of N is a multiset M of places, i.e., M : P → {0, 1, 2, . . .}. We adopt the
standard rules about representing nets as directed graphs, viz. places are repre-
sented as circles, transitions as rectangles, the flow relation by arcs, and markings

are shown by placing tokens within circles. As usual, •z
df

= {y | (y, z) ∈ F} and

z•
df

= {y | (z, y) ∈ F} denote the pre- and postset of z ∈ P ∪ T . We will assume

that •t 6= ∅, for every t ∈ T . A net system is a pair Σ
df

= (N, M0) comprising a
finite net N and an initial marking M0. We assume the reader is familiar with
the standard notions of the theory of Petri nets, such as the enabledness and
firing of a transition and marking reachability, as well as other standard notions
and classification associated with Petri nets [49].

A Signal Transition Graph (STG) is a quadruple Γ
df

= (N, M0, Z, λ), where

– Σ = (N, M0) is a Petri net (PN) based on a net N = (P, T, F),
– Z is a finite set of binary signals, which generates a finite alphabet Z± =

Z × {+,−} of signal transitions
– λ : T → Z± is a labelling function.

Labelling λ does not need to be 1-to-1 (some signal transitions may occur
several times in the PN), and it may be extended to a partial function, in order
to allow some transitions to be “dummy” ones (denoted by ε), that is to denote
“silent events” that do not change the state of the circuit.

When talking about individual signal transitions, the following meaning will
be associated with their labels. A label x+ is used to denote the transition of
signal x from 0 to 1 (rising edge), while x− is used for a 1 to 0 transition (falling
edge). In the following it will often be convenient to associate STG transitions
directly with their labels, “bypassing” their Petri net identity. In such cases if the
labelling is not 1-to-1 (so called multiple labelling), we will also use a subscript
or an index separated by slash denoting the instance number of the x±.

Sometimes, when reasoning on a pure event-based level, it will also be con-
venient to hide the direction of a particular edge and use x± to denote either a
x+ transition or an x− transition.

An STG inherits the basic operational semantics from the behaviour of its un-
derlying Petri net. In particular, this includes: (i) the rules for transition enabling
and firing, (ii) the notions of reachable markings, traces, and (iii) the tempo-
ral relations between transitions (precedence, concurrency, choice and conflict).
Likewise, STG s also inherit the various structural (marked graph, free-choice,
etc.) and behavioural properties (boundedness, liveness, persistency, etc.), and
the corresponding classification of PNs. Namely:

– Choice place. A place is called a choice (or conflict) place if it has more
than one output transition.

– Marked graph and State machine. A PN is called a marked graph (MG)
if each place has exactly one input and one output transition. Dually, a PN

is called a state machine (SM) if each transition has exactly one input and
one output place. MG s have no choice. Safe SMs have no concurrency.

Hardware Synthesis with Petri Nets 13

– Free-choice. A choice place is called free-choice if every its output transition
has only one input place. A PN is free-choice if all its choice places are free-
choice.

– Persistency. A transition t ∈ T is called non-persistent if some reachable
marking enables t together with another transition t′, and t becomes disabled
after firing t′. Non-persistency of t with respect to t′ is also called a direct
conflict between t and t′. A PN is persistent if it does not contain any non-
persistent transition.

– Boundedness and safeness. A PN k-bounded if for every reachable mark-
ing the number of tokens in any place is not greater than k (a place is called
k-bounded if for every reachable marking the number of tokens in it is not
greater than k). A PN is bounded, if there is a finite k for which it is k-
bounded. A PN is safe if it is 1-bounded (a 1-bounded place is called a safe
place).

– Liveness. A PN is live if for every transition t and every reachable marking
M there is a firing sequence that leads to a marking M ′ enabling t.

The signal transition labelling of an STG may sometimes differentiate be-
tween input and non-input signals, thus forming two disjoint subsets, ZI (for
inputs) and ZO (for non-inputs, or simply outputs), such that Z = ZI ∪ZO. An
STG is called autonomous if it has no input signals (i.e., ZI = ∅).

Graphically, an STG can either be represented in the standard form of a
labelled PN, drawing transitions as bars or boxes and places as circles, or in
the so-called STG shorthand form. The latter, as was first shown in the above
examples, designates transitions directly by their labels and omits places that
have only one input and one output transition.

Examples of STG s, in their shorthand notation, were shown in Fig. 8, describ-
ing a simple VME bus controller example. It was assumed in them that ZI =
{dsr, dsw, ldtack} and ZO = {lds, dtack, d}. The first two STG s, in Fig. 8(a)
and 8(b), are marked graphs (they do not have choice on places). The third one,
in Fig. 8(c), modelling both read and write operation cycles, is not a marked
graph because it contains places with multiple input and output transitions. It
is not a free-choice net either, because one of its choice places, the input to
transitions lds+/1 and lds+/2, is not a free-choice place. The latter is however
a unique choice place because whenever one of the above two transitions is en-
abled the other is not, which is guaranteed by the other choice place, which is a
free-choice one. Thus, behaviourally, this net does not lead to dynamic conflicts
(arbitration) or confusion, as it is free from any interference between choice and
concurrency.

3 State-based Synthesis from Signal Transition Graphs

The main purpose of this section is to present a state-based method to design
asynchronous control circuits, i.e., those circuits that synchronise the operations
performed by the functional units of the data-path through handshake protocols.
The method uses the STG model of a circuit as its initial specification. The key

14 Carmona, Cortadella, Khomenko, Yakovlev

dsr+

dsr+

dsr+

dtack+ dsr-

d-

dtack-

dtack-

dtack-

ldtack- ldtack- ldtack-

lds-lds-lds-ldtack+

d+

lds+

(a)

dsr+

dsr+

dsr+

dtack+ dsr-

d-

dtack-

dtack-

dtack-

ldtack- ldtack- ldtack-

lds-lds-lds-ldtack+

d+

lds+
LDS=0

LDS=1

(b)

10101
10101

dsr+

dsr+

dsr+

dtack+ dsr-

d-

dtack-

dtack-

dtack-

ldtack- ldtack- ldtack-

lds-lds-lds-ldtack+

d+

lds+

10000

10001

10111 11111 01111

01101

01100

01000
00000

00101

0010010100

(c)

Fig. 9. Reachability graph of read cycle (a), its binary partitioning for signal lds (b),
and the encodings of the reachable states (c). The order of signals in the binary en-
codings is: dsr , dtack , ldtack , d , lds.

steps in this method are the generation of a state graph, which is a binary
encoded reachability graph of the underlying Petri net, and deriving Boolean
equations for the output signals via their next state functions obtained from the
state-graph. This method is surveyed here very briefly and informally, using our
VME bus controller example. For more details the reader is referred to the book
and the Petrify tool [18].

3.1 State Graphs

State Space An STG is a succinct representation of the behaviour of an asyn-
chronous control circuit that describes the causality relations among the events.
However, the state space of the system must be derived by exploring all possible
firing orders of the events. Such exploration may result in a state space much
larger than the specification.

Unfortunately, the synthesis of asynchronous circuits from STG s requires an
exhaustive exploration of the state space. Finding efficient representations of
the state space is a crucial aspect in building synthesis tools. Other techniques
based on direct translation of Petri Nets into circuits or on approximations of the
state space exist [42, 50], but usually produce circuits with area and performance
penalty.

Going back to our example of the VME bus controller, Fig. 9(a) shows the
reachability graph corresponding to the behaviour of the read cycle. The initial
state is depicted in gray.

For simplicity, the write cycle will be ignored in the rest of this section. Thus,
we will consider the synthesis of a bus controller that only performs read cycles.

Binary Interpretation The events of an asynchronous circuit are interpreted
as rising and falling transitions of digital signals. A rising (falling) transition
represents a switch from 0 (1) to 1 (0) of the signal value. Therefore, when
considering each signal of the system, a binary value can be assigned to each
state for that signal. All those states visited after a rising (falling) transition

Hardware Synthesis with Petri Nets 15

and before a falling (rising) transition represent situations in which the signal
value is 1 (0).

In general, the events representing rising and falling transitions of a signal
induce a partition of the state space. As an example, let us take signal lds of
the bus controller. Fig. 9(b) depicts the partition of states. Each transition from
LDS=0 to LDS=1 is labelled by lds+ and each transition from LDS=1 to LDS=0 is
labelled by lds−.

It is important to notice that rising and falling transitions of a signal must
alternate. The fact that a rising transition of a signal is enabled when the signal
is at 1 is considered a specification error. More formally, a specification with
such problem is said to have an inconsistent state coding.

After deriving the value of each signal, each state can be assigned a binary
vector that represents the value of all signals in that state. A transition system
with a binary interpretation of its signals is called a state graph (SG). The SG

of the bus controller read cycle is shown in Fig. 9(c).

3.2 Deriving Logic Equations

In this section we explain how an asynchronous circuit can be automatically ob-
tained from a behavioural description. We have already distinguished two types
of signals in a specification: inputs and outputs. Further, some of the outputs
may be observable and some internal. Typically, observable outputs correspond
to those included in the specification, whereas internal outputs correspond to
those inserted during synthesis and not observable by the environment. Synthe-
sising a circuit means providing an implementation for the output signals of the
system.

This section gives an overview of the methods used for the synthesis of asyn-
chronous circuits from an SG.

System Behaviour The specification of a system models a protocol between its
inputs and outputs. At a given state, one or several of these two situations may
happen:

– The system is waiting for an input event to occur. For example, in the state
00000 of Fig. 9(c), the system is waiting for the environment to produce a
rising transition on signal dsr .

– The system is expected to produce a non-input (output or internal) event.
For example, the environment is expecting the system to produce a rising
transition on signal lds in state 10000.

In concurrent systems, several of these things may occur simultaneously. For
example, in state 00101, the system is expecting the environment to produce
dsr+, whereas the environment is expecting the system to produce lds−. In
some other cases, such as in state 01101, the environment may be expecting the
system to produce several events concurrently, e.g., dtack− and lds−.

The particular order in which concurrent events will occur will depend on the
delays of the components of the system. Most of the synthesis methods discussed

16 Carmona, Cortadella, Khomenko, Yakovlev

dsr+

dsr+

dsr+

dtack+ dsr-

d-

dtack-

dtack-

dtack-

ldtack- ldtack- ldtack-

lds-lds-lds-ldtack+

d+

lds+

10000

10001

10111 11111 01111

01101

01100

01000
00000

00101

0010010100

10101
10101

ER(lds+)
QR(lds-)

ER(lds-)

QR(lds+)

(a)

State current next
region value of lds value of lds

ER(lds+) 0 1
QR(lds+) 1 1
ER(lds−) 1 0
QR(lds−) 0 0

(b)

Fig. 10. Excitation and quiescent regions for signal lds (a) and the corresponding
next-state function (b).

here aim at synthesising circuits whose correctness does not depend on the actual
delays of the components. These circuits are called speed-independent.

A correct implementation of the output signals must be in such a way that
signal transitions on those signals must be generated if and only if the environ-
ment is expecting them. Unexpected signal transitions, or not generating signal
transitions when expected, may produce circuit malfunctions.

Excitation and Quiescent Regions Let us take one of the output signals of
the system, say lds . According to the specification, the states can be classified
into four regions:

– The positive excitation region, ER(lds+), includes all those states in which a
rising transition of lds is enabled.

– The negative excitation region, ER(lds−), includes all those states in which
a falling transition of lds is enabled.

– The positive quiescent region, QR(lds+), includes all those states in which
signal lds is at 1 and lds− is not enabled.

– The negative quiescent region, QR(lds−), includes all those states in which
signal lds is at 0 and lds+ is not enabled.

Fig. 10(a) depicts these regions for signal lds . It can be easily deduced that
ER(lds+) ∪ QR(lds−) and ER(lds−) ∪ QR(lds+) are the sets of states in which
signal lds is at 0 and 1, respectively.

Next-state Functions Excitation and quiescent regions represent sets of states
that are behaviourally equivalent from the point of view of the signal for which
they are defined. The semantics of these regions are the following:

– ER(lds+) is the set of states in which lds is at 0 and the system must change
it to 1.

– ER(lds−) is the set of states in which lds is at 1 and the system must change
it to 0.

Hardware Synthesis with Petri Nets 17

– QR(lds+) is the set of states in which lds is at 1 and the system must not
change it.

– QR(lds−) is the set of states in which lds is at 0 and the system must not
change it.

According to this definition, the behaviour of each signal can be determined
by calculating the next value expected at each state of the SG. This behaviour
can be modelled by Boolean equations that implement the so-called next-state
functions (see Fig. 10(b)).

Let us consider again the bus controller and try to derive a Boolean equation
for the output signal lds . A 5-variable Karnaugh map for Boolean minimisation
is depicted in Fig. 11. Several things can be observed in that table. There are
many cells of the map with a don’t care (−) value. These cells represent binary
encodings not associated to any of the states of the SG. Since the system will
never reach a state with those encodings, the next-state value of the signal is
irrelevant.

00 01 11 10

00

01

11

10

dsr,dtack

ldtack,d 00 01 11 10

00

01

11

10

dsr,dtack

ldtack,d

lds=0 lds=1

00 0

0 0 1

-

-

1

111

00 1
0

-

-

- - -

-
CSC conflict

Fig. 11. Karnaugh map for the minimisation of signal lds.

The shadowed cells correspond to states in the excitation regions of the signal.
The rest of cells correspond to states in some of the quiescent regions. If we call
flds the next-state function for signal lds , here are some examples on the value
of flds :

flds(10000) = 1 state in ER(lds+)
flds(10111) = 1 state in QR(lds+)
flds(00101) = 0 state in ER(lds−)
flds(01000) = 0 state in QR(lds−)

3.3 State Encoding

At this point, the reader must have noticed a peculiar situation for the value of
the next-state function for signal lds in two states with the same binary encoding:
10101. This binary encoding is assigned to the shadowed states in Fig. 9(c).

Unfortunately, the two states belong to two different regions for signal lds ,
namely to ER(lds−) and QR(lds+). This means that the binary encoding of
the SG signals alone cannot determine the future behaviour of lds . Hence, an
ambiguity arises when trying to define the next-state function. This ambiguity
is illustrated in the Karnaugh map of Fig. 11.

18 Carmona, Cortadella, Khomenko, Yakovlev

lds+

d+

dtack+ lds-

dsr-

dtack-

dsr+ ldtack+ ldtack-

csc+

d-

csc-

(a)

dsr+

dsr+

dsr+

dtack+ dsr-

dtack-

dtack-

dtack-

ldtack- ldtack- ldtack-

lds-lds-lds-ldtack+

d+

100011

101111 111111 011111

011010

011000

010000
000000

001010

001000101000

d-

lds+

csc+
100000100001

011110

101010
101011

csc-

(b)

Fig. 12. An STG (a) and its SG (b) satisfying the CSC property.

lds = d + csc

dtack = d

d = ldtack · csc

csc = dsr · (csc+ldtack)

d

ldtack

lds

dsr

dtack

csc

Fig. 13. Logic equations and implementation of the VME bus controller.

Roughly speaking, this phenomenon appears when the system does not have
enough memory to “remember” in which state it is. When this occurs, the system
is said to violate the Complete State Coding (CSC) property. Enforcing CSC is
one of the most difficult problems in the synthesis of asynchronous circuits.

Fig. 12 presents a possible solution for the SG of the VME bus controller. It
consists of inserting a new signal, csc, that adds more memory to the system.
After the insertion, the two conflicting states are disambiguated by the value of
csc, which is the last value in the binary vectors of Fig. 12.

Now Boolean minimisation can be performed and logic equations can be ob-
tained (see Fig. 13). In the context of Boolean equations representing gates we
shall liberally use the “=” sign to denote “assignment”, rather than mathemat-
ical equality. Hence csc on the left-hand side of the last equation stands for
the next value of signal csc, while csc on the right-hand side corresponds to its
current value. The resulting circuit contains cycles: the combinational feedbacks
play the rôle of local memory in the system.

Hardware Synthesis with Petri Nets 19

The circuit shown in Fig. 13 is said to be speed-independent, i.e., it works
correctly regardless of the delays of its components. For this to be true, it is
required that each Boolean equation is implemented as one complex gate. This
roughly means that the internal delays within each gate are negligible and do
not produce any externally observable spurious behaviour. However, the external
delay of the gates can be arbitrarily long.

Note that signal dtack is merely implemented as a buffer, and a wire is
enough to preserve that behaviour. But note that the specification indicates
that the transitions of dtack must occur always after the transitions of d . For
this reason, the resulting equation is dtack = d and not vice versa. Thus, the
buffer introduces the required delay to enforce the specified causality.

3.4 Properties for implementability

In conclusion to this section let us summarise the main properties required for
the STG specification to be implementable as a speed-independent circuit [18]:

– Boundedness of the STG that guarantees the SG to be finite.
– Consistency of the STG , that ensures that the rising and falling transitions

of each signal alternate in all possible runs of the specification.
– Completeness of state encoding (CSC) that ensures that there are no two

different states with the same signal encoding but different behaviour of the
output or internal signals.

– Persistency of signal transitions in such a way that no signal transition
can be disabled by another signal transition, unless both signals are inputs.
This property ensures that no short glitches, known as hazards, will appear
at the disabled signals. (Arbitration is implemented by ‘factoring out’ the
arbiter into the environment and using a special circuit able to resolve meta-
stability.)

4 Synthesis Using Structural Methods, Linear

Programming and STG Decomposition

4.1 Rationale

Structural methods provide a way to avoid the state space explosion problem,
given that they rely on succinct representations of the state space. The main
benefit of using structural methods is the ability to deal with large and highly
concurrent specifications, that cannot be tackled by state-based methods. On the
other hand, structural methods are usually conservative and approximate, and
can only be exact when the behaviour of the specifications is restricted in some
sense. For instance, in [66] structural methods for the synthesis of asynchronous
circuits are presented for the class of marked graphs, a very restricted class of
Petri nets where choices are not allowed. In this section we present structural
methods to solve some of the main problems in the synthesis of asynchronous
control circuits from well-formed specifications.

20 Carmona, Cortadella, Khomenko, Yakovlev

As it was explained in previous sections, the synthesis of asynchronous cir-
cuits from an STG can be separated into two steps [18]: (i) checking and (possi-
bly) enforcing implementability conditions and (ii) deriving the next-state func-
tion for each signal generated by the system. Most of the existing CAD tools
for synthesis perform steps (i) and (ii) at the underlying state graph level, thus
suffering from the state space explosion problem.

In order to avoid the state explosion problem, structural methods for steps (i)
and (ii) have been proposed in the literature. Approaches like the ones presented
in [66, 50, 9, 8] can be considered purely structural. Among the methods applied
by these approaches, graph theoretic-based and linear algebraic are the essential
techniques. The work presented in this section uses both linear algebraic methods
and graph theoretic-based methods.

Regarding step (i), in this section an encoding technique to ensure imple-
mentability is presented. It is inspired by the work of René David [20]. The main
idea is to insert a new set of signals in the initial specification in a way that
unique encoding is guaranteed in the transformed specification.

To the best of our knowledge, the results reported in [38, 29] are the first
ones that use linear algebraic techniques to approach the encoding problem. In
the former approach, a complete characterisation of the encoding problem is
presented, provided that, like in Section 5, unfoldings are used to represent the
underlying state space of the net. Linear algebraic methods to verify the encod-
ing are presented in this section, where the computation of the unfolding is not
performed, at the expense of checking only sufficient conditions for synthesis.
However, the experimental results indicate that this approach is highly accu-
rate and often provides a significant speed-up compared with [38, 39]. One can
imagine a design flow where the methods presented in this section are used to
pre-process the specifications, and complete methods like the ones presented in
Section 5 are only used when purely structural methods fail.

Another alternative to alleviate the state space explosion problem is by us-
ing decomposition techniques. We apply them when performing step (ii). More
specifically, in this section an algorithm for computing the set of signals needed
to synthesise a given signal is presented, which also uses linear algebraic tech-
niques. This allows to project the behaviour into that set of signals and perform
the synthesis on the projection.

In summary, this section covers the two important steps (i) and (ii) in the
synthesis of asynchronous circuits: it proposes powerful methods for checking
CSC/USC and a method for decomposing the specification into smaller ones
while preserving the implementability conditions.

4.2 Structural technique to ensure a correct encoding

The first example of use of structural methods is presented in this section. The
technique is inspired by previous work on using a special type of cells, called
David cells. This type of cells, first introduced in [20], were used in [69] to mimic
the token flow of a Petri net. Fig. 14 depicts a very simple example on how

Hardware Synthesis with Petri Nets 21

these cells can be abutted to build a distributor that controls the propagation
of activities along a ring.

ai âi

cici−1

Fig. 14. Distributor built from David cells [42].

The behaviour of one of the cells in the distributor can be summarised by
the following sequence of events:

· · · → c−i−1
| {z }

i-th cell
excitation

→ a+

i → â−
i

| {z }

i-th cell setting

→

→ â+

i−1 → a−
i−1 → c+

i−1
| {z }

(i − 1)-th cell resetting

→ c−i
| {z }

(i + 1)-th cell
excitation

→ · · ·

Let us explain how one can use David Cells to ensure a correct encoding of the
system specified by a given STG . The main idea is to add a new signal for each
place of the original net. The semantics of the new signal inserted is to mimic
the token flow of the corresponding place in the original net. The technique is
shown in Fig. 15.

For instance place p4 induces the creation of signal sp4. Moreover, provided
that when transition dtack+ is enabled, it adds a token to p4, in the transformed
net it will induce that near (preceding) dtack+ there must be an sp+

4 . A similar
reason makes to have sp−

4 near (following) dsr−. New transitions are inserted
in a special way: internal signal transitions must not be inserted in front of an
input signal transition. The reason for that is to try to preserve the I/O interface
(see more on this in [7]).

The derived STG is guaranteed to have a correct encoding (in the example,
the right STG is guaranteed to satisfy the USC property). The theory underlying
the technique can be found in [9]. It can be applied for any STG with the
underlying free-choice live and safe Petri net (FCLSPN).

4.3 ILP models for fast encoding verification

The main drawback of this technique is that a correct encoding is ensured at the
expense of inserting a lot of new signals into the net, and thus the final imple-
mentation can be very inefficient in terms of area and/or performance. Therefore

22 Carmona, Cortadella, Khomenko, Yakovlev

lds+

ldtack+

sp2+

sp1−

sp3+

sp2−

d+

sp4+

sp3−

dtack+

dsr−

sp5+

sp4−

sp9+ sp6+

sp5−

d−

sp11−sp8−

sp1+

sp10+

sp9−

lds−

ldtack−

sp11+

sp10−

sp7+

sp6−

dtack−

dsr+

sp8+

sp7−
p8

p7

p1

p2

p3

p4

p5
p6 p9

p11

p10

ENCODING RULE

lds+

d+

dtack+ lds−

d−

dtack−

dsr+ ldtack+ ldtack−

dsr−

Fig. 15. Encoding rule applied to the VME Bus Controller example.

it would be nice to have an oracle that could tell us when the application of the
encoding technique is needed, provided that the computation of the state space
and subsequent checking cannot be done for the specification at hand due to
efficiency reasons.

This section presents Integer Linear Programming (ILP) models as oracles
that we can use to verify the encoding in an STG . The good news is that when
we query such oracles, usually it takes short time for them to answer, even for
very large STG s. The bad news is that they are not perfect oracles: we can only
trust them when they say “Yes, your STG is correctly encoded”.

In this section we assume some basic knowledge of Linear Programming (see,
e.g., [56]). The rest of this section has three main parts: first it is shown how to use
linear algebraic techniques for deciding whether a given marking M is reachable
in a Petri net. Second, using this technique, models for finding encoding conflicts
are presented, and third, experimental results are shown.

Approximation of the Reachability Set of a PN Computing the reachability graph
from a given PN is a very hard problem, because the size of the reachability graph
may grow exponentially with respect to the size of the PN, or it even can be
infinite. The main reason is that the concurrency in the PN leads to a blow up
in the reachability graph. The reader can find in [65] an in-depth discussion on
the rôle of concurrency in relation to the size of the reachability graph.

Hardware Synthesis with Petri Nets 23

p5

t2

p4

t1

p1

t5 t6

p3p2

t3 t4

(a)

1

0

0

0

0

−1

+1

+1

−1

−1

+1

+1

+1

−1

+1

−1

−1

−1

−1

−1

+1 +1

0

0

0 0

0 0

0

0

0

0 0

0

0

3

2

0

0

1

1

σ

+

0

0

0

2

0

=

0m = m + N

(b)

10000

01100

00011

01001 00101

t3 t4

t3 t4 t3
t4

t1

t2

t4

t5 t6

t3

01010

00002

00110

00200

00020

02000

(c)

Fig. 16. A Petri net (a), a spurious solution M = (00020)T (b), and the potential
reachability graph (c).

Therefore, it is interesting to approach the problem of reachability using other
models or techniques. In this section we describe how to use ILP techniques to
compute approximations of reachable markings of a PN.

Given a firing sequence M0
σ
→ M of a PN N , the number of tokens for each

place p in M is equal to the number of tokens of p in M0 plus the number
of tokens added by the input transitions of p appearing in σ minus the tokens
removed by the output transitions of p appearing in σ, which can be expressed
as the following token conservation equation:

M(p) = M0(p) +
∑

t∈•p

#(σ, t)F (t, p) −
∑

t∈ p•

#(σ, t)F (p, t) .

Definition 1 (Incidence matrix of a PN). The matrix N ∈ {−1, 0, 1}|P |×|T |

defined by N(p, t)
df

= F (p, t) − F (t, p) is called the incidence matrix of N .

Definition 2 (Parikh vector). Let σ be a feasible sequence of N . The vector

σ

df

= (#(σ, t1), ..., #(σ, tn)) is called the Parikh vector of σ.

Using the previous definitions, the token conservation equations for all the
places in the net can be written in the following matrix form:

M = M0 + N · σ .

24 Carmona, Cortadella, Khomenko, Yakovlev

This equation allows to approximate the reachability set of a Petri net by means
of an ILP:

Definition 3 (Marking Equation). If a marking M is reachable from M0,

then there exists a sequence σ such that M0
σ
→ M , and the marking equation

M = M0 + N · X

has at least one solution X ∈ N|T |.

Note that the marking equation provides only a necessary condition for reach-
ability. If the marking equation is infeasible, then M is not reachable from M0,
but the inverse does not hold in general: there are markings satisfying the mark-
ing equation which are not reachable. Those markings are said to be spuri-
ous [59]. Fig. 16(a,b,c) presents an example of spurious marking: the Parikh
vector σ = (320011) and the marking M = (00020) are a solution of the mark-
ing equation shown in Fig. 16(b) for the Petri net in Fig. 16(a)1. However,
M is not reachable: only sequences visiting negative markings can lead to M .
Fig. 16(c) depicts the graph containing the reachable markings and the spurious
markings (shadowed). This graph is called the potential reachability graph. The
initial marking is represented by the state (10000).

ILP models to find encoding conflicts Let us explain with the example of the
VME Bus Controller how to derive an ILP formulation that detects USC/CSC

conflicts in a given STG .
The incidence matrix of the STG corresponding to the VME example is as

as follows:

lds+ dsr+ ldtack+ ldtack− d+ dtack− dtack+ lds− drs− d−

p1 +1 0 -1 0 0 0 0 0 0 0
p2 0 0 +1 0 -1 0 0 0 0 0
p3 0 0 0 0 +1 0 -1 0 0 0
p4 0 0 0 0 0 0 +1 0 -1 0
p5 0 0 0 0 0 0 0 0 +1 -1
p6 0 0 0 0 0 -1 0 0 0 +1
p7 0 -1 0 0 0 +1 0 0 0 0
p8 -1 +1 0 0 0 0 0 0 0 0
p9 0 0 0 0 0 0 0 -1 0 +1
p10 0 0 0 -1 0 0 0 +1 0 0
p11 -1 0 0 +1 0 0 0 0 0 0

The initial marking of the underlying Petri net is M0
df

= (00000010001), and the
vector x = (1110000000) is a solution of the marking equation (M1 = M0 +Nx).
It means that the sequence of transitions corresponding to the Parikh vector x
is fireable at M0, and it leads to M1, where M1 = (01000000000). From M1, the

1 Both in the figure and the explanation, we abuse the notation and skip the commas
in the definition of Parikh vectors and markings.

Hardware Synthesis with Petri Nets 25

vector z = (0100111011) is a solution of the marking equation, (M2 = M1+Nz),
where M2 = (00000001100) 6= M1. The non-zero positions of vector z correspond
to transitions d+, dtack+, dsr−, d−, dtack− and dsr+. Looking at vector z, one
can realise that for each signal appearing in it, the same number of rising and
falling transitions of the signal appear (for instance, d+ and d− occur once).
This type of sequences are called complementary sequences. The importance
of finding complementary sequences is due to the fact that they connect two
markings (M1 and M2 in the example) that have the same encoding, since that
each signal appearing in the sequence ends up with the same value that it had
at the beginning. The reader can assign any meaningful value to each signal in
marking M1 and check that M2 will have the same encoding.

So, according to the marking equation, there are two different markings, M1

and M2, such that M2 is reachable from M1 by firing a complementary sequence,
i.e., both markings have the same encoding. We found an USC conflict. The
corresponding ILP model is:

ILP model for USC checking:

Reachability conditions:
M1 = M0 + Nx
M2 = M1 + Nz

M1, M2, x, z ≥ 0, x, z ∈ Z|T |

z is complementary seq.

M1 6= M2
(1)

Note, that as it was said in the previous section, the marking equation pro-
vides only sufficient conditions for a marking to be reachable. Therefore the
markings M1 and M2, that are solution for model (1), can indeed be spurious,
and the corresponding model will incorrectly use them as example of encoding
conflicts. This is why in the introduction we said that our ILP models are non-
perfect oracles: only when the model finds no solution (a conflict between two
markings) one can be sure that the STG is free of conflicts. On the contrary,
when they find a conflict, only for very restricted classes of nets (marked graphs
or live, safe and cyclic free-choice nets [21]) one can be sure that the conflict is
a real one.

Now let us show how to find CSC conflicts using ILP techniques. Informally,
for a given signal a of the STG , a CSC conflict exists for a if the following
conditions hold: let a±

i be a transition of signal a. Then, a CSC conflict exists
if: (i) M2 is reachable from M1, (ii) M1 and M2 have the same code, (iii) a±

i is
enabled in M1 and (iv) for every transition a±

j of signal a, a±
j is not enabled in

M2. For safe systems, the enabledness of a transition x at a marking M can be
characterised by the sum of tokens of the places in •x at M : x is enabled at M
if and only if the sum of tokens of the places in •x is equal to the number of
places in •x:

26 Carmona, Cortadella, Khomenko, Yakovlev

ILP model for CSC checking:

(i) Reachability conditions (same as in (1))

(ii) z is complementary seq.

(iii)
∑

p∈ •a
±

i
M1(p) = |•a±

i |

(iv) ∀a±
j :
∑

p∈ •a
±

j
M2(p) < |•a±

j |

(2)

Note that the constraint M1 6= M2 is not needed in (2). If we continue
with the example of the VME Bus Controller, it can be shown that the USC

conflict described in the previous section is also a CSC conflict for signal d.
Given that it has been shown before that the assignments x = (1110000000) and
z = (0100111011) satisfy the first two constraints, now we show that constraints
(iii) and (iv) are also satisfied by x and z. The former constraint is satisfied
because

∑

p∈ •d+

M1(p) = M1(p2) = 1 = |{p2}| = |•d+| ,

and constraint (iv) is also satisfied since

∑

p∈ •d+

M2(p) = M2(p2) = 0 < 1 = |{p2}| = |•d+| .

Note that constraint (iv) is not verified for transition d−, because the consistency
of the STG is assumed. Thus, a CSC conflict has been detected in the VME Bus
Controller example.

Experimental results on using ILP to verify the encoding The ILP

methods presented have been implemented in Moebius, a tool for the syn-
thesis of speed-independent circuits. The experiments have been performed on
a PentiumTM 4/2.53 GHz and 512M RAM.

The experiments for CSC/USC detection are presented in Tables 1 and 2.
Each table reports the CPU time of each approach in seconds. We use ‘time’
and ‘mem’ to indicate that the algorithm had not completed within 10 hours or
produced a memory overflow, respectively. The following tools were compared:

– CLP: the approach presented in [38] for the verification of USC/CSC. It uses
non-linear integer programming methods and works on STG unfolding.

– SAT: the approach presented in [39] for the verification of CSC2. It uses a
satisfiability solver and works on STG unfolding.

– ILP: the approach presented in this section.

From the results one can conclude, as it was expected, that checking USC

is easier than checking CSC, given the different nature of the two problems: for
verifying USC only one ILP model is needed to be solved, whereas for verifying
CSC n models are needed, where n is the number of non-input signals in the

2 Checking for USC is not implemented in our version of SAT

Hardware Synthesis with Petri Nets 27

Benchmark |P | |T | |Z| CLP SAT ILP

PpWk(2,9) 71 38 19 < 1 < 1 < 1
PpWk(2,12) 95 50 25 < 1 < 1 < 1
PpWkCsc(2,9) 72 38 19 3 < 1 < 1
PpWkCsc(2,12) 96 50 25 246 1 < 1
PpWk(3,6) 70 38 19 < 1 < 1 < 1
PpWk(3,9) 106 56 28 11 < 1 < 1
PpWk(3,12) 142 74 37 933 < 1 < 1
PpWkCsc(3,6) 72 38 19 3 < 1 < 1
PpWkCsc(3,9) 108 56 28 2075 < 1 < 1
PpWkCsc(3,12) 144 74 37 time 1 < 1
PpArb(2,9) 86 48 23 < 1 < 1 < 1
PpArb(2,12) 110 60 29 < 1 < 1 < 1
PpArbCsc(2,9) 88 48 23 41 < 1 < 1
PpArbCsc(2,12) 112 60 29 1022 16 < 1
PpArb(3,6) 92 54 25 < 1 < 1 < 1
PpArb(3,9) 128 72 34 < 1 < 1 < 1
PpArb(3,12) 164 90 43 < 1 < 1 < 1
PpArbCsc(3,6) 95 54 25 61 < 1 < 1
PpArbCsc(3,9) 131 72 34 time 2 < 1
PpArbCsc(3,12) 167 90 43 time 16 1
TangramCsc(3,2) 142 92 38 < 1 < 1 1
TangramCsc(4,3) 321 202 83 < 1 < 1 9
Art(10,9) 216 198 99 < 1 < 1 < 1
Art(20,9) 436 398 199 5 10 < 1
Art(30,9) 656 598 299 38 82 < 1
Art(40,9) 876 798 399 138 265 < 1
Art(50,9) 1096 998 499 377 630 1
ArtCsc(10,9) 752 630 315 time 861 182
ArtCsc(20,9) 1532 1270 635 time mem 1623
ArtCsc(30,9) 2312 1910 955 time mem 5413
ArtCsc(40,9) 3092 2550 1275 time mem 12602
ArtCsc(50,9) 3872 3190 1595 time mem 25210

Table 1. CSC detection for well-structured STG s.

STG . Moreover, when some encoding conflict exists, the ILP solver can find it in
short time. This is explained by the fact that proving the absence of encoding
conflicts requires an exhaustive exploration of the branch-and-bound tree visited
by ILP solvers.

The speed-up shown by ILP with respect to the unfolding approach of SAT
or CLP are because in ILP approximations of the state space are used, whereas
SAT or CLP (as will be explained in the next section) are exact. However, our
conservative approach has proven to be highly accurate in the experimental
results.

4.4 Computing the necessary support for a given signal

In this section we are going to adapt model (2) to derive a decomposition method
for the synthesis of a given signal. The main idea is to try to compute those
signals in the STG that are needed to ensure that a given signal will be free of
encoding conflicts, if we abstract away of the rest of the STG . We will call such
a set of signals a support.

Let us use as example the STG shown in Fig. 12(a), where a new signal
(csc) has been inserted in the original STG of the VME Bus Controller to solve
the encoding conflict. A possible support for signal d is {ldtack , csc}. Fig. 17(a)
shows the projection induced by this support, and the final implementation of

28 Carmona, Cortadella, Khomenko, Yakovlev

Benchmark |P | |T | |Z| CLP ILP

PpWk(3,9) 106 56 28 10 < 1
PpWk(3,12) 142 74 37 876 < 1
PpWkCsc(3,9) 108 56 28 2002 < 1
PpWkCsc(3,12) 144 74 37 time 1
PpArb(3,9) 128 72 34 < 1 < 1
PpArb(3,12) 164 90 43 < 1 < 1
PpArbCsc(3,9) 131 72 34 time 1
PpArbCsc(3,12) 167 90 43 time 1
Tangram(3,2) 142 92 38 < 1 1
Tangram(4,3) 321 202 83 < 1 6
Art(40,9) 876 798 399 146 1
Art(50,9) 1096 998 499 328 2
ArtCsc(40,9) 3092 2550 1275 time 851
ArtCsc(50,9) 3872 3190 1575 time 1387

Table 2. USC detection for well-structured STG s.

d is shown in Fig. 17(b). The rest of this section is devoted to explaining how
to compute efficiently a support for a given output signal a.

ldtack−

csc+

d−

csc−

d+

ldtack+

(a)

ldtack

csc
d

(b)

Fig. 17. Projection of the STG in Fig. 12 for signal d (a) and a circuit implemen-
ting d (b).

The computation of a support can be performed iteratively: starting from an
initial assignment, ILP techniques can be used to guide the search. Suppose we
have an initial candidate set of signals Z ′ ⊆ Z, candidate to be a support of a
given signal a. A way of determining whether Z ′ is a support for signal a is by
solving the following ILP problem:

ILP model for checking support:

(i), (iii) and (iv) from (2)

z is complementary seq. for signals in Z ′
(3)

If (3) is infeasible, then Z ′ is enough for implementing a. Otherwise the set
Z ′ must be augmented (from signals in Z \ Z ′) with more signals until (3) is
infeasible. Moreover if (3) is feasible, adding a complemented signal b from Z \Z ′

will not turn the problem infeasible because z is still a complementary sequence
for signals in Z ′ ∪ {b}. On the contrary, adding a uncomplemented signal will
assign a different code to markings M1 and M2 of (3). Therefore, the uncomple-
mented signals in z will be the candidates to be added to Z ′. The algorithm for

Hardware Synthesis with Petri Nets 29

lds+

ldtack+

sp2+

sp3+

sp2-

d+

sp4+

sp3-

dtack+

dsr-

sp5+

sp4-

sp9+ sp6+

sp5-

d-

sp11-sp8-

sp10+

sp9-

lds-

ldtack-

sp11+

sp10-

sp7+

sp6-

dtack-

dsr+

sp8+

sp7-

sp1+

sp1-

d+

sp4+

sp3-

dtack+

dsr-

sp5+

sp4-

sp9+ sp6+

sp5-

d-

sp10+

sp9-

lds-

ldtack-

sp7+

sp6-

dtack-

dsr+

sp8+

sp7-

sp10-sp3+

ldtack+

lds+

sp8-

sp3+

sp2-

d+

sp4+

sp3-

dtack+

dsr-

sp5+

sp4-

sp9+ sp6+

sp5-

d-

sp10+

sp9-

lds-

ldtack-

sp11+

sp10-

sp7+

sp6-

dtack-

dsr+

sp8+

(3) infeasible

sp7-

lds+

ldtack+

sp2+

sp11-sp8-

sp3+

sp2-

d+

sp4+

sp3-

dtack+

dsr-

sp5+

sp4-

sp9+ sp6+

sp5-

d-

sp10+

sp9-

lds-

ldtack-

sp7+

sp6-

dtack-

dsr+

sp8+

sp7-

lds+

ldtack+

sp2+

sp8-

sp10-

d+

sp4+

ldtack+

lds+

dtack+

dsr-

sp5+

sp4-

sp9+ sp6+

sp5-

d-

sp10+

sp9-

lds-

ldtack-

sp7+

sp6-

dtack-

dsr+

sp8+

sp7-

sp10-

sp8-

dtack+

dsr-

sp5+

ldtack+

lds+

d+

sp9+ sp6+

sp5-

d-

sp10+

sp9-

lds-

ldtack-

sp7+

sp6-

dtack-

dsr+

sp8+ sp10-
sp8-

sp7-

Remove sp1, model
(3) infeasible Remove sp11, model

(3) infeasible

Remove sp2, model
(3) infeasible

Remove sp3, model
(3) infeasible

Remove sp4, model

Fig. 18. Greedy removal of signals sp1, sp11, sp2, sp3 and sp4.

finding a support set for a non-input signal a is the following:

Algorithm for the calculation of support:

Support (STG S, Signal a) returns support of a

Z ′ := Trig(a) ∪ {a}
while (3) is infeasible do

Let b be an uncomplemented signal in z
Z ′ := Z ′ ∪ {b}

endwhile
return Z ′

where Trig(a) is the set of signals that directly cause the switching of signal a.
In the next section we are going to present an example of using this algorithm
for the synthesis of the VME Bus Controller STG specification.

4.5 Synthesis of the VME Bus Controller using structural methods

Let us show how to use the structural methods to synthesise the VME example.
In addition to the methods presented in this section, we use Petri net transfor-
mations for stepwise transformation and projection. For a formal presentation
of the kit of transformations used in the example, see [9].

First, as shown in Section 4.3, we can use the ILP model (1) to realise that the
original STG of the VME Bus controller has encoding conflicts. Consequently
we apply the encoding technique presented in Section 4.2 to enforce CSC.

Afterwards, in order to derive a efficient implementation, we can try to elimi-
nate as many signals inserted by the encoding technique as possible, while keep-

30 Carmona, Cortadella, Khomenko, Yakovlev

dtack+

d+

d-

dtack-

{ldtack, sp9, sp10, d}
CSC-support for d:

{sp10, sp9, dsr, lds}
CSC-support for lds:

d+

d-

dsr- sp10+

sp9-

sp9+

sp10-

dsr+

{dsr, d, sp10, sp9}
CSC-support for sp9:

ldtack+

d+

sp10-

sp10+

sp9-

ldtack-

d-

sp9+

lds+

sp10-

sp10+

sp9-

lds-dsr+

dsr-

sp9+

ldtack+

d+

d-

ldtack+

lds+

d+

dtack+

dsr- sp10+

sp9-

lds-

ldtack-

sp9+

dtack-

dsr+

sp10-

CSC-support for dtack:
{d, dtack}

{ldtack, d, sp9, sp10}
CSC-support for sp10:

sp10+

sp9+

d-

sp9-

ldtack-
sp10-

Fig. 19. Support computation and projection for the VME Bus Controller example.

ing a correct encoding. The idea is to eliminate a signal and only accept the
removal if the transformed STG still has a correct encoding. Fig. 18 shows how
the removal of the first five signals is done, using the USC ILP model (1) as an
oracle.

The process can be iterated until no more signals can be removed. The final
STG is shown in the centre of Fig. 19. From that STG , the algorithm for support
computation is run for every output signal, and the corresponding projection is
found. This is shown also in Fig. 19.

And finally, from each projection the corresponding circuit is obtained. Given
that the projections are usually small (the support for a given signal is often very
small in practice, and the corresponding projections are usually quite small),
state-based algorithms for synthesis introduced in Section 3 can be applied. The
final synthesis of each projection is shown in Fig. 20.

Table 3 shows the results of experiments on synthesis to check the quality
of the generated circuits. The column ’Lit’ reports the number of literals, in
factored form, of the netlist. The results are compared with the circuits ob-
tained by Petrify [18], a state-based synthesis tool, on the same controllers.
From the reported CPU time, the time needed for computing a support and
the corresponding projection was negligible compared with the time needed for
deriving logic equations. Table 3 shows that the quality of the circuits obtained

Hardware Synthesis with Petri Nets 31

sp10+

sp9-

lds-dsr+

dsr-

sp9+

dtack+

d+

d-

dtack-

IMPLEMENTATION

sp10+

d-

sp9-

ldtack-

ldtack+

d+

sp9+

sp10-

d

lds
sp9

sp10

IMPLEMENTATION

dsr

IMPLEMENTATION

lds+

sp10-

dtack

d

sp10

sp9

ldtack

Fig. 20. Speed-independent synthesis of the VME Bus Controller.

by the ILP-based technique is comparable to that of the circuits obtained by
Petrify. Moreover it is clear that the structural approach can deal with larger
specifications.

4.6 Conclusions

Several examples of using structural methods are presented in this section. We
have given intuition on how these methods are used for the problem of synthesis
of control circuits from STG specifications. Although in some cases they can
provide only sufficient conditions, in general those methods are highly accurate
and provide a significant speed-up with respect to other approaches, as has been
demonstrated by the experimental results shown for the problem of verifying the
encoding.

In conclusion, structural methods are necessary for being able to handle
large and concurrent specifications. We advocate for their use, either isolated or
in combination with approaches like the one presented in the next section.

5 Synthesis Using Petri net Unfoldings

While the state-based approach is relatively simple and well-studied, the issue of
computational complexity for highly concurrent STG s is quite serious due to the
state space explosion problem. This puts practical bounds on the size of control
circuits that can be synthesised using such techniques, which are often restrictive,

32 Carmona, Cortadella, Khomenko, Yakovlev

benchmark states |P | |T | |Z| Lit. CPU

Pfy ILP Pfy ILP

PPWKCSC(2,6) 8192 47 26 19 57 57 5 1

PPWKCSC(2,9) 524.288 71 38 19 87 87 49 2

PPWKCSC(3,9) 2.7 × 107 106 56 28 mem 130 mem 3

PPWKCSC(3,12) 2.2 × 1011 142 74 37 time 117 time 3

PPARBCSC(2,6) 61440 62 36 17 77 77 21 83

PPARBCSC(2,9) 3.9 × 106 110 60 29 107 107 185 59

PPARBCSC(3,9) 3.3 × 109 131 72 34 163 165 10336 289

PPARBCSC(3,12) 1.7 × 1012 167 90 43 time 210 time 608

TANGRAMCSC(3,2) 426 142 92 38 97 103 56 146

TANGRAMCSC(4,3) 9258 321 202 83 mem 247 mem 7206

Table 3. Support computation, projection and synthesis compared to state-based ap-
proach.

especially if the STG models are not constructed manually by a designer but
rather generated automatically from high-level hardware descriptions.

In order to alleviate this problem, Petri net analysis techniques based on
causal partial order semantics, in the form of Petri net unfoldings, are applied to
circuit synthesis. In particular, the following tasks are addressed: (i) detection
of encoding conflicts; (ii) resolution of encoding conflicts; and (iii) derivation
of Boolean equations for output signals. We show that the notion of an encod-
ing conflict can be characterised in terms of satisfiability of a Boolean formula
(SAT), and the resulting algorithms solving tasks (i) and (iii) achieve significant
speedups compared with methods based on state graphs. Moreover, we propose a
framework for resolution of encoding conflicts (task (ii)) based on conflict cores.

5.1 STG unfoldings

A finite and complete unfolding prefix π of an STG Γ is a finite acyclic net
which implicitly represents all the reachable states of Γ together with transitions
enabled at those states. Intuitively, it can be obtained through unfolding Γ , by
successive firings of transition, under the following assumptions: (a) for each
new firing a fresh transition (called an event) is generated; (b) for each newly
produced token a fresh place (called a condition) is generated. The unfolding is
infinite whenever Γ has an infinite run; however, if Γ has finitely many reachable
states then the unfolding eventually starts to repeat itself and can be truncated
(by identifying a set of cut-off events) without loss of information, yielding
a finite and complete prefix. We denote by B, E and Ecut ⊆ E the sets of
conditions, events and cut-off events of the prefix, respectively. Fig. 21(b) shows
a finite and complete unfolding prefix (with the only cut-off event is depicted as
a double box) of the STG shown in Fig. 21(a).

Efficient algorithms exist for building such prefixes [25, 31, 36, 37], which en-
sure that the number of non-cut-off events in a complete prefix can never exceed

Hardware Synthesis with Petri Nets 33

the number of reachable states of Γ . However, complete prefixes are often ex-
ponentially smaller than the corresponding state graphs, especially for highly
concurrent Petri nets, because they represent concurrency directly rather than
by multidimensional ‘diamonds’ as it is done in state graphs. For example, if the
original Petri net consists of 100 transitions which can fire once in parallel, the
state graph will be a 100-dimensional hypercube with 2100 nodes, whereas the
complete prefix will coincide with the net itself.

Due to its structural properties (such as acyclicity), the reachable markings of
Γ can be represented using configurations of π. A configuration C is a downward-
closed set of events (being downward-closed means that if e ∈ C and f is a causal
predecessor of e, then f ∈ C) without structural conflicts (i.e., for all distinct
events e, f ∈ C, •e ∩ •f = ∅). Intuitively, a configuration is a partial-order
execution, i.e., an execution where the order of firing of concurrent events is not
important.

After starting π from the implicit initial marking (whereby one puts a single
token in each condition which does not have an incoming arc) and executing
all the events in C, one reaches the marking denoted by Cut(C). We denote by
Mark (C) the corresponding marking of Γ , reached by firing a transition sequence
corresponding to the events in C. It is remarkable that each reachable marking
of Γ is Mark (C) for some configuration C, and, conversely, each configuration
C generates a reachable marking Mark (C). This property is a primary reason
why various behavioural properties of Γ can be re-stated as the corresponding
properties of π, and then checked, often much more efficiently (in particular,
one can easily check the consistency and deadlock-freeness of Γ [57, 35]). The
experimental results in Table 4 demonstrate that high levels of compression are
indeed achieved in practice.

For the unfolding of a consistent STG we define by Codez(C) the value
(0 or 1) corresponding to signal z in the encoding of the state Mark (C); we

also define Outz(C) to be 1 if z ∈ Out(M) and 0 otherwise, and Nxtz(C)
df

=
Codez(C) ⊕ Outz(C), where ‘⊕ ’ is the ‘exclusive or’ operation.

5.2 Visualisation and resolution of state encoding conflicts

A number of methods for resolution of CSC conflicts have been proposed so far
(see, e.g., [16] for a brief review). The techniques in [67, 75] introduce constraints
within an STG , called lock relation and coupledness relation, which provide some
guidance. These techniques recognise that if all pairs of signals in the STG are
‘locked’ using a chain of handshaking pairs then the STG satisfies the CSC

property. The synthesis tool Petrify uses the theory of regions [16] for this
purpose.

The above techniques work reasonably well. However, they may produce
sub-optimal circuits or fail to solve the problem in certain cases, e.g., when
a controller specification is defined in a compact way using a small number
of signals. Such specifications often have CSC conflicts that are classified as
irreducible by Petrify. Therefore, manual design may be required for finding

34 Carmona, Cortadella, Khomenko, Yakovlev

dtack−
dsr+

lds−

d−ldtack−

csc− csc+

ldtack+

lds+ dtack+ dsr−d+

(a)

1e 2e 4e 5e 6e 7e3e

8e 10e

9e 11e

e12

lds+ d+ dtack+ dsr− d−dsr+ ldtack+

core

lds−

dtack− dsr+

lds+

csc−

ldtack−

csc+

C’ C’’

(b)

inputs: dsr , ldtack ; outputs: lds, d , dtack ; internal: csc

Fig. 21. VME bus controller: STG for the read cycle, with the dotted lines appearing
in the final STG satisfying the CSC property (a) and unfolding prefix with a conflict
pair of configurations and a new signal csc resolving the CSC conflict (b). The order
of signals in the binary encodings is: dsr , dtack , lds, ldtack , d .

good synthesis solutions, particularly in constructing interface controllers, where
the quality of the solution is critical for the system’s performance.

According to a practising designer [54], the synthesis tool should offer a way
for the user to understand the characteristic patterns of a circuit’s behaviour and
the cause of each encoding conflict and allow one to interactively manipulate
the model by choosing where in the specification to insert new signals. The
visualisation method presented here is aimed at facilitating a manual refinement
of an STG with CSC conflicts, and works on the level of unfolding prefixes. In
order to avoid the explicit enumeration of encoding conflicts, they are visualised
as cores, i.e., sets of transitions ‘causing’ one or more of them. All such cores
must eventually be eliminated by adding new signals that resolve the encoding
conflicts to yield an STG satisfying the CSC property. Optionally, our method
can also work in a completely automatic or semi-automatic manner, making it
possible for the designer to see what is going on and intervene at any stage
during the process of CSC conflict resolution.

5.3 Encoding conflicts in a prefix

A CSC conflict can be represented as an unordered conflict pair of configura-
tions 〈C ′, C ′′〉 whose final states are in CSC conflict, as shown if Fig. 21(b).
In Section 5.6 a SAT-based technique for detecting CSC conflicts is described.
Essentially, it allows for efficiently finding such conflict pairs in STG unfolding
prefixes.

Note that the set of all conflict pairs may be quite large, e.g., due to the
following ‘propagation’ effect: if C ′ and C ′′ can be expanded by the same event e
then 〈C ′ ∪ {e}, C ′′ ∪ {e}〉 is also a conflict pair (unless these two configurations
enable the same set of output signals). Therefore, it is desirable to reduce the
number of pairs needed to be considered, e.g., as follows. A conflict pair 〈C ′, C ′′〉
is called concurrent if C ′ * C ′′, C ′′ * C ′ and C ′ ∪ C ′ is a configuration.

Proposition 1 ([45]). Let 〈C ′, C ′′〉 be a concurrent CSC conflict pair. Then

C
df

= C ′ ∩ C ′′ is such that either 〈C, C ′〉 or 〈C, C ′′〉 is a CSC conflict pair.

Hardware Synthesis with Petri Nets 35

Thus concurrent conflict pairs are ‘redundant’ and should not be considered.
The remaining conflict pairs can be classified as follows:

Conflicts of type I are such that C1 ⊂ C2 (Fig. 21(b) illustrates this type of
CSC conflicts).

Conflicts of type II are such that C1 \ C2 6= ∅ 6= C2 \ C1 and there exist
e′ ∈ C1 \ C2 and e′′ ∈ C2 \ C1 such that e′#e′′.

The following notion is crucial for the proposed approach:

Definition 4. Let 〈C ′, C ′′〉 be a conflict pair. The corresponding complemen-

tary set is defined as CS
df

= C ′4C ′′, where 4 denotes the symmetric set differ-
ence. CS is a core if it cannot be represented as the union of several disjoint
complementary sets. A complementary set is of type I/II if the corresponding
conflict pair is of type I/II, respectively. ♦

For example, the core corresponding to the conflict pair shown in Fig. 21(b)
is {e4, . . . , e8, e10} (note that for a conflict pair 〈C ′, C ′′〉 of type I, such that
C ′ ⊂ C ′′, the corresponding core is simply C ′′ \ C ′).

One can show that every complementary set CS can be partitioned into
C1 \ C2 and C2 \ C1, where 〈C ′, C ′′〉 is a conflict pair corresponding to CS.
Moreover, if CS is of type I then one of these parts is empty, while the other is
CS itself. An important property of complementary sets is that for each signal
z ∈ Z, the difference between the numbers of z+– and z−–labelled events in
CS is the same in these two parts (and is 0 if CS is of type I). This suggests
that a complementary set can be eliminated by introduction of a new internal
signal and insertion of its transition into this set, as this would violate the stated
property.

It is often the case that the same complementary set corresponds to different
conflict pairs, so the designer can save time by analysing the cores rather than
the full list of CSC conflicts, which can be much longer.

5.4 Framework for visualisation and resolution of encoding conflicts

The visualisation is based on showing the designer the cores in the STG ’s un-
folding prefix. Since every element of a core is an instance of the STG ’s transi-
tion, the cores can easily be mapped from the prefix to the STG . For example,
the core {e4, . . . , e8, e10} in Fig. 21(b) can be mapped to the set of transitions
{d+, dtack+, dsr−, d−, dtack−, dsr+} of the original STG shown in Fig. 21(a).

Cores are important for resolution of encoding conflicts. By introducing an
additional internal signal and insertion of its transition, say csc+, one can de-
stroy a core eliminating thus the corresponding encoding conflicts. To preserve
the consistency of the STG , the signal transition’s counterpart, csc−, must also
be added to the specification outside the core, in such a way that it is neither
concurrent to nor in structural conflict with csc+. It is sometimes possible to
insert csc− into another core thus eliminating it also, as shown in Fig. 22(b).
Another restriction is that an inserted signal transitions cannot trigger an input

36 Carmona, Cortadella, Khomenko, Yakovlev

signal transition (the reason is that this would impose constraints on the envi-
ronment which were not present in the original STG , making it ‘wait’ for the
newly inserted signal). More about the formal requirements for the correctness
of inserting a new transition can be found in [18].

The core in Fig. 21(b) can be eliminated by inserting a new signal, csc+,
somewhere in the core, e.g., concurrently to e5 and e6 between e4 and e7, and
by inserting its complement outside the core, e.g., concurrently to e11 between
e9 and e12. (Note that concurrent insertion of these two transitions avoids an
increase in the latency of the circuit, where each transition is assumed to con-
tribute a unit delay.) The final STG satisfying the CSC property is shown in
Fig. 21(a) with dotted lines taken into account.

It is often the case that cores overlap. In order to minimise the number of
inserted signals, and thus the area and latency of the circuit, it is advantageous
to insert a signal in such a way that as many cores as possible are eliminated
by it. That is, a signal should be inserted into the intersection of several cores
whenever possible.

To assist the designer in exploiting core overlaps, another key feature of our
method, viz. the height map showing the quantitative distribution of the cores,
is employed in the visualisation process. The events located in conflict cores are
highlighted by shades of colours. The shade depends on the altitude of an event,
i.e., on the number of cores it belongs to. (The analogy with a topographical map
showing the altitudes may be helpful here.) The greater the altitude, the darker
the shade. ‘Peaks’ with the highest altitude are good candidates for insertion of
a new signal, since they correspond to the intersection of maximum number of
cores.

Using this representation, the designer can select an area for insertion of a
new signal and obtain a local, more detailed description of the cores overlapping
with the selection. When an appropriate core cluster is chosen, the designer can
decide how to insert a new signal transition optimally, taking into account the
design constraints and his/her knowledge of the system being developed.

The overview of the process of resolution of CSC conflicts is shown in Fig. 22(a).
Given an STG , a finite and complete prefix of its unfolding is constructed, and
the cores are computed. If there are none, the process stops. Otherwise, the
height map is shown to the designer, who chooses a set of overlapping cores. In
phases one and two, an additional signal transition splitting the core is inserted
together with its counterpart. The inserted transitions are then transferred to
the STG , and the process is repeated. Depending on the number of conflict cores,
the resolution process may involve several cycles.

After completion of phase one, the height map is updated. The altitudes of
the events in the core cluster where the new signal transition has been inserted
are made negative, to prompt the designer that if the counterpart transition is
inserted there, some of the cores in the cluster will reappear. Moreover, in order
to ensure that the insertion of the counterpart transition preserves consistency,
the areas where it cannot be inserted (in particular, the events concurrent to or
in structural conflict with this transition) are faded out.

Hardware Synthesis with Petri Nets 37

height map
show the

select a peak

compute cores
unfold and

stop

transfer
signals to
the STG

show the
height map
update

select a peak

insert new
transition

CSC?

no

STG

yes

phase 1

phase 2

show cores
comprising
the peak

show cores

the peak
comprising

insert the
transition’s
complement

(a)

csc−

csc+

csc−

(b)

fork

join

csc−

csc−

csc−

csc−

csc−csc+

(c)

choice

mergemerge

csc−

csc−

csc−

csc+

csc−

csc−

(d)

Fig. 22. The process of resolution of encoding conflicts (a) and strategies for elimi-
nating conflict cores (b–d). Several possibilities are shown for insertion of csc−, but
only one of them should be used. (The positions where csc− is not allowed are shown
as transitions that are crossed out.)

Typical cases in STG specifications are schematically illustrated in Fig. 22(b–
d). Cores ‘in sequence’, can be eliminated in a ‘one-hot’ manner as depicted in
Fig. 22(b). Each core is eliminated by one signal transition, and its complement
is inserted outside the core, preferably, into another non-adjacent one.3

An STG that has a core in one of the concurrent branches can also be tackled
in a ‘one-hot’ way, as shown in Fig. 22(c). Note that in order to preserve the
consistency the transition’s counterpart cannot be inserted into the concurrent
branch, but can be inserted before the fork transition or after the join one. In
a branch which is in a structural conflict with another branch, the transition’s
counterparts must be inserted in the same branch somewhere between the choice
and the merge points, as shown in Fig. 22(d).

Obviously, the described cases do not cover all possible situations and all
possible insertions (e.g., one can sometimes insert a new signal transition before
the choice point and its counterparts into each branch, etc.), but we hope they
do give an idea how the cores can be eliminated. [45] presents this method of
resolution of CSC conflicts using STG unfoldings in more detail.

5.5 Boolean satisfiability

Boolean satisfiability problem (SAT) has great theoretical interest as the canon-
ical NP-complete problem. Though it is very unlikely that it can be solved in
polynomial time, there are algorithms which can solve many interesting SAT in-
stances quite efficiently. SAT solvers have been successfully applied to many prac-
tical problems such as AI planning, ATPG, model checking, etc. The research in

3 The union of two adjacent cores is usually a complementary set which will not be
destroyed if both the transition and its counterpart are inserted into it.

38 Carmona, Cortadella, Khomenko, Yakovlev

SAT has led to algorithms which routinely solve SAT instances generated from
industrial applications with tens of thousands or even millions variables [78].

Thus it is often advantageous to re-state the problem at hand in terms of
SAT, and then apply an existing SAT solver. In this paper, the SAT approach will
be used for detection of CSC conflicts in Section 5.6 and derivation of equations
for logic gates of the circuit in Section 5.7.

The Boolean satisfiability problem (SAT) consists in finding a satisfying as-
signment, i.e., a mapping A : Varϕ → {0, 1} defined on the set of variables
Varϕ occurring in a given Boolean expression ϕ such that ϕ evaluates to 1. This
expression is often assumed to be given in the conjunctive normal form (CNF)
∧n

i=1

∨

l∈Li
l, i.e., it is represented as a conjunction of clauses, which are dis-

junctions of literals, each literal l being either a variable or the negation of a
variable. It is assumed that no two literals in the same clause correspond to the
same variable.

Some of the leading SAT solvers, e.g., zChaff [48], can be used in the incre-
mental mode, i.e., after solving a particular SAT instance the user can modify
it (e.g., by adding and/or removing a small number of clauses) and execute
the solver again. This is often much more efficient than solving these related
instances as independent problems, because on the subsequent runs the solver
can use some of the useful information (e.g., learnt clauses, see [78]) collected
so far. In particular, such an approach can be used to compute projections of
assignments satisfying a given formula, as described in sequel.

Let V ⊆ Varϕ be a non-empty set of variables occurring in a formula ϕ, and
Proj ϕ

V be the set of all restricted assignments (or projections) A|V such that A is
a satisfying assignment of ϕ. Using the incremental SAT approach it is possible
to compute Proj ϕ

V , as follows.

Step 0: A := ∅.

Step 1: Run the SAT solver for ϕ.

Step 2: If ϕ is unsatisfiable then return A and terminate.

Step 3: Add A|V to A, where A is the computed satisfying assignment.

Step 4: Append to ϕ a new clause
∨

v∈V ∧A(v)=1 ¬v ∨
∨

v∈V ∧A(v)=0 v.

Step 5: Go back to Step 1.

Suppose now that we are interested in finding only the minimal elements of
Proj ϕ

V , assuming that A|V ≤ A′|V if (A|V)(v) ≤ (A′|V)(v), for all v ∈ V . The
above procedure can then be modified by changing Step 4 to:

Step 4’: Append to ϕ a new clause
∨

v∈V ∧A(v)=1 ¬v.

Similarly, if we were interested in finding all the maximal elements of Proj ϕ
V ,

then one could change Step 4 to:

Step 4”: Append to ϕ a new clause
∨

v∈V ∧A(v)=0 v.

Moreover, in the latter two cases, before terminating an additional pass over the
elements stored in A should be made in order to eliminate any non-minimal (or
non-maximal) projections.

Hardware Synthesis with Petri Nets 39

5.6 Detection of state encoding conflicts using SAT

Let C ′ and C ′′ be two configurations of the unfolding of a consistent STG and z
be an output signal. C ′ and C ′′ are in Complete State Coding conflict for z (CSC z

conflict) if Codex(C ′) = Codex(C ′′) for all x ∈ Z and Nxtz(C
′) 6= Nxtz(C

′′).
This notion is very similar to the notion of a CSC conflict; in particular, each
CSC z conflict is a CSC conflict, and each CSC conflict is a CSC z conflict for some
output signal z, i.e., the problem of detection of CSC conflicts is easily reducible
to the problem of detection of CSC z conflicts, and we will mostly concentrate
on the latter problem. A CSC z conflict can be represented as an unordered
conflict pair of configurations 〈C ′, C ′′〉 whose final states are in CSC z conflict;
for example, the conflict pair of configurations shown in Fig. 21(b) is in CSC lds

and CSC d conflict.

Constructing a SAT instance We adopt the following naming conventions.
The variable names are in the lower case and names of formulae are in the upper
case. Names with a single prime (e.g., conf ′e and CONF ′) are related to C ′,
and ones with double prime (e.g., conf ′′e) are related to C ′′. If there is no prime
then the name is related to both C ′ and C ′′. If a formula name has a single
prime then the formula does not contain occurrences of variables with double
primes, and the counterpart double prime formula can be obtained from it by
adding another prime to every variable with a single prime. The subscript of a
variable points to which element of the STG or the prefix the variable is related,
e.g., conf ′e and conf ′′e are both related to the event e of the prefix. By a name
without a subscript we denote the list of all variables for all possible values of
the subscript, e.g., conf ′ denotes the list of variables conf ′e, where e runs through
the set E \ Ecut .

The following Boolean variables will be used in the proposed translations:

– For each event e ∈ E \ Ecut , we create two Boolean variables, conf ′e and
conf

′′
e , tracing whether e ∈ C ′ and e ∈ C ′′ respectively.

– For each signal x ∈ Z, we create a variable codex to trace the value of x.
Since the values of all the signals must match at the final states of C ′ and C ′′,
we use the same set of variables for both configurations.

– For each condition b ∈ B \ E•
cut

which is an instance of a place from P 1
Z

(defined later), we create two Boolean variables, cut′b and cut′′b , tracing
whether b ∈ Cut(C ′) and b ∈ Cut(C ′′) respectively.

– For each event e ∈ E which is an instance of the output signal z for which
the CSC z condition is being checked, we create two Boolean variables, en′

e

and en′′e , tracing whether e is ‘enabled’ by C ′ and C ′′ respectively. Note that
unlike conf′ and conf′′, such variables are also created for the cut-off events.

Our aim is to build a Boolean formula CSCz such that: (i) CSCz is satisfiable
iff there is a CSC z conflict; and (ii) for every satisfying assignment, the two sets

of non-cut-off events of the prefix, C ′ df

= {e ∈ E \ Ecut | conf′e = 1} and C ′′ df

=
{e ∈ E \ Ecut | conf ′′e = 1}, constitute a conflict pair 〈C ′, C ′′〉 of configurations.
CSCz will be the conjunction of constraints described below.

40 Carmona, Cortadella, Khomenko, Yakovlev

For example, these variables will assume the following values for the CSC d

conflict depicted in Fig. 21(b) (the order of signals in the binary codes is: dsr ,
dtack , lds , ldtack , d): conf

′ = 111000000000, conf
′′ = 111111110100, code =

10110, en′
e4

= 1, en′e7
= 0, and en′′

e4
= en′′e7

= 0 (the values of cut′ and cut′′ are
not shown).

Configuration constraints The role of first two constraints, CONF ′ and CONF ′′,
is to ensure that C ′ and C ′′ are both legal configurations of the prefix (not just
arbitrary sets of events). CONF ′ is defined as the conjunction of the formulae

∧

e∈E\Ecut

∧

f∈•(•e)

(conf ′e ⇒ conf ′f) and
∧

e∈E\Ecut

∧

f∈Ee

¬(conf ′e ∧ conf′f) ,

where Ee
df

= ((•e)• \ {e}) \Ecut . The former formula ensures that if e ∈ C ′ then
all the direct causal predecessors of e are also in C ′, which in turn ensures that
C ′ is a downward closed set of events. The latter one ensures that C ′ contains no
structural conflicts. (One should be careful to avoid duplication of clauses when
generating this formula.) CONF ′′ is defined similarly.

CONF ′ and CONF ′′ can be transformed into the CNF by applying the rules
x ⇒ y ≡ ¬x ∨ y and ¬(x ∧ y) ≡ ¬x ∨ ¬y.

Encoding constraint First we describe an important STG transformation allow-
ing to capture the current value of each signal in the STG ’s marking. For each
signal z ∈ Z, a pair of complementary places, p0

z and p1
z, tracing the value of z

is added as follows. For each z+–labelled transition t, p0
z ∈ •t and p1

z ∈ t•, and
for each z−–labelled transition t′, p1

z ∈ •t′ and p0
z ∈ t′•. Exactly one of these two

places is marked at the initial state, accordingly to the initial value of signal z.
One can show that at any reachable state of an STG augmented with such places,
p0

z (respectively, p1
z) is marked iff the value of z is 0 (respectively, 1). Thus, if a

transition labelled by z+ (respectively, z−) is enabled then the value of z is 0 (re-
spectively, 1), which in turn guarantees the consistency of the augmented STG .
Such a transformation can be done completely automatically (one can easily
determine the initial values of all the signals from the unfolding prefix). For a
consistent STG , it does not restrict the behaviour and yields an STG with an
isomorphic state graph; for a non-consistent STG , the transformation restricts
the behaviour and may lead to (new) deadlocks. In what follows, we assume

that the tracing places are present in the STG , and denote P 0
Z

df

= {p0
z | z ∈ Z},

P 1
Z

df

= {p1
z | z ∈ Z}, and PZ

df

= P 0
Z ∪ P 1

Z .
The role of encoding constraints, CODE ′ and CODE ′′, is to ensure that the

signal codes of the final markings of configurations C ′ and C ′′ are equal. To build
a formula establishing the value codez of each signal z ∈ Z at the final state of
C ′, we observe that codez = 1 iff p1

z ∈ Mark (C ′), i.e., iff b ∈ Cut(C ′) for some
p1

z–labelled condition b (note that the places in PZ cannot contain more than
one token). The latter can be captured by the constraint:

∧

z∈Z

(codez ⇐⇒
∨

b∈Bz

cut′b) ,

Hardware Synthesis with Petri Nets 41

where Bz
df

= {B \ E•
cut

| b is an instance of p1
z}. We then define CODE ′ as the

conjunction of the last formula and
∧

z∈Z

∧

b∈Bz

(cut′b ⇐⇒
∧

e∈•b

conf ′e ∧
∧

e∈b•\Ecut

¬conf ′e) ,

which ensures that b ∈ Cut(C ′) iff the event ‘producing’ b has fired, but no event
‘consuming’ b has fired. (Note that since |•b| ≤ 1,

∧

e∈•b confe in this formula is
either the constant 1 or a single variable.) One can see that if C ′ is a configuration
and CODE ′ is satisfied then the value of signal z at the final state of C ′ is given
by codez. CODE ′′ is defined similarly.

The use of the same variables code in both CODE ′ and CODE ′′ ensures that
the encodings of the final states of C ′ and C ′′ are the same, if both constraints
are satisfied.

It is straightforward to build the CNF of CODE ′:

∧

z∈Z

(

(¬codez ∨
∨

b∈Bz

cut′b) ∧
∧

b∈Bz

(codez ∨ ¬cut′b) ∧

∧

b∈Bz

(

∧

e∈•b

(¬cut′b∨conf′e) ∧
∧

e∈b•\Ecut

(¬cut′b∨¬conf ′e) ∧ (cut′b∨
∨

e∈•b

¬conf ′e∨
∨

e∈b•\Ecut

conf ′e)

)

,

and the CNF of CODE ′′ can be built similarly.

Next-state constraint The role of this constraint is to ensure that Nxtz(C
′) 6=

Nxtz(C
′′). Since all the other constraints are symmetric w.r.t. C ′ and C ′′, one

can rewrite it as Nxtz(C
′) = 0 ∧ Nxtz(C

′′) = 1. Moreover, it follows from the
definition of Nxtz that Nxtz(C) ≡ ¬Codez(C) ⇐⇒ Outz(C), and so the next-
state constraint can be rewritten as the conjunction of Codez(C

′) ⇐⇒ Outz(C
′)

and ¬Codez(C
′′) ⇐⇒ Outz(C

′′).
We observe that an output signal z is enabled by Mark (C ′) iff there is a

z+- or z−–labelled event e /∈ C ′ ‘enabled’ by C ′, i.e., such that C ′ ∪ {e} is a
configuration (note that e can be a cut-off event). We then define the formula
NEXT ZERO′, ensuring that Nxtz(C

′) = 0, as the conjunction of

code′z ⇐⇒
∨

e∈Ez

en′e and
∧

e∈Ez

(en′e ⇐⇒
∧

f∈•(•e)

conf′f ∧
∧

f∈(•e)•\Ecut

¬conf′f) ,

where Ez
df

= {e ∈ E | e is an instance of z±}. The former conjunct ensures that
Codez(C

′) ⇐⇒ Outz(C) (it takes into account that z is enabled by the final
state of C ′ iff at least one its instance is enabled by C ′) and the latter one states
for each instance e of z that e is enabled by C ′ iff all the events ‘producing’
tokens in •e are in C ′ but no events ‘consuming’ tokens from •e (including e
itself) are in C ′.

The formula NEXT ONE ′′, ensuring that Nxtz(C
′′) = 1, is defined as the

conjunction of

¬code′′z ⇐⇒
∨

e∈Ez

en′′e

42 Carmona, Cortadella, Khomenko, Yakovlev

and a constraint ‘computing’ en′′
e , which is similar to that for NEXT ZERO′.

Now the next-state constraint can be expressed as NEXT ZERO′∧NEXT ONE ′′.

The CNF of NEXT ZERO′ is

(¬code′z∨
∨

e∈Ez

en′e)∧
∧

e∈Ez

(code′z∨¬en′
e) ∧

∧

e∈Ez

(

∧

f∈•(•e)

(¬en′e∨conf′f)∧
∧

f∈(•e)•\Ecut

(¬en′e∨¬conf ′f) ∧ (en′e∨
∨

f∈•(•e)

¬conf′f∨
∨

f∈(•e)•\Ecut

conf′f)

)

,

and the CNF of NEXT ONE ′′ can be built similarly.

Translation to SAT Finally, the problem of detection of CSC z conflicts can be
formulated as the SAT problem for the formula

CSCz df

= CONF ′∧CONF ′′∧CODE ′∧CODE ′′∧NEXT ZERO′∧NEXT ONE ′′ ,

and the CSC problem is reduced to checking the CSC z condition for each output
signal z. In principle, the CSC problem can also be reduced to a single SAT
instance [39], but according to our experiments the method presented here tends
to be more efficient.

Computing all cores The method for resolution of CSC conflicts described in
Section 5.2 requires to compute all conflict cores. This can be done by comput-
ing all the solutions of CSC z for all output signals z using the incremental SAT
approach. However, as the same complementary set can correspond to multiple
conflict pairs, this approach is unnecessarily expensive. A better approach would
be to eliminate all the solutions corresponding to a newly computed complemen-
tary set CS each time it is computed, by appending new clauses to the formula.
This can be done as follows. For each event e ∈ E \ Ecut we create a variable
cse, and the following constraint is added to the formula:

(

∧

e∈E\Ecut

(

cse ⇐⇒ (conf′e ⊕ conf ′e)
)

)

∧
∨

e∈E\Ecut

{

¬cse if e ∈ CS
cse otherwise .

Note that the first part of this constraint is the same for all the computed
complementary sets, and thus can be generated just once. The CNF of this
constraint is

(¬conf ′e ∨ conf′′e ∨ cse) ∧ (conf ′e ∨ ¬conf′′e ∨ cse) ∧

(conf ′e ∨ conf′′e ∨ ¬cse) ∧ (¬conf ′e ∨ ¬conf ′′e ∨ ¬cse) ∧
∨

e∈E\Ecut

{

¬cs if e ∈ CS
cs otherwise .

Hardware Synthesis with Petri Nets 43

The case of prefixes without structural conflicts In many cases the perfor-
mance of the proposed method can be improved by exploiting specific properties
of the Petri net underlying an STG Γ . For instance, if Γ is free from dynamic
choices (in particular, this is the case for marked graphs) then the union of any
two configurations of its unfolding is also a configuration. This observation can
be used to reduce the search space. Indeed, according to Proposition 2 below, it
is then enough to look only for those cases when the configurations C ′ and C ′′

being tested are ordered in the set-theoretical sense.

Proposition 2 ([39]). Let 〈C ′, C ′′〉 be a conflict pair of configurations in the
unfolding of a consistent STG Γ satisfying C ′ * C ′′, C ′′ * C ′ and C ′ ∪ C ′′ is

a configuration. Then C
df

= C ′ ∩ C ′′ is such that either 〈C, C ′〉 or 〈C, C ′′〉 is a
conflict pair.

Note that freeness from structural conflicts can easily be detected: it is enough
to check that |b•| ≤ 1, for all conditions b of the prefix.

Since we do not know in advance whether C ′ ⊆ C ′′ or C ′′ ⊆ C ′ (and the order
does matter because the suggested implementation of the next-state constraint
breaks the symmetry), a new Boolean variable, v⊆, is introduced. If its value is 1
then the former possibility is checked, otherwise the latter possibility is tried out.
This is captured by the constraint

∧

e∈E\Ecut

(

(v⊆ → (conf
′
e → conf

′′
e)) ∧ (¬v⊆ → (conf

′′
e → conf

′
e))
)

,

which should be added to the formula. Note that it can easily be transformed
into the CNF by applying the rule x → y ≡ ¬x ∨ y.

Experimental results We implemented our method using the zChaff SAT
solver [48]. All the experiments were conducted on a PC with a PentiumTM

IV/2.8GHz processor and 512M RAM.
A few classes of benchmarks have been attempted (the STG s with names

containing the occurrence of ‘Csc’ satisfy the CSC property, the others exhibit
CSC conflicts). The first group of examples comes from the real design practice.
They are as follows:

– LazyRing and Ring — Asynchronous Token Ring Adapters described in [10,
44]. LazyRingCsc and RingCsc have been obtained by resolving CSC con-
flicts in these test cases.

– Dup4ph, Dup4phCsc, Dup4phMtr, Dup4phMtrCsc, DupMtrMod,
DupMtrModUtg, and DupMtrModCsc — control circuits for the Po-
wer-Efficient Duplex Communication System described in [28].

– CfSymCscA, CfSymCscB, CfSymCscC, CfSymCscD, CfAsymCscA,
and CfAsymCscB — control circuits for the Counterflow Pipeline Processor
described in [72].

Some of these STG s, although built by hand, are quite large in size. The results
for this group are summarised in the first part of Table 4. Two other groups,

44 Carmona, Cortadella, Khomenko, Yakovlev

Problem Net States Prefix Time, [s]
|S| |T | In/Out |B| |E| |Ecut| Pfy Clp Sat

Real-Life STG s
LazyRing 35 32 5/6 160 87 66 5 1 <1 <1
LazyRingCsc 42 37 5/7 187 88 71 5 1 <1 <1
Ring 147 127 11/17 16508 763 498 59 694 <1 <1
RingCsc 185 172 11/18 16320 650 484 55 837 15 <1
Dup4ph 133 123 12/15 169 144 123 11 13 <1 <1
Dup4phCsc 135 123 12/15 171 146 123 11 13 <1 <1
Dup4phMtr 109 96 10/12 121 117 96 8 8 <1 <1
Dup4phMtrCsc 114 105 10/16 149 122 105 8 9 <1 <1
DupMtrMod 129 100 10/11 345 199 132 10 89 <1 <1
DupMtrModUtg 116 165 10/11 323 344 218 65 286 <1 <1
DupMtrModCsc 152 115 10/17 321 228 149 13 116 <1 <1
CfSymCscA 85 60 8/14 6672 1341 720 56 153 16 2
CfSymCscB 55 32 8/8 690 160 71 6 6 <1 <1
CfSymCscC 59 36 8/10 2416 286 137 10 11 <1 <1
CfSymCscD 45 28 4/10 414 120 54 6 3 <1 <1
CfAsymCscA 128 112 8/26 147684 1808 1234 62 1551 439 11
CfAsymCscB 128 112 8/24 147684 1816 1238 62 2602 471 10

Marked Graphs
PpWk(2,3) 23 14 0/7 5·25 = 160 41 23 1 <1 <1 <1
PpWk(2,6) 47 26 0/13 5·25 = 10240 119 62 1 5 <1 <1
PpWk(2,9) 71 38 0/19 5·25 > 6·105 233 119 1 43 <1 <1
PpWk(2,12) 95 50 0/25 5·25 > 4·107 383 194 1 494 1 <1

PpWkCsc(2,3) 24 14 0/7 27 = 128 38 20 1 <1 <1 <1
PpWkCsc(2,6) 48 26 0/13 213 = 8192 110 56 1 4 <1 <1
PpWkCsc(2,9) 72 38 0/19 219 > 5·105 218 110 1 43 3 <1
PpWkCsc(2,12) 96 50 0/25 225 > 3·107 362 182 1 2076 264 <1

PpWk(3,3) 34 20 0/10 13·27 = 1664 63 35 1 1 <1 <1
PpWk(3,6) 70 38 0/19 13·216 > 8·105 183 95 1 103 <1 <1
PpWk(3,9) 106 56 0/28 13·225 > 4·108 357 182 1 2121 12 <1
PpWk(3,12) 142 74 0/37 13·234 > 2·1011 585 296 1 mem 1031 <1

PpWkCsc(3,3) 36 20 0/10 210 = 1024 57 29 1 1 <1 <1
PpWkCsc(3,6) 72 38 0/19 219 > 5·105 165 83 1 44 3 <1
PpWkCsc(3,9) 108 56 0/28 228 > 2·108 327 164 1 7936 2285 <1
PpWkCsc(3,12) 144 74 0/37 237 > 1011 543 272 1 mem time <1

STG s with Arbitration
PpArb(2,3) 48 32 2/13 291·24 = 4656 110 66 2 7 <1 <1
PpArb(2,6) 72 44 2/19 291·210 > 2·105 218 120 2 57 <1 <1
PpArb(2,9) 96 56 2/25 291·216 > 107 362 192 2 1726 <1 <1
PpArb(2,12) 120 68 2/31 291·222 > 109 542 282 2 11493 <1 <1

PpArbCsc(2,3) 48 32 2/13 207·24 = 3312 110 66 2 3 <1 <1
PpArbCsc(2,6) 72 44 2/19 207·210 > 2·105 218 120 2 41 2 <1
PpArbCsc(2,9) 96 56 2/25 207·216 > 107 362 192 2 316 153 <1
PpArbCsc(2,12) 120 68 2/31 207·222 > 8·108 542 282 2 mem 12745 <1

PpArb(3,3) 71 48 3/19 1647·26 > 105 188 114 3 97 <1 <1
PpArb(3,6) 107 66 3/28 1647·215 > 5·107 368 204 3 1726 <1 <1
PpArb(3,9) 143 84 3/37 1647·224 > 2·1010 602 321 3 mem <1 <1
PpArb(3,12) 179 102 3/46 1647·233 > 1013 890 465 3 mem <1 <1

PpArbCsc(3,3) 71 48 3/19 297·28 = 76032 118 114 3 43 1 <1
PpArbCsc(3,6) 107 66 3/28 297·217 > 3·107 368 204 3 1186 379 <1
PpArbCsc(3,9) 143 84 3/37 297·226 > 1010 602 321 3 27512 time <1
PpArbCsc(3,12) 179 102 3/46 297·235 > 1013 890 465 3 mem time <1

Table 4. Experimental results: checking CSC.

Hardware Synthesis with Petri Nets 45

PpWk(m, n) and PpArb(m, n), contain scalable examples of STG s modelling m
pipelines weakly synchronised without arbitration (in PpWk(m, n)) and with
arbitration (in PpArb(m, n)). (See [40] for a more detailed description.) The
former offers the possibility of studying the effect of the optimisation described
in Section 5.6 (all STG s in the PpWk(m, n) series are marked graphs, and
so their prefixes contain no structural conflicts). These benchmarks come in
pairs: for each test case satisfying the CSC property there is a very similar
one exhibiting CSC conflicts. This allowed us to test the algorithm on almost
identical specifications with and without encoding conflicts. The results for these
two groups are summarised in the last two parts of Table 4.

The meaning of the columns is as follows (from left to right): the name of
the problem; the number of places, transitions, and input and output signals
in the original STG ; the number of conditions, events and cut-off events in the
complete prefix; the number of reachable states in the STG ; the time spent by
a special version of the Petrify tool, which did not attempt to resolve the
encoding conflicts it had identified; the time spent by the integer programming
algorithm proposed in [38]; and the time spent by the proposed method. We use
‘mem’ if there was a memory overflow and ‘time’ to indicate that the test had
not stopped after 15 hours. We have not included in the table the time needed
to build complete prefixes, since it did not exceed 0.1sec for all the attempted
STG s.

Although performed testing was limited in scope, one can draw some conclu-
sions about the performance of the proposed algorithm. In all cases the proposed
method solved the problem relatively easily, even when it was intractable for the
other approaches. In some cases, it was faster by several orders of magnitude.
The time spent on all of these benchmarks was quite satisfactory — it took just
11 seconds to solve the hardest one. Overall, the proposed approach was the
best, especially for hard problem instances.

5.7 Logic synthesis based on unfolding prefixes

In Section 5.6, the CSC conflict detection problem was solved by reducing it to
SAT. More precisely, given a finite and complete prefix of an STG ’s unfolding,
one can build for each output signal z a formula CSCz which is satisfiable iff there
is a CSC z conflict. Here we modify that construction in the way described below.
We assume a given consistent STG satisfying the CSC property, and consider in
turn each output signal z.

Let C ′ and C ′′ be two configurations of the unfolding of a consistent STG , z
be an output signal, and X is some set of signals. C ′ and C ′′ are in Complete State
Coding conflict for z w.r.t. X (CSC z

X conflict) if Codex(C ′) = Codex(C ′′) for all
x ∈ X and Nxtz(C

′) 6= Nxtz(C
′′). The notion of CSC z

X is a generalisation of the
notion of CSC z conflict (indeed, the latter can be obtained from the former by
choosing X to be the set of all signals in the STG). X is a support of an output
signal z if no two configurations of the unfolding are in CSC z

X conflict. In such
a case the next-state value of z at each reachable state of the STG is determined
without ambiguity by the encoding of this state restricted to X , i.e., z can be

46 Carmona, Cortadella, Khomenko, Yakovlev

implemented as a gate with the support X . A support X of z is minimal if no set
X ′ ⊂ X is a support of z. In general, a signal can have several distinct minimal
supports.

The starting point of the proposed approach is to consider the set NSUPP z

of all sets of signals which are non-supports of z. Within the Boolean formula
CSCz

nsupp
, which we are going to construct, non-supports are represented by vari-

ables nsupp
df

= {nsuppx | x ∈ Z}, and, for a given assignment A, the set of
signals X = {x | A(nsuppx) = 1} is identified with the projection A|nsupp.

The key property of CSCz
nsupp

is that NSUPPz = Proj
CSCz

nsupp

nsupp , and so it is
possible to use the incremental SAT approach to compute NSUPP z. How-
ever, for our purposes it will be enough to compute the maximal non-supports

NSUPPz
max

df

= max⊆ NSUPPz which can then be used for computing the set

SUPPz
min

df

= min⊆{X⊆Z | X 6⊆X ′, for all X ′∈NSUPPz
max}

of all the minimal supports of z (another incremental SAT run will be needed
for this).

SUPPz
min captures the set of all possible supports of z, in the sense that any

support is an extension of some minimal support, and vice versa, any extension
of any minimal support is a support. However, the simplest equation is usually
obtained for some minimal support, and this approach was adopted in our ex-
periments. Yet, this is not a limitation of our method as one can also explore
some or all of the non-minimal supports, which can be advantageous, e.g., for
small circuits and/or when the synthesis time is not of paramount importance
(this would sometimes allow to find a simpler equation). On the other hand, not
all minimal supports have to be explored: if some minimal support has many
more signals compared with another one, the corresponding equation will almost
certainly be more complicated, and so too large supports can safely be discarded.
Thus, as usual, there is a trade-off between the execution time and the degree
of design space exploration, and our method allows one to choose an acceptable
compromise. Typically, several ‘most promising’ supports are selected, the equa-
tions expressing Nxtz as a function of signals in these supports are obtained (as
described below), and the simplest among them is implemented as a logic gate.

Suppose now that X is one of the chosen supports of z. In order to derive an
equation expressing Nxtz as a function of the signals in X , we build a Boolean
formula EQN z

X which has a variable codex for each signal x ∈ X and is sat-
isfiable iff these variables can be assigned values in such a way that there is a
configuration C in the prefix such that Codex(C) = codex, for all x ∈ X . Now,
using the incremental SAT approach one can compute the projection of the set
of reachable encodings onto X (differentiating the stored solutions according to
the value of the next-state function for z), and feed the result to a Boolean
minimiser.

To summarise, the proposed method is executed separately for each output
signal z and has three main stages: (I) computing the set NSUPPz

max of maximal
non-supports of z; (II) computing the set SUPPz

min of minimal supports of z;

Hardware Synthesis with Petri Nets 47

87e6 e e

e

e e 9e

11e

10

54

e12

e

1 2

13

e3e 14e
e

d−

lds−

dsr+

csc+ lds+ ldtack+ d+ dtack+ dsr− csc−

dtack−

dsr+

ldtack−

csc+
C’ C’’

inputs: dsr , ldtack ; outputs: lds, d , dtack ; internal: csc

Fig. 23. An STG unfolding illustrating a CSC csc

{dsr ,ldtack} conflict between configura-
tions C′ and C′′. Note that e14 is not enabled by C ′′ (since e13 6∈ C′′), and thus
Nxt csc(C

′) = 1 6= Nxt csc(C
′′) = 0. The order of signals in the binary encodings is: dsr,

ldtack, dtack, lds, d, csc.

and (III) deriving an equation for a chosen support X of z. In the sequel, we
describe each of these three stages in more detail.

It should be noted that the size of the truth table for Boolean minimisa-
tion and the number of times a SAT solver is executed in our method can be
exponential in the number of signals in the support. Thus, it is crucial for the
performance of the proposed algorithm that the support of each signal is rela-
tively small. However, in practice it is anyway difficult to implement as an atomic
logic gate a Boolean expression depending on more than, say, eight variables.
(Atomic behaviour of logic gates is essential for the speed-independence of the
circuit, and a violation of this requirement can lead to hazards [14, 18].) This
means that if an output signal has only ‘large’ supports then the specification
must be changed (e.g., by adding new internal signals) to introduce ‘smaller’
supports. Such transformations are related to the technology mapping step in
the design cycle for asynchronous circuits (see, e.g., [18]); we do not consider
them here.

Computing maximal non-supports Suppose that we want to compute the
set of all maximal non-supports of an output signal z. At the level of a branching
process, a CSC z

X conflict can be represented as an unordered conflict pair of
configurations 〈C ′, C ′′〉 whose final states are in CSC z

X conflict, as shown in
Fig. 23.

As already mentioned, our aim is to build a Boolean formula CSCz
nsupp

such

that Proj
CSCz

nsupp

nsupp = NSUPPz, i.e., after assigning arbitrary values to the vari-
ables nsupp, the resulting formula is satisfiable iff there is a CSC z

X conflict, where

X
df

= {x | nsuppx = 1}.

The target formula CSCz
nsupp

is very similar to the formula CSCz built in
Section 5.6, with the following changes. For each signal x ∈ Z, instead of a vari-
able codex we create two Boolean variables, code′x and code′′x, tracing the values
of Codex(C ′) and Codex(C ′′) respectively; CODE ′ and CODE ′′ are amended ac-
cordingly. Moreover, we create for each signal x ∈ Z a variable nsuppx indicating
whether x belongs to a non-support.

48 Carmona, Cortadella, Khomenko, Yakovlev

Now we need a ensure that code′x = code′′x whenever nsuppx = 1. This can
be expressed by the following constraint:

∧

x∈Z

(

nsuppx ⇒ (code′x ⇐⇒ code′′x)

)

,

with the CNF

∧

x∈Z

(

(¬code′x ∨ code′′x ∨ ¬nsuppx) ∧ (code′x ∨ ¬code′′x ∨ ¬nsuppx)

)

.

This completes the construction of CSCz
nsupp

. For example, its satisfying assign-
ment (except the variables cut′ and cut′′) for the CSC csc

{dsr ,ldtack} conflict de-

picted in Fig. 23 is as follows: conf ′ = 1111000000000, conf ′′ = 1111111111110,
code′ = 110101, code′′ = 110000, nsupp = 110000, en′

e2
= en′e8

= en′e14
= 0,

en′′e2
= en′′e8

= en′′e14
= 0.

Now the problem of computing the set NSUPPz
max of maximal non-supports

of z can now be formulated as a problem of finding the maximal elements of the

projection Proj
CSCz

nsupp

nsupp . It can be solved using the incremental SAT approach, as
described in Section 5.5.

Computing minimal supports Let NSUPPz
max be the set of maximal non-

supports computed in the first stage of the method. Now we need to compute the
set SUPPz

min of the minimal supports of z. This can be achieved by computing
the set of minimal assignments for the Boolean formula

∧

nsupp∗∈NSUPPz
max

(

∨

x∈Z:nsupp∗
x=0

suppx

)

,

which is satisfied by an assignment A iff for all maximal non-supports nsupp∗

in NSUPPz
max, A
 nsupp∗. This again can be done using the incremental

SAT approach, as described in Section 5.5. Note that this Boolean formula is
much smaller than that for the first stage of the method (it contains at most
|Z| variables), and thus the corresponding incremental SAT problem is much
simpler.

Deriving an equation Suppose that X is a (not necessarily minimal) support
of z. We need to express Nxtz as a Boolean function of signals in X . This can
be done by generating a truth table for z as a Boolean function of signals in X ,
and then applying Boolean minimisation.

The set of encodings appearing in the first column of the truth table coincides
with the projections of the formula

EQN z
X

df

= CONF ′ ∧ CODE ′
X

Hardware Synthesis with Petri Nets 49

onto the set of variables {codex | x ∈ X}, where CODE ′
X is CODE ′ restricted to

the set of signals X (i.e., all the conjunctions of the form
∧

x∈Z . . . are replaced
by
∧

x∈X . . .). It also can be computed using the incremental SAT approach, as
described in Section 5.5. Note that at each step of this computation, the SAT
solver returns information not only about the next element of the projection, but
also the values of all the other variables in the formula. That is, along with the
restriction of some reachable encoding onto the set X we have an information
about a configuration C via which it can be reached. Thus, the value of Nxtz

on this element of the projection can be computed simply as Nxtz(C). This
essentially completes the description of our method.

Optimisations In [40] we describe optimisations which can significantly re-
duce the computation effort required by our method. In particular, we suggest
a heuristic helping to compute a part of a signal’s support without running the
SAT solver, based on the fact that any support for an output z must include all
the triggers of z, i.e., those signals whose firing can enable z. (The information
about triggers can be derived from the finite and complete prefix.) Moreover,
one can speed up the computation in the case of prefixes without structural
conflicts, as described in Section 5.6.

Experimental results We implemented our method using the zChaff SAT
solver [48] and the Espresso Boolean minimiser [5], and the benchmarks from
Section 5.6 satisfying the CSC property were attempted. All the experiments
were conducted on a PC with a PentiumTM IV/2.8GHz processor and 512M
RAM.

The experimental results are summarised in Table 5, where the meaning
of the columns is as follows: the total number of equations obtained by our
method (this is equal to the total number of minimal supports for all the output
signals and gives a rough idea of the explored design space); the time spent by
the Petrify tool; and the time spent by the proposed method. We use ‘mem’ if
there was a memory overflow and ‘time’ to indicate that the test had not stopped
after 15 hours. (Table 4 provides additional data about the benchmarks.)

Although the performed testing was limited in scope, one can draw some con-
clusions about the performance of the proposed algorithm. In all cases the pro-
posed method solved the problem relatively easily, even when it was intractable
for Petrify. In some cases, it was faster by several orders of magnitude. The
time spent on all these benchmarks was quite satisfactory — it took less than
50 seconds to solve the hardest one (CfAsymCscA); note however, that in that
case a total of 450 equations were obtained, i.e., more than 9 equations per
second.

It is important to note that these improvements in memory and running
time come without any reduction in quality of the solutions. In fact, our method
is complete, i.e., it can produce all the valid complex-gate implementations of
each signal. However, in our implementation we restricted the algorithm to only
minimal supports. Nevertheless, the explored design space was quite satisfactory:

50 Carmona, Cortadella, Khomenko, Yakovlev

Real-Life STG s
Problem Eqns Time, [s]

(SAT) Pfy Sat

LazyRingCsc 14 1 <1
RingCsc 63 850 3

Dup4phCsc 48 20 <1
Dup4phMtrCsc 46 13 <1
DupMtrModCsc 165 125 1

CfSymCscA 60 163 16
CfSymCscB 34 10 <1
CfSymCscC 18 13 <1
CfSymCscD 16 3 <1
CfAsymCscA 450 1448 48
CfAsymCscB 93 2323 17

Marked Graphs
Problem Eqns Time, [s]

(SAT) Pfy Sat

PpWkCsc(2,3) 7 <1 <1
PpWkCsc(2,6) 13 4 <1
PpWkCsc(2,9) 19 44 <1
PpWkCsc(2,12) 25 2082 <1

PpWkCsc(3,3) 10 1 <1
PpWkCsc(3,6) 19 43 <1
PpWkCsc(3,9) 28 7380 <1
PpWkCsc(3,12) 37 time 1

STG s with Arbitration
Problem Eqns Time, [s]

(SAT) Pfy Sat

PpArbCsc(2,3) 18 4 <1
PpArbCsc(2,6) 24 42 <1
PpArbCsc(2,9) 30 315 <1
PpArbCsc(2,12) 36 3840 1

PpArbCsc(3,3) 29 45 <1
PpArbCsc(3,6) 38 1001 <1
PpArbCsc(3,9) 47 24941 1
PpArbCsc(3,12) 56 mem 2

Table 5. Experimental results.

as the ‘Eqns’ column in Table 5 shows, in many cases our method proposed
quite a few alternative implementations for signals. In fact, among the list of
solutions produced by our tool there was always a solution produced by Petrify

(with, perhaps, only minor differences due to the non-uniqueness of the result of
Boolean minimisation). Overall, the proposed approach turned out to be clearly
superior, especially for hard problem instances.

5.8 Conclusion and future work

We have proposed a complex-gate design flow for asynchronous circuits based on
STG unfolding prefixes comprising: (i) a SAT-based algorithm for detection of
encoding conflicts; (ii) a framework for visualisation and resolution of encoding
conflicts; and (iii) an algorithm for derivation of Boolean equations for the gates
implementing the circuit based on the incremental SAT approach.

Note that in all the test cases (Table 4) the size of the complete prefix was rel-
atively small. This can be explained by the fact that STG s usually contain a lot

Hardware Synthesis with Petri Nets 51

of concurrency but relatively few choices, and thus the prefixes are in many cases
not much bigger then the STG s themselves. For the scalable benchmarks, one
can observe that the complete prefixes exhibited polynomial (in fact, quadratic)
growth, whereas the number of reachable states grew exponentially. As a re-
sult, the unfolding-based method had a clear advantage over that based on state
graphs, both in terms of memory usage and running time. The experimental
results demonstrated that the devised algorithms could handle quite large speci-
fications in relatively short time, obtaining high-quality solutions. Moreover, the
proposed approach is applicable to all bounded Petri nets, without any structural
restrictions such as Marked Graph of Free-Choice constraint.

An important observation one can make is that the combination ‘unfolder &
solver’ turns out to be quite powerful. It has already been used in a number of
papers (see, e.g., [30, 38]). Most of ‘interesting’ problems for safe Petri nets are
PSPACE-complete [23], and unfolding such a net allows to reduce this complex-
ity class down to NP (or even P for some problems, e.g., checking consistency).
Though in the worst case the size of a finite and complete unfolding prefix can be
exponential in the size of the original Petri net, in practice it is often relatively
small. In particular, according to our experiments, this is almost always the case
for STG s. A problem formulated for a prefix can usually be translated into some
canonical problem, e.g., an integer programming one [38], a problem of finding a
stable model of a logic program [30], or SAT as here. Then an appropriate solver
can be used for efficiently solving it.

The presented framework for interactive refinement aimed at resolution of
encoding conflicts is based on the visualisation of conflict cores, which are sets
of transitions ‘causing’ state encoding conflicts. Cores are represented at the
level of the unfolding prefix, which is a convenient model for understanding the
behaviour of the system due to its simple branching structure and acyclicity.

The advantage of using cores is that only those parts of STG s which cause
encoding conflicts, rather than the complete list of CSC conflicts, are considered.
Since the number of cores is usually much smaller than the number of encod-
ing conflicts, this approach saves the designer from analysing large amounts of
information. Resolution of encoding conflicts requires the elimination of cores
by introducing additional signals into the STG . The refinement contains several
interactive steps aimed at helping the designer to obtain a customised solution.
The case studies demonstrate the positive features of the interactive refinement
process.

Heuristics for signal insertion based on the height map and exploiting the
intersections of cores use the most essential information about encoding conflicts,
and thus should be quite efficient. In fact, the conflict resolution procedure can
be automated either partially or completely. However, in order to obtain an
optimal solution, a semi-automated resolution process should be employed. For
example, the tool might suggest the areas for insertion of new signal transitions,
which are to be used as guidelines. Yet, the designer is free to intervene at any
stage and choose an alternative location, in order to take into account the design
constraints.

52 Carmona, Cortadella, Khomenko, Yakovlev

We view these results as encouraging. In future work we intend to include also
the technology mapping step into the described design flow, as well as incorpo-
rate other methods for resolving encoding conflicts (concurrency reduction [17],
timing assumption [18], etc.) into the proposed framework for visualisation and
resolution of encoding conflicts.

6 Other Related Work and Future Directions

There has been a large amount of research in hardware design using Petri nets
in the last few years. This chapter has covered only the main advances made
recently in logic synthesis from STGs, and some of them, such as the topic of
STG decomposition, only briefly.

The reader is however encouraged to look broader and for that we briefly list
here a number of relevant and interesting developments.

– STG decomposition. The idea of reducing complexity in logic synthe-
sis from STG by STG decomposition is not new. For example, in [14] the
contraction method was introduced in which the logic equations for output
signal were derived from the projections of the state graph on the set of rele-
vant signals forming the support of the derived function. This idea has been
recently developed further in [71], in order remove some restrictions on the
class of the STG (live and safe free choice). It also approaches the decompo-
sition problem in a powerful equivalence framework, which is a bisimulation
with angelic nondeterminism. Another attempt in this direction, perhaps in
a more practical context of the HDL-based design flow was recently reported
in [77].

– Implementability checking in polynomial time. Another important
source of complexity reduction is a search for polynomial algorithms for
various stages in asynchronous logic synthesis for restricted STG classes, in
particular for free-choice nets. Such an algorithm has been developed in [24].

– Optimisation in direct mapping from STG . The advantages of the
direct mapping of Petri nets to circuits can be exploited in the STG level,
although at extra cost in circuit area. The direct mapping does not however
affect performance negatively. In fact in many cases, direct mapping offers
solutions where the latency between input and output signal transitions is
minimal. New techniques of translating STG s into circuits using David cells,
structured into ‘tracker’ and ‘bouncer’, also include optimisation of the logic
size [61].

– Synthesis from STG s in restricted bases. While logic synthesis of speed-
independent circuits in complex gates provides a satisfactory solution for
modern CMOS design technologies, in the future it may not be reliable
enough to guarantee correct operation. The effects of delays in wires and
parametric instabilities may require a much more conservative approach to
the implementation of control circuits. In this respect, advances in the syn-
thesis of circuits that are monotonic [62], i.e., having no “zero-delay” invert-
ers on the inputs, and free from isochronic forks [63] are important.

Hardware Synthesis with Petri Nets 53

– Synthesis with relative timing assumptions. Unlike the above, some-
times designing circuits under conservative assumptions can lead to signifi-
cant wastage of area, speed and power. More optimistic considerations can
be made about delays in the system, for example based on the knowledge of
actual delays in the data path or in the environment, or due to information
about relative speeds of system components. Use of relative timing has been
investigated under the notion of lazy transition systems [15].

– Synthesis from Delay-Insensitive Process Specifications. A potential
way to automatic compilation of HDLs based on communicating processes
to asynchronous circuits may be via an important semantical link between
delay-insensitive (DI) process algebras and Petri nets. Such a link has been
established and developed to the level of tool support in [33]. A particularly
interesting contribution has been the definition of the DI process decom-
position which helps avoiding CSC conflicts in the STG that is constructed
automatically from a process-algebraic specification [34].

Acknowledgements We would like to thank Alex Bystrov, Michael Kishinev-
sky, Alex Kondratyev, Maciej Koutny, Luciano Lavagno and Agnes Madalin-
ski for contributing to this research at various stages. This research was par-
tially supported by EU Framework 5 ACiD-WG and Epsrc grants GR/M99293,
GR/M94366 (Movie) and GR/R16754 (Besst).

References

1. A. Allan, et. al., 2001 Technology Roadmap for Semiconductors, Computer , Jan-
uary 2002, pp. 42-53.

2. K. van Berkel. Handshake Circuits: an Asynchronous Architecture for VLSI Pro-
gramming , volume 5 of International Series on Parallel Computation. Cambridge
University Press, 1993.

3. E. Best and B. Grahlmann. PEP — more than a Petri Net Tool. Proc. of Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’96), Springer-
Verlag, Lecture Notes in Computer Science 1055, Springer-Verlag (1996) 397-401.

4. I. Blunno and L. Lavagno. Automated synthesis of micro-pipelines from behav-
ioral Verilog HDL, Proc. of IEEE Symp. on Adv. Res. in Async. Cir. and Syst.
(ASYNC 2000), IEEE CS Press, pp. 84–92.

5. R.Brayton, G. Hachtel, C. McMullen and A. Sangiovanni-Vincentelli: Logic Min-
imisation Algorithms for VLSI Synthesis. Kluwer Academic Publishers (1984).

6. A. Bystrov and A. Yakovlev. Asynchronous Circuit Synthesis by Direct Mapping:
Interfacing to Environment, Proc. ASYNC’02 , Manchester, April 2002.

7. J. Carmona and J. Cortadella. Input/Output Compatibility of Reactive Systems.
In Fourth International Conference on Formal Methods in Computer-Aided Design
(FMCAD), Portland, Oregon, USA, November 2002. Springer-Verlag.

8. J. Carmona and J. Cortadella. ILP Models for the Synthesis of Asynchronous
Control Circuits. In Proc. International Conf. Computer-Aided Design (ICCAD),
San Jose, California, USA, November 2003.

9. J. Carmona, J. Cortadella, and E. Pastor. A structural encoding technique for
the synthesis of asynchronous circuits. Fundamenta Informaticae, pages 135–154,
April 2001.

54 Carmona, Cortadella, Khomenko, Yakovlev

10. C. Carrion and A. Yakovlev: Design and Evaluation of Two Asynchronous Token
Ring Adapters. Tech. Rep. CS-TR-562, School of Comp. Sci., Univ. of Newcastle
(1996).

11. Daniel M. Chapiro, Globally-Asynchronous Locally-Synchronous Systems. PhD
thesis, Stanford University, October 1984.

12. T. Chelcea, A. Bardsley, D. Edwards and S.M. Nowick. A burst-mode oriented
back-end for the Balsa synthesis system, Proc. of Design, Automation and Test
in Europe (DATE’02), IEEE CS Press, pp. 330-337.

13. T.-A. Chu, C. K. C. Leung, and T. S. Wanuga. A design methodology for concur-
rent VLSI systems. In Proc. International Conf. Computer Design (ICCD), pages
407-410. IEEE Computer Society Press, 1985.

14. T. -A. Chu: Synthesis of Self-Timed VLSI Circuits from Graph-Theoretic Specifica-
tions. PhD Thesis, MIT/LCS/TR-393 (1987).

15. J. Cortadella, M.Kishinevsky, S.M. Burns, K.S. Stevens, A. Kondratyev, L.
Lavagno, A. Taubin, A. Yakovlev. Lazy Transition Systems and Asynhronous Cir-
cuit Synthesis with Relative Timing Assumptions. IEEE Trans. of CAD , Vol. 21,
No. 2, Feb. 2002, pages 109-130.

16. J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno and A. Yakovlev: A
Region-Based Theory for State Assignment in Speed-Independent Circuits. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 16(8)
(1997) 793–812.

17. J. Cortadella, M. Kishinevsky, A.Kondratyev, L. Lavagno and A.Yakovlev: Auto-
matic Handshake Expansion and Reshuffling Using Concurrency Reduction. Proc.
of HWPN’98, (1998) 86–110.

18. J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev: Logic
Synthesis of Asynchronous Controllers and Interfaces. Springer Verlag (2002).

19. W. J. Dally and J. W. Poulton: Digital Systems Engineering. Cambridge University
Press (1998).

20. R. David. Modular design of asynchronous circuits defined by graphs. IEEE
Transactions on Computers, 26(8):727–737, August 1977.

21. J. Desel and J. Esparza. Reachability in cyclic extended free-choice systems. TCS
114, Elsevier Science Publishers B.V., 1993.

22. D. Edwards and A. Bardsley. Balsa: An asynchronous hardware synthesis lan-
guage. The Computer Journal , 45(1):12-18, 2002.

23. J. Esparza: Decidability and Complexity of Petri Net Problems — an Introduction.
In: Lectures on Petri Nets I: Basic Models, W. Reisig and G. Rozenberg (Eds.).
LNCS 1491 (1998) 374–428.

24. J. Esparza. A Polynomial-Time Algorithm for Checking Consistency of Free-Choice
Signal Transition Graphs, Proc. of the 3rd Int. Conf. Applications of Concurrency
to System Design (ACSD’03), IEEE CS Press, June 2003, pp. 61-70.

25. J. Esparza, S. Römer and W. Vogler: An Improvement of McMillan’s Unfolding
Algorithm. FMSD 20(3) (2002) 285–310.

26. D. Ferguson and M. Hagedorn, The Application of NULL Convention Logic to
Microcontroller/Microconverter Product, Second ACiD-WG Workshop, Munich,
2002. URL: http://www.scism.sbu.ac.uk/ccsv/ACiD-WG/Workshop2FP5/Programme/.

27. S. Furber, Industrial take-up of asynchronous design, Keynote talk at the Second
ACiD-WG Workshop, Munich, 2002. URL: http://www.scism.sbu.ac.uk/ccsv/ACiD-WG/

Workshop2FP5/Programme/.

28. S.B. Furber, A. Efthymiou, and M. Singh: A Power-Efficient Duplex Communica-
tion System. Proc. of AINT’00, TU Delft, The Netherlands (2000) 145–150.

Hardware Synthesis with Petri Nets 55

29. F. Garćıa Vallés and J.M. Colom. Structural analysis of signal transition graphs. In
D. Holdt In B. Farwer and M.O. Stehr, editors, Proceedings of the Workshop Petri
Nets in System Engineering (PNSE?97). Modelling, Verification and Validation,
pages 123–134, Hamburg (Germany). September 25–26, September 1997. Published
as report n 205 of the Computer Science Department of the University of Hamburg.

30. K. Heljanko: Using Logic Programs with Stable Model Semantics to Solve Deadlock
and Reachability Problems for 1-Safe Petri Nets. Fundamentae Informaticae 37(3)
(1999) 247–268.

31. K. Heljanko, V. Khomenko, and M. Koutny: Parallelization of the Petri Net Un-
folding Algorithm. Proc. of TACAS’2002, LNCS 2280 (2002) 371–385.

32. L.A. Hollaar. Direct implementation of asynchronous control units. IEEE Trans-
actions on Computers, C-31(12):1133–1141, December 1982.

33. H.K. Kapoor, M. B. Josephs and D.P. Furey: Verification and Implementation of
Delay-Insensitive Processes in Restrictive Environments. Proc. of ICACSD’04,
IEEE Comp. Soc. Press (2004) to appear.

34. H.K. Kapoor and M. B. Josephs: Automatically decomposing specifications with
concurrent outputs to resolve state coding conflicts in asynchronous logic synthesis.
Proc. of DAC’04, 2004 (to appear)

.

35. V.Khomenko and M. Koutny: LP Deadlock Checking Using Partial Order Depen-
dencies. Proc. of CONCUR’2000, LNCS 1877 (2000) 410–425.

36. V.Khomenko and M. Koutny: Towards An Efficient Algorithm for Unfolding Petri
Nets. Proc. of CONCUR’2001, LNCS 2154 (2001) 366–380.

37. V.Khomenko, M. Koutny, and V. Vogler: Canonical Prefixes of Petri Net Unfold-
ings. Proc. of CAV’2002, LNCS 2404 (2002) 582–595. Full version: Acta Informatica
40(2) (2003) 95-118.

38. V.Khomenko, M. Koutny and A.Yakovlev: Detecting State Coding Conflicts in
STGs Using Integer Programming. Proc. of DATE’02, IEEE Comp. Soc. Press
(2002) 338–345.

39. V.Khomenko, M. Koutny, and A. Yakovlev: Detecting State Coding Conflicts in
STG Unfoldings Using SAT. Proc. of ICACSD’03, IEEE Comp. Soc. Press (2003)
51–60. Full version: to appear in Special Issue on Best Papers from ICACSD’2003,
Fundamenta Informaticae.

40. V.Khomenko, M. Koutny, and A.Yakovlev: Logic Synthesis Avoiding State Space
Explosion. Proc. of ICACSD’04, IEEE Comp. Soc. Press (2004) to appear. Full
version: Tech. Rep. CS-TR-813, School of Comp. Science, Univ. of Newcastle.
URL: http://homepages.cs.ncl.ac.uk/victor.khomenko/home.formal/papers/papers.html.

41. D. J. Kinniment, B. Gao, A.Yakovlev and F. Xia: Towards asynchronous A-D con-
version. Proc. of ASYNC’00, IEEE Comp. Soc. Press (2000) 206–215.

42. Michael Kishinevsky, Alex Kondratyev, Alexander Taubin, and Victor Varshavsky.
Concurrent Hardware: The Theory and Practice of Self-Timed Design. Series in
Parallel Computing. John Wiley & Sons, 1994.

43. A. Kondratyev and K. Lwin. Design of asynchronous circuits using synchronous
CAD tools. IEEE Design and Test of Computers, 19(4):107-117, 2002.

44. K. S. Low and A. Yakovlev: Token Ring Arbiters: an Exercise in Asynchronous
Logic Design with Petri Nets. Tech. Rep. CS-TR-537, School of Comp. Sci., Univ.
of Newcastle (1995).

45. A.Madalinski, A. Bystrov, V.Khomenko, and A. Yakovlev: Visualisation and Res-
olution of Coding Conflicts in Asynchronous Circuit Design. Proc. of DATE’03,

56 Carmona, Cortadella, Khomenko, Yakovlev

IEEE Comp. Soc. Press (2003) 926–931. Full version: Special Issue on Best Pa-
pers from DATE’2003, IEE Proceedings: Computers & Digital Techniques 150(5)
(2003) 285–293.

46. K. L. McMillan: Using Unfoldings to Avoid State Explosion Problem in the Verifi-
cation of Asynchronous Circuits. Proc. of CAV’92, LNCS 663 (1992) 164–174.

47. G. De Micheli. Synthesis and Optimisation of Digital Circuits, McGraw-Hill, 1994.
48. S.Moskewicz, C. Madigan, Y. Zhao, L. Zhang and S.Malik: Chaff: Engineering an

Efficient SAT Solver. Proc. of DAC’01, ASME Technical Publishing (2001) 530–
535.

49. T. Murata. Petri Nets: Properties, analysis and applications. Proceedings of the
IEEE, pages 541–580, April 1989.

50. E. Pastor, J. Cortadella, A. Kondratyev, and O. Roig. Structural methods for the
synthesis of speed-independent circuits. IEEE Transactions on Computer-Aided
Design, 17(11):1108–1129, November 1998.

51. S.S. Patil and J.B. Dennis. The description and realization of digital systems. In
Proceedings of the IEEE COMPCON, pages 223–226, 1972.

52. M.A. Peña and J. Cortadella, Combining process algebras and Petri nets for the
specification and synthesis of asynchronous circuits, Proc. of IEEE Symp. on Adv.
Res. in Async. Cir. and Syst. (ASYNC’96), IEEE CS Press, pp. 222-232.

53. C. A. Petri. Kommunikation mit Automaten. PhD thesis, Bonn, Institut für
Instrumentelle Mathematik, 1962. (technical report Schriften des IIM Nr. 3).

54. P. Riocreux: Private communication. UK Asynchronous Forum (2002).
55. L. Y. Rosenblum and A. V. Yakovlev. Signal graphs: from self-timed to timed

ones. In Proceedings of International Workshop on Timed Petri Nets, pages 199–
207, Torino, Italy, July 1985. IEEE Computer Society Press.

56. A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons,
1998.

57. A. Semenov: Verification and Synthesis of Asynchronous Control Circuits Using
Petri Net Unfolding. PhD Thesis, University of Newcastle upon Tyne (1997).

58. D. Shang, F. Xia and A. Yakovlev. Asynchronous Circuit Synthesis via Direct
Translation, Proc. Int. Symp. on Cir. and Syst. (ISCAS’02), Scottsdale, Arizona,
May 2002.

59. Manuel Silva, Enrique Teruel, and José Manuel Colom. Linear algebraic and linear
programming techniques for the analysis of place/transition net systems. Lecture
Notes in Computer Science: Lectures on Petri Nets I: Basic Models, 1491:309–373,
1998.

60. J. Sparsø and S. Furber, Edt., Principles of Asynchronous Circuit Design: A Sys-
tems Perspective. Kluwer Academic Publishers, 2001

61. D. Sokolov, A. Bystrov and A. Yakovlev. STG optimisation in the direct mapping
of asynchronous circuits, Proc. Design and Test in Europe (DATE), March 2003,
932-937.

62. N. Starodoubtsev, S. Bystrov, M. Goncharov, I. Klotchkov and A. Smirnov. To-
wards Synthesis of Monotonic Circuits from STGs, In Proc. of 2ndd Int. Conf.
Applications of Concurrency to System Design (ACSD’01), IEEE CS Press, June
2001, pp. 179-180.

63. N. Starodoubtsev, S. Bystrov, and A. Yakovlev. Monotonic circuits with complete
acknowledgement, Proc. of ASYNC’03, Vancouver, IEEE CS Press, pp. 98-108.

64. Ivan E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720-738,
June 1989.

65. A. Valmari. A stubborn attack on state explosion. Formal Methods in System
Design, 1(4):297–322, 1992.

Hardware Synthesis with Petri Nets 57

66. P. Vanbekbergen. Synthesis of Asynchronous Control Circuits from Graph-
Theoretic Specifications. PhD thesis, Catholic University of Leuven, 1993.

67. P. Vanbekbergen, F. Catthoor, G. Goossens and H.De Man: Optimised Synthesis
of Asynchronous Control Circuits form Graph-Theoretic Specifications. Proc. of
ICCAD’90, IEEE Comp. Soc. Press (1990) 184–187.

68. V. I. Varshavsky and V. B. Marakhovsky. Asynchronous control device design by
net model behavior simulation. In J. Billington and W. Reisig, editors, Application
and Theory of Petri Nets 1996, volume 1091 of Lecture Notes in Computer Science,
pages 497–515. Springer-Verlag, June 1996.

69. V. I. Varshavsky, editor. Self-Timed Control of Concurrent Processes: The Design
of Aperiodic Logical Circuits in Computers and Discrete Systems. Kluwer Academic
Publishers, Dordrecht, The Netherlands, 1990.

70. Thomas Villiger, Hubert Kslin, Frank K. Grkaynak, Stephan Oetiker, and Wolf-
gang Fichtner. Self-timed ring for globally-asynchronous locally-synchronous sys-
tems. Proc. International Symposium on Advanced Research in Asynchronous Cir-
cuits and Systems, pp. 141-150. IEEE Computer Society Press, May 2003.

71. W.Vogler and R. Wollowski. Decomposition in asynchronous circuit design. In
J. Cortadella, A. Yakovlev, and G. Rozenberg, editors, Concurrency and Hard-
ware Design, volume 2549 of Lecture Notes in Computer Science, pages 152-190.
Springer-Verlag, 2002.

72. A.Yakovlev: Designing Control Logic for Counterflow Pipeline Processor Using
Petri nets. FMSD 12(1) (1998) 39–71.

73. A. Yakovlev, S. Furber and R. Krenz, Design, Analysis and Implementation of a
Self-timed Duplex Communication System, CS-TR-761, Dept. Computing Science,
Univ. of Newcastle upon Tyne, March 2002. URL: http://www.cs.ncl.ac.uk/people/

alex.yakovlev/home.informal/some papers/duplex-TR.ps.

74. A. Yakovlev and A. Koelmans. Petri nets and Digital Hardware Design Lectures
on Petri Nets II: Applications. Advances in Petri Nets, Lecture Notes in Computer
Science, vol. 1492, Springer-Verlag, 1998, pp. 154-236.

75. A.Yakovlev and A.Petrov: Petri Nets and Asynchronous Bus Controller Design.
Proc. of ICATPN’90, (1990) 244–262.

76. A. Yakovlev, V. Varshavsky, V. Marakhovsky and A. Semenov. Designing an asyn-
chronous pipeline token ring interface, Proc. of 2nd Working Conference on Asyn-
chronous Design Methdologies, London, May 1995 , IEEE Comp. Society Press,
N.Y., 1995, pp. 32-41.

77. T. Yoneda and C. Myers. Synthesis of Speed Independent Circuits based on De-
composition, Proceedings of ASYNC 2004, Heraklion, Greece, IEEE CS Press,
April 2004.

78. L. Zhang and S. Malik: The Quest for Efficient Boolean Satisfiability Solvers. Proc.
of CAV’02, LNCS 2404 (2002) 17–36.

