
Chapter 12 

Information Theory and 
Statistics 

We now explore the relationship between information theory and statis- 
tics. We begin by describing the method of types, which is a powerful 
technique in large deviation theory. We use the method of types to 
calculate the probability of rare events and to show the existence of 
universal source codes. We also consider the problem of testing hypoth- 
eses and derive the best possible error exponents for such tests (Stein’s 
lemma). Finally, we treat the estimation of the parameters of a dis- 
tribution and describe the role of Fisher information. 

12.1 THE METHOD OF TYPES 

The AEP for discrete random variables (Chapter 3) focuses our atten- 
tion on a small subset of typical sequences. The method of types is an 
even more powerful procedure in which we consider the sequences that 
have the same empirical distribution. With this restriction, we can 
derive strong bounds on the number of sequences of a particular 
empirical distribution and the probability of each sequence in this set. It 
is then possible to derive strong error bounds for the channel coding 
theorem and prove a variety of rate-distortion results. The method of 
types was fully developed by Csiszar and Korner [83], who obtained 
most of their results from this point of view. 

Let X1,X,, . . . ,X, be a sequence of n symbols from an alphabet 
2 = {a,, fJ2, * * * , a,*,). We will use the notation xn and x interchange- 
ably to denote a sequence ;xl, x2, . . . , x, . 

Definition: The type P, (or empirical probability distribution) of a 
sequence x,, x,, . . . , x, is the relative proportion of occurrences of each 
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280 ZNFORMATZON THEORY AND STATZSTZCS 

symbol of %‘, i.e., P&z) = N(alx)ln for all a E %‘, where N(aIx) is the 
number of times the symbol a occurs in the sequence x E %“. 

The type of a sequence x is denoted as P,. It is a probability mass 
function on Z. (Note that in this chapter, we will use capital letters to 
denote types and distributions. We will also loosely use the word 
“distribution” to mean a probability mass function.) 

Definition: Let 9,, denote the set of types with denominator n. 

For example, if 8? = (0, l}, then the set of possible types with de- 
nominator n is 

~~={(P(o),PUk(;, ;),(;,g ,..., (I, !)}. (12.1) 

DefZnition: If P E P,,, then the set of sequences of length n and type P 
is called the type class of P, denoted T(P), i.e., 

T(P)= {XEr:P,=P}. (12.2) 

The type class is sometimes called the composition class of P. 

EmmpZe 12.1.1: Let %‘= {1,2,3}, a ternary alphabet. Let x = 11321. 
Then the type P, is 

P,(l)= 5, P,(2)= 5, P,(3)= 5. (12.3) 

The type class of P, is the set of all sequences of length 5 with three l’s, 
one 2 and one 3. There are 20 such sequences, and 

T(P,) = {11123,11132,11213,. . . ,321ll) . (12.4) 

The number of elements in T(P) is 

IzIP,I=(,; 1)=&=20. 
9 9 . . . (12.5) 

The essential power of the method of types arises from the following 
theorem, which shows that the number of types is at most polynomial in 
n. 

Theorem 12.1.1: 

lgnl 22 (n + l)l&( . (12.6) 



12.1 THE METHOD OF TYPES 281 

Proof: There are 1 Z 1 components in the vector that specifies Px. The 
numerator in each component can take on only n + 1 values. So there 
are at most (n + l)la”’ choices for the type vector. Of course, these choices 
are not independent (for example, the last choice is fixed by the others). 
But this is a sufficiently good upper bound for our needs. Cl 

The crucial point here is that there are only a polynomial number of 
types of length n. Since the number of sequences is exponential in n, it 
follows that at least one type has exponentially many sequences in its 
type class. In fact, the largest type class has essentially the same 
number of elements as the entire set of sequences, to first order in the 
exponent. 

Now, we will assume that the sequence X,, X,, . . . , X, is drawn i.i.d. 
according to a distribution Q(x). AI1 sequences with the same type will 
have the same probability, as shown in the following theorem. Let 
Q”(x”) = II;=, Q&) denote the product distribution associated with Q. 

Theorem 12.1.2: If X1,X,, . . . ,X, are drawn Cd. according to Q(x), 
then the probability of x depends only on its type and is given by 

Proof: 

Q”(x) = 2- nW(P,&+D(P,"Q)) . 

Q”(x) = ii Q(xi) 
i=l 

= fl Q(a)N(uIx) 
aE&” 

= n Q(a)npJa) 
aE% 

= 
l-I 2 nP,(u) log Q(a) 

UEEe” 

= n 2 n(P.,&z) log Q(a)-P,(a) log P&)+P,b) log P,(a)) 

aE% 

nC 
= 2 

aE* (-P,(a) log ~+PJaI logP,W 

= p-NP,llQ)-H(P,H . q 

Corollary: If x is in the type class of Q, then 

Qn(x) = 24(Q) . 

(12.7) 

(12.8) 

(12.9) 

(12.10) 

(12.11) 

(12.12) 

(12.13) 

(12.14) 

(12.15) 
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Proof: If x E T(Q), then Px = Q, which can be substituted into 
(12.14). q 

Example 12.1.2: The probability that a fair die produces a particular 
sequence of length n with precisely n/6 occurrences of each face (n is a 
multiple of 6) is 2-nHcaP 8’. . . ’ Q’ = 6-“. This is obvious. However, if the die 
has a probability mass function ( i, $, i, &, &, 0), the probability of 
observing a particular sequence with precisely these frequencies is 
precisely 2 --nH(i, g, Q, i&P $270) f or n a multiple of 12. This is more inter- 
esting. 

We now give an estimate of the size of a type class Z’(P). 

Theorem 12.1.3 (Size of a type class Z’(P)): For any type P E gn, 

1 
(n + l)‘Z’ 2 

nN(P) ( IT(P)I 5 y-) . (12.16) 

Proof: The exact size of Z’(P) is easy to calculate. It is a simple 
combinatorial problem-the number of ways of arranging nP(a, ), 
nP(a,), . . . , nP(a,,,) objects in a sequence, which is 

IT(P)I = ( n 
nP(a, 1, nP(a,), . . . , nP(algl) > ’ 

(12.17) 

This value is hard to manipulate, so we derive simple exponential 
bounds on its value. 

We suggest two alternative proofs for the exponential bounds. 
The first proof uses Stirling% formula [ 1101 to bound the factorial 

function, and after some algebra, we can obtain the bounds of the 
theorem. 

We give an alternative proof. We first prove the upper bound. Since a 
type class must have probability I 1, we have 

11 P”(T(P)) (12.18) 

= c P”(x) 
xE!r(P) 

= 
x&J) 2- 

nH(P 1 

= IT(P))2-“H’P) , 

(12.19) 

(12.20) 

(12.21) 

using Theorem 12.1.2. Thus 

1 T(P)1 5 2nH(P) , (12.22) 



12.1 THE METHOD OF 7YPES 283 

Now for the lower bound. We first prove that the type class T(P) has the 
highest probability among all type classes under the probability dis- 
tribution P, i.e., 

JWYPN 1 P”u@)), for all P E 9n . (12.23) 

We lower bound the ratio of probabilities, 

P”(T(PN _ JT(P)p,,, PwP(a) 

P”(m) - 1 T@)ll-l,,, P(czypca) 
(12.24) 

( nPbl), nP$?, . . . , nP(qq) ) fla,, P(cFa) 
= 

( 
n 

n&al), n&a2), . . . , nP(algI) >fl 

(12 25) 

uE* P(a)npca) * 

= fl (da))! p(a)n(P(a)-B(a)) 

aEg WbN 
. (12.26) 

Now using the simple bound (easy to prove by separately considering 
the cases m 2 n and m < n) 

(12.27) 

we obtain 

~“UYP)) 

P”(m) 

L n (np(u))n~(a)-nP(a)p(a)n(P(u)-~(a)) (12.28) 
aE2f 

= 
l-I n n@(a)-P(a)) 

aEl 

= nn(caEZ P(a)-C aEIP P(a)) 

(12.29) 

=n &l-l) (12.31) 
. 

=l. (12.32) 

Hence P”(T(P)) 2 P”(@)). The lower bound now follows easily from this 
result, since 

l= c P”U’(QN 
QEB, 

(12.33) 

(12.34) 

(12.35) 
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< (n + l)‘x’P”(T(P)) - (12.36) 

= (n + l)‘%’ c P”(x) (12.37) 
XET(P) 

= (n + r>l"l 2 243(P) (12.38) 
xET(P) 

=(n + lfa'lT(P)12-nH'P' ? (12.39) 

where (12.36) follows from Theorem 12.1.1 and (12.38) follows from 
Theorem 12.1.2. Cl 

We give a slightly better approximation for the binary case. 

Example 12.1.3 (Binary alphabet): In this case, the type is defined by 
the number of l’s in the sequence, and the size of the type class is 
therefore ( g ). We show that 

1 
-2 rzH(h< n 

( > 
nH(!i) 

n-II -k12 . (12.40) 

These bounds can be proved using Stirling’s approximation for the 
factorial function. But we provide a more intuitive proof below. 

We first prove the upper bound. From the binomial formula, for any p, 

p&(1 -p)n-k = 1 . (12.41) 

Since all the terms of the sum are positive for 0 I p I 1, each of the 
terms is less than 1. Setting p = $ and taking the Filth term, we get 

k log h+(n-k) log%? 

( > i2 

n(h log ff+* log+ 
= > 

= ( > nZ!Z(!i) ;2- . 

(12.42) 

(12.43) 

(12.44) 

(12.45) 

nH(i) 52 . (12.46) 



12.1 THE METHOD OF TYPES 285 

For the lower bound, let S be a random variable with a binomial 
distribution with parameters n and p. The most likely value of S is 
S = ( np ) . This can be easily verified from the fact that 

P(S=i+l)-n-i p 
P(S = i) i+l l-p 

(12.47) 

and considering the cases when i < np and when i > np. Then, since 
there are n + 1 terms in the binomial sum, 

1= i (;)p*(l -p)n-k r(n + l)m*ax( ;)pkU -pTk 
k=O 

(12.48) 

=(n+l)( (&) > 
p’“P’(l -p)“-‘“P’ . 

(12.49) 

Now let p = $. Then we have 

l~~n+l)(~)(t)k(l-%)“-k, (12.50) 

which by the arguments in (12.45) is equivalent to 

1 -2s 
n-+1 

(12.51) 

or 

(12.52) 

Combining the two results, we see that 

(12.53) 

Theorem 12.1.4 (Probdbility of type c2ass): For any P E gn and any 
distribution Q, the probability of the type class T(P) under Q” is 
2-nD’p”Q) to first order in the exponent. More precisely, 

cyD(PllQ) I Q”(T(p)) I 2-nDU-‘llQ) . (12.54) 

Proof: We have 

&VW) = c Q”(x) 
XET(P) 

(12.55) 
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= IT(P)12- n(D(P(lQ)+H(PN 
2 

(12.56) 

(12.57) 

by Theorem 12.1.2. Using the bounds on IT(P)) derived in Theorem 
12.1.3, we have 

1 
(n + 1)'"' 

2-no(pllQ)IQn(~(p))~2-no(pltQ). q (12.58) 

We can summarize the basic theorems concerning types in four equa- 
tions: 

lLPnl I (n + 1)‘“’ , (12.59) 

Q"(x)= 2- n(D(P,llQ)+H(P,N 7 

1 T(P)1 A 2nH(P) , 

Qn(T(p))~2-'11Q) . (12.62) 

These equations state that there are only a polynomial number of types 
and that there are an exponential number of sequences of each type. We 
also have an exact formula for the probability of any sequence of type P 
under distribution Q and an approximate formula for the probability of 
a type class. 

These equations allow us to calculate the behavior of long sequences 
based on the properties of the type of the sequence. For example, for 
long sequences drawn i.i.d. according to some distribution, the type of 
the sequence is close to the distribution generating the sequence, and we 
can use the properties of this distribution to estimate the properties of 
the sequence. Some of the applications that will be dealt with in the 
next few sections are as follows: 

l The law of large numbers. 
l Universal source coding. 
l Sanov’s theorem. 

l Stein’s lemma and hypothesis testing. 
l Conditional probability and limit theorems. 

12.2 THE LAW OF LARGE NUMBERS 

The concept of type and type classes enables us to give an alternative 
interpretation to the law of large numbers. In fact, it can be used as a 
proof of a version of the weak law in the discrete case. 
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The most important property of types is that there are only a 
polynomial number of types, and an exponential number of sequences of 
each type. Since the probability of each type class depends exponentially 
on the relative entropy distance between the type P and the distribution 
Q, type classes that are far from the true distribution have exponential- 
ly smaller probability. 

Given an E > 0, we can define a typical set T’, of sequences for the 
distribution Q” as 

T’, = {xn: D(P,,IIQ)s E} . (12.63) 

Then the probability that X” is not typical is 

1 - Q”(T;) = 2 Q”UVN 
zJ:DuqQ)>c 

(12.64) 

I P:D(P,,Q)>~ 2-nD(P”Q) c (Theorem 12.1.4) (12.65) 

5 c 2-“’ (12.66) 
P:LXPJJQDe 

-= (n + 1)‘“‘2-“’ - (Theorem 12.1.1) (12.67) 

= 2 
-,(,-,*,*) 

7 (12.68) 

which goes to 0 as n + 00. Hence, the probability of the typical set goes to 
1 as n * 00. This is similar to the AEP proved in Chapter 3, which is a 
form of the weak law of large numbers. 

Theorem 12.2.1: Let Xl, X,, . . . , X, be i.i.d. -P(x). Then 

Pr{D(P,, lip> > E} I 2 
-,(,-l*l~) 

7 (12.69) 

and consequently, D(P,, II P)+ 0 with probability I. 

Proof: The inequality (12.69) was proved in (12.68). Summing over 
n, we find 

2 Pr{D(P,,IIP) > E} < 00. 
n=l 

(12.70) 

Thus the expected number of occurrences of the event { D(P,, II P) > E} 
for all n is finite, which implies that the actual number of such 
occurrences is also finite with probability 1 (Borel-Cantelli lemma). 
Hence D(P,, II P) --, 0 with probability 1. Cl 

We now define a stronger version of typicality. 
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Definition: We will define the strongZy typicaL set A:’ to be the set of 
sequences in %‘” for which the sample frequencies are close to the true 
values, i.e., 

A(n) = 
l 

{rtrr”:I~N(alr)Po)l<~, for allaE% (1271) 

. 

Hence the typical set consists of sequences whose type does not differ 
from the true probabilities by more than E/I %‘I in any component. 

By the strong law of large numbers, it follows that the probability of 
the strongly typical set goes to 1 as n+ 00. 

The additional power afforded by strong typicality is useful in proving 
stronger results, particularly in universal coding, rate distortion theory 
and large deviation theory. 

12.3 UNIVERSAL SOURCE CODING 

Huffman coding compresses an i.i.d. source with a known distribution 
p(x) to its entropy limit H(X). However, if the code is designed for some 
incorrect distribution q(x), a penalty of D( p 119) is incurred. Thus Huff- 
man coding is sensitive to the assumed distribution. 

What compression can be achieved if the true distribution p(x) is 
unknown? Is there a universal code of rate R, say, that suffices to 
describe every i.i.d. source with entropy H(X)< R? The surprising 
answer is yes. 

The idea is based on the method of types. There are 2nncP’ sequences 
of type P. Since there are only a polynomial number of types with 
denominator n, an enumeration of all sequences xn with type Pzn such 
that H(P,,) =C R will require roughly nR bits. Thus, by describing all 
such sequences, we are prepared to describe any sequence that is likely 
to arise from 
definition. 

Definition: A 
which has an 
encoder, 

any distribution Q with H(Q) < R. We begin with a 

fied rate block code of rate R for a source X1, X,, . . . , X, 
unknown distribution Q consists of two mappings, the 

fn:~n+{l,2,...,2nR}, (12.72) 

and the decoder, 

4${1,2 ,..., ZnR)+3!?. (12.73) 
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Here R is called the rate of the code. The probability of error for the code 
with respect to the distribution Q is 

P~‘=Q”(X,,X, ,..., X,:~,(f,cx,,x,,...,x,)~~cx,,x,,..~~x,))~ 

(12.74) 

Definition: A rate R block code for a source will be called universal if 
the functions f, and & do not depend on the distribution Q and if 
Pr’+O as n+m ifR>H(Q). 

We now describe one such universal encoding scheme, due to Csiszar 
and Korner [83], that is based on the fact that the number of sequences 
of the type P increases exponentially with the entropy and the fact that 
there are only a polynomial number of types. 

Theorem 12.3.1: There exists a sequence of (2nR, n) universal source 
codes such that Pr’ + 0 for every source Q such that H(Q) < R. 

Proof= Fix the rate R for the code. Let 

Consider the set of sequences 

A={xE%‘“:H(P,)sR,}. 

Then 

I4 = c I WV 
PEG, : H(P)<R, 

I c 2 nH(P) 

PE9, : H(P)sR,, 

I c 2 4l 
PEP, : H(P)sR,, 

((n + 1y*'2nRn - 

= 2 
n(R,+[&(q) 

= 2”R. 

(12.75) 

(12.76) 

(12.77) 

(12.78) 

(12.79) 

(12.80) 

(12.81) 

(12.82) 

By indexing the elements of A, we define the encoding f, as 
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fn<x> = { tdex of x in A iE;h;i= 
. (12.83) 

The decoding function maps each index onto the corresponding element 
of A. Hence all the elements of A are encoded correctly, and all the 
remaining sequences result in an error. The set of sequences that are 
encoded correctly is illustrated in Figure 12.1. 

We will now show that this encoding scheme is universal. Assume 
that the distribution of XI, X,, . . . , X,, is Q and H(Q) CR. Then the 
probability of decoding error is given by 

I’:’ = 1 - Q”(A) (12.84) 

= c Q’VW) (12.85) 
P : H(P)>R, 

I (n + 1)‘“’ max Q”(W)) 
P : H(P)>R,, 

(12.86) 

-=I (n + 1)‘“‘2 -n m%wP)>R”wIQ) - (12.87) 

Since R, TR and H(Q) < R, there exists n, such that for all n L n,, 
R, > H(Q). Then for n 1 n,, minp,Htpl,Rno(PIIQ> must be greater than 
0, and the probability of error Pr’ converges to 0 exponentially fast as 
n-a. 

On the other hand, if the distribution Q is such that the entropy H(Q) 
is greater than the rate R, then with high probability, the sequence will 
have a type outside the set A. Hence, in such cases the probability of 
error is close to 1. 

Figure 12.1. Universal code and the probability simplex. 
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H(Q) Rate of code 

Figure 12.2. Error exponent for the universal code. 

The exponent in the probability of error is 

D&g = min DP((Q), 
P : H(P)>R 

(12.88) 

which is illustrated in Figure 12.2. Cl 

The universal coding scheme described here is only one of many such 
schemes. It is universal over the set of i.i.d. distributions. There are 
other schemes like the Lempel-Ziv algorithm, which is a variable rate 
universal code for all ergodic sources. The Lempel-Ziv algorithm, dis- 
cussed in Section 12.10, is often used in practice to compress data which 
cannot be modeled simply, such as English text or computer source code. 

One may wonder why it is ever necessary to use Huffman codes, 
which are specific to a probability distribution. What do we lose in using 
a universal code? 

Universal codes need a longer block length to obtain the same 
performance as a code designed specifically for the probability dis- 
tribution. We pay the penalty for this increase in block length by the 
increased complexity of the encoder and decoder. Hence a distribution 
specific code is best if one knows the distribution of the source. 

12.4 LARGE DEVIATION THEORY 

The subject of large deviation theory can be illustrated by an example. 
What is the probability that w  C Xi is near l/3, if X1, X,, . . . , X, are 
drawn i.i.d. Bernoulli( l/3)? This is a small deviation (from the expected 
outcome) and the probability is near 1. Now what is the probability that 
k C Xi is greater than 3/4 given that X1, X,, . . . , X, are Bernoulli(l/3)? 
This is a large deviation, and the probability is exponentially small. We 
might estimate the exponent using the central limit theorem, but this is 
a poor approximation for more than a few standard deviations. We note 
that i C Xi = 3/4 is equivalent to P, = (l/4,3/4). Thus the probability 
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that X, is near 3/4 is the probability of the corresponding type. The 
probability of this large deviation will turn out to be = 2 -nD(( lf f )‘I( f, % “! In 
this section, we estimate the probability of a set of non-typical types. 

Let E be a subset of the set of probability mass functions. For 
example, E may be the set of probability mass functions with mean p. 
With a slight abuse of notation, we write 

Q”(E) = Q”(E n 9’J = 2 Q”(x). 
x: P,EE~~,, 

(12.89) 

If E contains a relative entropy neighborhood of Q, then by the weak law 
of large numbers (Theorem 12.2.1), Q”(E)+ 1. On the other hand, if E 
does not contain Q or a neighborhood of Q, then by the weak law of large 
numbers, Q”(E )+ 0 exponentially fast. We will use the method of types 
to calculate the exponent. 

Let us first give some examples of the kind of sets E that we are 
considering. For example, assume that by observation we find that the 
sample average of g(X) is greater than or equal to QI, i.e., k Ci g<x, > L ar. 
This event is equivalent to the event Px E E n P,, where 

because 

E = {P: 2 g(a)P(u)r a}, 
aE& 

(12.90) 

(12.91) 

~P,EEM’~. (12.92) 

Thus 

(12.93) 

Here E is a half space in the space of probability vectors, as illustrated 
in Figure 12.3. 

Theorem 12.4.1 (Sunov’s theorem): Let Xl, X2, . . . , X, be i.i.d. - Q(x). 
Let E c 9 be a set of probability distributions. Then 

where 

Q”(E) = Q”(E n 9,) 5 (n + ~)I*~~-~D(P*IIQ) ? (12.94) 

P* = argyigD(PII&), (12.95) 

is the distribution in E that is closest to Q in relative entropy. 
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Figure 12.3. The probability simplex and Sanov’s theorem. 

If, in addition, the set E is the closure of its interior, then 

; log Qn(E)+ -D(P*llQ) . (12.96) 

Proof: We first prove the upper bound: 

Q”(E)= 2 Q”W-‘N 
PEEPS’,, 

(12.97) 

5 c 
6pvPIlQ) (12.98) 

PEEW, 

5 c max 2 -nD(PllQ) 

PEEr-9, PEEn9’, 

(12.99) 

= c 2 -n minpEEnpn~(PllQ) (12.100) 
PEEnp’, 

I 2 2 -n minp&XP(lQ) (12.101) 
PEEnB, 

= 2 spwJ*llQ) 
PEEn9, 

(12.102) 

< cn + ~~l~l2-~~(J’*llQ) (12.103) 

where the last inequality follows from Theorem 12.1.1. 
Note that P* need not be a member of .Pn. We now come to the lower 

bound, for which we need a “nice ” set E, so that for all large n, we can 
find a distribution in E n .P,, which is close to P. If we now assume that 
E is the closure of its interior (thus the interior must be non-empty), 
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then since U n 9,, is dense in the set of all distributions, it follows that 
E n 9n is non-empty for all n 1 n, for some n,. We can then fknd 
a sequence of distributions P,, such that P, E E n 9n and D(P, IIQ) 
+D(P*IIQ). For each n 2 n,, 

Q”(E)= 2 &VW) 
PeErW, 

1 Q”U’Pn )) 

1 
21 (n + lj”l 

2-~~(P,llQ) . 

Consequently, 

(12.104) 

(12.105) 

(12.106) 

1 
lim inf ; log Q”(E) I lim i 

IS?1 logh + 1) 
- 

n 

= -D(P*)lQ). 

- D(P,llQ$ 

(12.107) 

Combining this with the upper bound establishes the theorem. Cl 

This argument can also be extended to continuous distributions using 
quantization. 

12.5 EXAMPLES OF SANOV’S THEOREM 

Suppose we wish to find Pr{ i Cy=, gj(X,> 2 a!, j = 1,2,. . . , k}. Then the 
set E is defined as 

E = {P: 2 P(a)gj(a) 1 ~j, j = 1,2, . . . , k} . (12.108) 
a 

To find the closest distribution in E to Q, we minimize D(PII Q) subject 
to the constraints in (12.108). Using Lagrange multipliers, we construct 
the functional 

P(x) J(P) = c Rd log g<=c> + C Ai C P<x)gi(~> + VC p(~) . (12’log) 
x i x x 

We then differentiate and calculate the closest distribution to Q to be of 
the form 

P*(x) = 
Q(& ci %gi(x) 

c a~&” Q(a)e”i *igi(a) ’ (12.110) 
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where the constants Ai are chosen to satisfy the constraints. Note that if 
Q is uniform, then P* is the maximum entropy distribution. Verification 
that P* is indeed the minimum follows from the same kind of arguments 
as given in Chapter 11. 

Let us consider some specific examples: 

Example 12.5.1 (Dice): Suppose we toss a fair die n times; what is the 
probability that the average of the throws is greater than or equal to 4? 
From Sanov’s theorem, it follows that 

Q”(E)& 2-P*llQJ 
, (12.111) 

where P* minimizes D(PIIQ) over all distributions P that satisfy 

$ iP(i)l4. 
i=l 

From (12.110), it follows that P* has the form 

2 p*w = g$ , 
z-l 

(12.112) 

(12.113) 

with h chosen so that C iP*(i) = 4. Solving numerically, we obtain 
A=0.2519, and P*= (0.1031,0.1227,0.1461,0.1740,0.2072,0.2468), 
and therefore D(P*II Q) = 0.0624 bits. Thus, the probability that the 
average of 10000 throws is greater than or equal to 4 is = 2-624. 

Example 12.62 (Coins): Suppose we have a fair coin, and want to 
estimate the probability of observing more than 700 heads in a series of 
1000 tosses. The problem is like the previous example. The probability is 

(12.114) 

where P* is the (0.7,0.3) distribution and Q is the (0.5,0.5) dis- 
tribution. In this case, D(P*IIQ) = 1 - H(P*) = 1 - H(0.7) = 0.119. Thus 
th;lgprobability of 700 or more heads in 1000 trials is approximately 
2- . 

Example 12.6.3 (Mutual dependence): Let Q(x, y) be a given joint 
distribution and let QJx, y) = Q(x>Q( y) be the associated product dis- 
tribution formed from the marginals of Q. We wish to know the 
likelihood that a sample drawn according to Q0 will “appear” to be 
jointly distributed according to Q. Accordingly, let (Xi, Yi) be i.i.d. 
-Q&, y)= Q(x)&(y). W e d fi e ne joint typicality as we did in Section 8.6, 
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i.e., (x”, y”) is jointly typical with respect to a joint distribution Q(x, y) 
iff the sample entropies are close to their true values, i.e., 

-i log&(x")-H(x) SE, (12.115) 

+ogQ(y”)-H(Y) SE, (12.116) 

and 

1 
-,logQ(x”,y”)-H(X,Y) SE. (12.117) 

We wish to calculate the probability (under the product distribution) of 
seeing a pair (x”, y”) that looks jointly typical of Q, i.e., (x”, y”) satisfies 
(12.115)-(12.117). Thus (x”, y”) are jointly typical with respect to 
Q(x, y) if P xn, yn E E n iFn (X, Y), where 

E= - 2 P(x, y) log Q(x) - H(X) 5 E , 
x9 Y 

-c Rx, y) log Q(y) - H(Y) 5 E , 
x* Y 

-c P(x, y) log Q(x, y) - H(X, Y) . (12.118) 
x9 Y 

Using Sanov’s theorem, the probability is 

Q;(E) & 2-n~(p*!lQ,) , (12.119) 

where P* is the distribution satisfying the constraints that is closest to 
Q0 in relative entropy. In this case, as E + 0, it can be verified (Problem 
10) that P* is the joint distribution Q, and Q0 is the product dis- 
tribution, so that the probability is 2-nDcQcX9 y)ttQ(x)Q(y)) = 2-nrcXi y’, which 
is the same as the result derived in Chapter 8 for the joint AEP 

In the next section, we consider the empirical distribution of the 
sequence of outcomes given that the type is in a particular set of 
distributions E. We will show that not only is the probability of the set E 
essentially determined by D(P*II Q), the distance of the closest element 
of E to Q, but also that the conditional type is essentially P*, so that 
given that we are in set E, the type is very likely to be close to P*. 
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12.6 THE CONDITIONAL LIMIT THEOREM 

It has been shown that the probability of a set of types under a 
distribution Q is essentially determined by the probability of the closest 
element of the set to Q; the probability is 2-nD* to first order in the 
exponent, where 

D” = yn; D(PllQ) . (12.120) 

This follows because the probability of the set of types is the sum of the 
probabilities of each type, which is bounded by the largest term times 
the number of terms. Since the number of terms is polynomial in the 
length of the sequences, the sum is equal to the largest term to first 
order in the exponent. 

We now strengthen the argument to show that not only is the 
probability of the set E essentially the same as the probability of the 
closest type P* but also that the total probability of other types that are 
far away from P* is negligible. This implies that with very high 
probability, the observed type is close to P*. We call this a conditional 
limit theorem. 

Before we prove this result, we prove a “Pythagorean” theorem, which 
gives some insight into the geometry of D(P 11 Q ). Since D(P 11 Q ) is not a 
metric, many of the intuitive properties of distance are not valid for 
D(P(lQ). The next theorem shows a sense in which D(PIIQ) behaves like 
the square of the Euclidean metric (Figure 12.4). 

Theorem 12.6.1: For a closed convex set E C 9 and distribution Q $E, 
let P* E E be the distribution that achieves the minimum distance to Q, 
i.e., 

Figure 12.4. Pythagorean theorem for relative entropy. 
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Then 

for all P E E. 

D(P(IQ)rD(PIIP*)+D(P*I(Q) (12.122) 

Note: The main use of this theorem is as follows: suppose we have a 
sequence P, E E that yields D(P, II Q ) + D(P* II Q 1. Then from the Py- 
thagorean theorem, D(P, II P*)+ 0 as well. 

Proof: Consider any P E E. Let 

PA = AP + (1 - A)P* . (12.123) 

Then PA + P* as A + 0. Also since E is convex, PA E E for 0 I A I 1. Since 
D(P*IlQ) is the minimum of D(P,IIQ) along the path P*+P, the 
derivative of D(P, I I Q ) as a function of A is non-negative at A = 0. Now 

P,(x) 
D,=D(P,IIQ)=C.P,(z)logQo, (12.124) 

d4 -= 
dh (Rx) - P”(x)) log g + (P(x) - P*(x))) . 

X 
(12.125) 

Setting A = 0, so that PA = P* and using the fact that C P(x) = C P*(x) = 
1, we have 

= 2 (P(x) - P”(x)) log $+ 
X 

= 2 P(x) log $L$ - c P*‘(x) log p+ 
X 

= 2 P(x) log z s - c P*(x) log z 
X 

= DU’((Q) - D(P(IP*) - DP*llQ>, 

which proves the theorem. Cl 

(12.126) 

(12.127) 

(12.128) 

(12.129) 

(12.130) 
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Note that the relative entropy D(PII Q) behaves like the square of the 
Euclidean distance. Suppose we have a convex set E in % n. Let A be a 
point outside the set, B the point in the set closest to A, and C any other 
point in the set. Then the angle between the lines BA and BC must be 
obtuse, which implies that Zic 1 IL + I&, which is of the same form as 
the above theorem. This is illustrated in Figure 12.5. 

We now prove a useful lemma which shows that convergence in 
relative entropy implies convergence in the ZI norm. 

The .ZI distance between any two distributions is defined 

Let A be the set on which P,(X) > P&G). Then 

lp$ - Pz 111 = c IP&) - P&)1 
xE& 

Also note that 

= c P,(r) - P,(x)> + c (P&d - P,(x)> 
XEA ZEAC 

= P,(A) - P,(A) + &(A”) - &(A”) 

= P,(A) -P,(A) + 1 -P,(A) - 1 + P,(A) 

= W,(A) - P,(A)) . 

(12.131) 

(12.132) 

(12.133) 

(12.134) 

(12.135) 

(12.136) 

(12.137) 

Figure 12.5. Triangle inequality for distance squared. 
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The left hand side of (12.137) is called the variational distance between 
PI and Pz. 

Lemma 12.6.1: 

(12.138) 

Proof: We first prove it for the binary case. Consider two binary 
distributions with parameters p and q with p 1 q. We will show that 

l-p 4 plog~+(l-p)logi_g~~(P-q)2~ (12.139) 

The difference g(p, q) between the two sides is 

l-p 4 
g~p,q)=Plog~+u-p)log-- 

1-q 
m(P - d2 * 

(12.140) 

Then 

dg(P,d P 1-P 4 
dq -- = qln2 

+ 
(1 -q)ln2 - g&Kq -p) (12.141) 

Q-P 4 
= q(l- q)ln2 - &I -P) (12.142) 

10 9 (12.143) 

since q(1 - q) 5 f and q 5 p. For q = p, g(p, q) = 0, and hence g( p, q) 2 0 
for q 5 p, which proves the lemma for the binary case. 

For the general case, for any two distributions P, and P2, let 

A = {x: PI(x) > P,(x)} . (12.144) 

Define a new binary random variable Y = 4(X), the indicator of the set 
A, and let P, and P2 be the distributions of Y. Thus P, and P, correspond 
to the quantized versions of P, and P,. Then by the data processing 
inequality applied to relative entropies (which is proved in the same way 
as the data processing inequality for mutual information), we have 

(12.145) 

(12.146) 
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= & IlPl - PzllT (12.147) 

by (12.137), and the lemma is proved. Cl 

We can now begin the proof of the conditional limit theorem. We first 
outline the method used. As stated at the beginning of the chapter, the 
essential idea is that the probability of a type under Q depends exponen- 
tially on the distance of the type from Q, and hence types that are 
further away are exponentially less likely to occur. We divide the set of 
types in E into two categories: those at about the same distance from Q 
as P* and those a distance 26 farther away. The second set has 
exponentially less probability than the first, and hence the first set has a 
conditional probability tending to 1. We then use the Pythagorean 
theorem to establish that all the elements in the first set are close to P*, 
which will establish the theorem. 

The following theorem is an important strengthening of the max- 
imum entropy principle. 

Theorem 12.6.2 (Conditional limit theorem): Let E be a closed convex 
subset of 9 and let Q be a distribution not in E. Let XI, X2, . . . , X, be 
discrete random variables drawn i.i.d. -Q. Let P* achieve min,,, 
WP(IQ). Then 

Pr(x, = alPxn E E)+ P*(a) (12.148) 

in probability as n + 00, i.e., the conditional distribution of XI, given that 
the type of the sequence is in E, is close to P* for large n. 

Example 12.6.1: If Xi i.i.d. - Q, then 

where P*(a) minimizes D(PIJQ) over P satisfying C P(a)a2 1 a. This 
minimization results in 

ha2 

P*(a) = Q(a) e 
C, Q(a)eAa2 ’ 

(12.150) 

where A is chosen to satisfy C P*(a)a2 = CL Thus the conditional dis- 
tribution on X1 given a constraint on the sum of the squares is a 
(normalized) product of the original probability mass function and the 
maximum entropy probability mass function (which in this case is 
Gaussian). 
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Proof of Theorem: Define the sets 

S, = {PE cP:D(PIlQ)st}. (12.151) 

The sets S, are convex since D(P 11 Q ) is a convex function of P. Let 

D* = D(P*IIQ) = pE~D(PllQ). (12.152) 

Then P* is unique, since D(P II Q ) is strictly convex in I? 
Now define the set 

A = SDefz6 n E (12.153) 

and 

B=E-S,,,,,nE. (12.154) 

Thus A U B = E. These sets are illustrated in Figure 12.6. Then 

Q”(B) = 
PEE”~‘, :&,Q,>o.+26 QvYP)) (12.155) 

I c ywllQ) (12.156) 
PEEW, :D(PllQ)>D*+26 

I c 2 -n(D*+2s) (12.157) 
PEEM’,:D(PJJQ)>D*+2S 

< cn + 1)1&“12-4D*+2~) - 9 (12.158) 

Figure 12.6. The conditional limit theorem. 



12.6 THE CONDITZONAL LlMlT THEOREM 303 

since there are only a polynomial number of types. On the other hand, 

Q"(A) 2 &"CS,.+, n E) (12.159) 

= (12.160) 

c 1 1 
PEEn9, :DG’llQ)sD*+6 (?Z + l)‘*’ 

yW’11Q) (12.161) 

1 
2 (n + 1)‘“’ 

2- n(D*+S) 
’ for n sufficiently large , (12.162) 

since the sum is greater than one of the terms, and for sufficiently large 
n, there exists at least one type in SD*+6 n E fl 9,. Then for n sufficient- 
ly large 

I  Q"(B) 
Q”(A) 

(12.163) 

(12.164) 

I (n + l)l&“l2-dD*+w 

&2- 
n(D*+6) (12.165) 

= (n + l)2iz12-n6 
’ (12.166) 

which goes to 0 as n --* m. Hence the conditional probability of B goes to 
0 as n + 00, which implies that the conditional probability of A goes to 1. 

We now show that all the members of A are close to P* in relative 
entropy. For all members of A, 

D(PIlQ)5D*+26. (12.167) 

Hence by the “Pythagorean” theorem (Theorem 12.6.1)) 

D(pIIP*) + D(P*IlQ) 5 D(Pl(Q) 5 D* + 2s , (12.168) 

which in turn implies that 

D(PJ(P”) 5 2s ) (12.169) 

since D(P*(I Q) = D*. Thus P, E A implies that D(P,II Q) 5 D* + 26, and 
therefore that D(P,IIP*) I 28. Consequently, since Pr{P,, E A(P,, E 
E} --) 1, it follows that 
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Pr(D(P,,IIP”)I2SIP,,EE)-,l (12.170) 

By Lemma 12.6.1, the fact that the relative entropy is small implies 
that the 3, distance is small, which in turn implies that max,,zt” 
ppw - P”(a>l is small. Thus Pr(IP,,(a) - P*(a)) 2 EIP,, E E)+ 0 as 
n + 00. Alternatively, this can be written as 

Pr(x, = a IPxn E E) + P*(a) in probability . (12.171) 

In this theorem, we have only proved that the marginal distribution 
goes to P* as n --) co. Using a similar argument, we can prove a stronger 
version of this theorem, i.e., 

m 

Pr(x, = u,,X, = uz,. . . ,x, = u,lPp EE)+ n P”(u,) in probability . 
i=l 

(12.172) 

This holds for fked m as n + 00. The result is not true for m = n, since 
there are end effects; given that the type of the sequence is in E, the last 
elements of the sequence can be determined from the remaining ele- 
ments, and the elements are no longer independent. The conditional 
limit theorem states that the first few elements are asymptotically 
independent with common distribution P*. 

Example 12.6.2: As an example of the conditional limit theorem, let us 
consider the case when n fair dice are rolled. Suppose that the sum of 
the outcomes exceeds 4n. Then by the conditional limit theorem, the 
probability that the first die shows a number a E { 1,2, . . . ,6} is approx- 
imately P*(u), where P*(u) is the distribution in E that is closest to the 
uniform distribution, where E = {P: C P(u)u 14). This is the maximum 
entropy distribution given by 

2 p*w = & , 
i-l 

(12.173) 

with A chosen so that C iP*(i) = 4 (see Chapter 11). Here P* is the 
conditional distribution on the first (or any other) die. Apparently the 
first few dice inspected will behave as if they are independently drawn 
according to an exponential distribution. 

12.7 HYPOTHESIS TESTING 

One of the standard problems in statistics is to decide between two 
alternative explanations for the observed data. For example, in medical 
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testing, one may wish to test whether a new drug is effective or not. 
Similarly, a sequence of coin tosses may reveal whether the coin is 
biased or not. 

These problems are examples of the general hypothesis testing prob- 
lem. In the simplest case, we have to decide between two i.i.d. dis- 
tributions. The general problem can be stated as follows: 

Problem: Let X, , X,, . . . , X,, be i.i.d. - Q(Z). We consider two hy- 
potheses: 

l H,: Q=P,. 

l H2:Q=P2. 

Consider the general decision function g(xl, xs, . . . , x, ), where 
g&9 x2, * * * 9 XJ = 1 implies that HI is accepted and g(+ x2, . . . , xn) = 2 
implies that H, is accepted. Since the function takes on only two values, 
the test can also be specified by specifying the set A over which 
&Xl, 372, * * * 2 x,J is 1; the complement of this set is the set where 
gb,, 3t2, * * * 9 rn ) has the value 2. We define the two probabilities of error: 

a = Pr<g(X,,X,, . . . , X,) = 21H, true) = Py(A”) (12.174) 

and 

p = pr(g(x,,x,, * * * , X,) = 11H2 true) = Pi(A). (12.175) 

In general, we wish to minimize both probabilities, but there is a 
trade-off. Thus we minimize one of the probabilities of error subject to a 
constraint on the other probability of error. The best achievable error 
exponent in the probability of error for this problem is given by Stein’s 
lemma. 

We first prove the Neyman-Pearson lemma, which derives the form of 
the optimum test between two hypotheses. We derive the result for 
discrete distributions; the same results can be derived for continuous 
distributions as well. 

Theorem 12.7.1 (Neyman-Pearson lemma): Let Xl, X2, . . . ,X, be 
drawn i.i.d. according to probability mass function P Consider the 
decision problem corresponding to hypotheses Q = PI vs. Q = P2. For 
T 2 0, define a region 

(12.176) 

Let 

a* = P;(A”,(T)), p* = P&4,(T)), (12.177) 
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be the corresponding probabilities of error corresponding to decision 
region A,. Let B, be any other decision region with associated prob- 
abilities of error C-X and p. If a 5 a*, then p L p*. 

Proof: Let A = A,(T) be the region defined in (12.176) and let 
B E 35’” be any other acceptance region. Let $Q and 4B be the indicator 
functions of the decision regions A and B respectively. Then for all 
x=(x1,x2 ,..., xJE2rn, 

h/&d - ~&dlP,(x> - Tp,(X)l~ 0 l (12.178) 

This can be seen by considering separately the cases x E A and xeA. 
Multiplying out and integrating this over the entire space, we obtain 

=zP,-TP,)-aP,-TP,) (12.180) 
A B 

=(l-o!*)-Tp*-(l-cw)+Tp (12.181) 

= T(p - p*) -(a* - a). (12.182) 

Since T 2 0, we have proved the theorem. Cl 

The Neyman-Pearson lemma indicates that the optimum test for two 
hypotheses is of the form 

(12.183) 

This is the likelihood ratio test and the quantity :i::z:::: $1 is called 
the likelihood ratio. 

For example, in a test between two Gaussian distributions, i.e., 
between f, = .@l, a2> and f, = JV( - 1, 02), the likelihood ratio becomes 

(Xi-1j2 

f,<x,,X,, . . . ,x,> T=l & e 2az 
f2WpX2, ’ * * 9x,) = (Xi+l12 

l-l;.-, * e 2u2 

2 Cr=l Xi 
+- 

=e cl2 

(12.184) 

(12.185) 

+s 
=e cr.2 . (12.186) 

Hence the likelihood ratio test consists of comparing the sample mean 
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rl, with a threshold. If we want the two probabilities of error to be equal, 
we should set 2’ = 1. This is illustrated in Figure 12.7. 

In the above theorem, we have shown that the optimum test is a 
likelihood ratio test. We can rewrite the log-likelihood ratio as 

= 2 nP,,(a) log E 
aE&0 2 

= 2 nP,,(a) log $$ x 
aEX Xn 

(12.187) 

(12.188) 

(12.189) 

(12.190) 

= C nPxnW log p2(a) 
aE% 

EE@ - C nP,,(U) log E 
aE& 1 

(12.191) 

= n~(P,,((P,) - nD(P,,((P,), (12.192) 

the difference between the relative entropy distances of the sample type 
to each of the two distributions. Hence the likelihood ratio test 

0.4 
0.35 

0.3 
0.25 

G 0.2 
ST 

0.15 

0.1 
0.05 

0 

1 
// 1 ’ // ’ 

I : / ’ : I 
I I \ \ 

I’ I’ 
\ \ 
\ \ 

: 
: 

\ \ 

*/ 1 */ 1 I ;\ 
-5-4-3-2-10 12 3 4 ,5 -4 -3 -2 -1 O 1 2 3 4 5x 

X 

Figure 12.7. Testing between two Gaussian distributions. 
X 

Fi igure 12.7. Testing between two Gaussian distribut 

is equivalent to 

(12.193) 

(12.194) 
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We can consider the test to be equivalent to specifying a region of the 
simplex of types which corresponds to choosing hypothesis 1. The 
optimum region is of the form (12.1941, for which the boundary of the 
region is the set of types for which the difference between the distances 
is a constant. This boundary is the analog of the perpendicular bisector 
in Euclidean geometry. The test is illustrated in Figure 12.8. 

We now offer some informal arguments based on Sanov’s theorem to 
show how to choose the threshold to obtain different probabilities of 
error. Let B denote the set on which hypothesis 1 is accepted. The 
probability of error of the first hind is 

%a = PycPp E B”) . (12.195) 

Since the set B” is convex, we can use Sanov’s theorem to show that the 
probability of error is essentially determined by the relative entropy of 
the closest member of B” to P,. Therefore, 

% 
‘2-- nmqp~) 

9 (12.196) 

where PT is the closest element of B” to distribution PI. Similarly, 

pn &2- nmq IlP~) 9 (12.197) 

where Pz is the closest element in B to the distribution P,. 
Now minimizing D(PIIP,) subject to the constraint D(PIIP,) - 

D(P(( PI) 2 A log T will yield the type in B that is closest to P2. Setting 
up the minimization of D(PIIP,) subject to D(PIIP,) - D(P)IP,) = $ log T 
using Lagrange multipliers, we have 

Rx) J(P) = 2 P(x) log p + AC Rx) log p p1(=c) + vc P(x). (12.198) 
2 2 

Figure 12.8. The likelihood ratio test on the probability simplex. 
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Differentiating with respect to P(X) and setting to 0, we have 

log %) 
Pl(=G) 

P&d 
-+v=o. + 1+ A loI3 p&) (12.199) 

Solving this set of equations, we obtain the minimizing P of the form 

(12.200) 

where A is chosen so that D(P,, 11 PI ) - D(P,, 11 Pz> = v. 
From the symmetry of expression (12.200), it is clear that PT = PX 

and that the probabilities of error behave exponentially with exponents 
given by the relative entropies D(P*lI PI) and D(P*ll P2). Also note from 
the equation that as h + 1, Pn + P, and as A+ 0, PA + Pz. The line that 
PA traces out as h varies is a geodesic in the simplex. Here PA is a 
normalized convex combination, where the combination is in the expo- 
nent (Figure 12.8). 

In the next section, we calculate the best error exponent when one of 
the two types of error goes to zero arbitrarily slowly (Stein’s lemma). We 
will also minimize the weighted sum of the two probabilities of error and 
obtain the Chernoff bound. 

12.8 STEIN’S LEMMA 

We now consider the case when one of the probabilities of error is fixed 
and we wish to minimize the other probability of error. The best error 
exponent in this case is given by Stein’s lemma. 

Theorem 12.8.1 (Stein’s lemma): Let Xl, X2, . . . , X,, be i.i.d. - Q. Con- 
sider the hypothesis test between two alternatives, Q = PI and Q = Pz, 
where DP,I(p,)< 00. Let A, c P be an acceptance region for hypothesis 
1. Let the probabilities of ermr be 

a, = Py(Ae,) , pn =Pi(An) l (12.201) 

and for O<E<& define 

El= min &. 
A,W” 

(12.202) 
U,<C 

Then 

(12.203) 
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Proofi To prove the theorem, we construct a sequence of acceptance 
regions A, c Sep” such that (x,, < (E and 6,, k 2-“D’p”‘P2! We then show that 
no other sequence of tests has an asymptotically better exponent. 

First, we define 

A, = xEBY:2 +nux4(IP2)-6) ( P,(x) (2 
- P&d - 

Then we have the following properties: 

1. Py(A,)+ 1. This follows from 

P;ca,,l=f’;(; 8 ‘ogp 
i-l 

p1w E(D(P,((P,)- s,D(PJP,)+ s,) 
2 i 

(12.205) 

-,l (12.206) 

by the strong law of large numbers, since DP, llP2) = 

I!&+, (log s). Hence for sufficiently large n, a, < E. 

2. Pi(A,) 5 2-n(D(PlllP2)? Using the definition of A,, we have 

P;(A, I= c P,(x) 
*?a 

I C p1(x)2-n(~‘P’Il%)-6) 

4 

= 2 -n(D(P111P2)-S) 
c P,(x) 

*Ia 

= 2--n(D(P~IIW-a)(1 _ a 
n 

1. 

Similarly, we can show that 

Hence 

P;(A,,)r2 -n(D(P11(P2)+G 1 
Cl- a, )  l 

1 logtl - an) 
;logP,I -D(p,IIP,)+S+ n , 

and 

1 
i logBra 

log(1 - ar,) 
-wqp,b-~+ n 9 

(12.207) 

(12.208) 

(12.209) 

(12.210) 

(12.211) 

(12.212) 

(12.213) 
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1 
lim $+i ; log Pn = - D(P,IIP,) . (12.214) 

3. We now prove that no other sequence of acceptance regions does 
better. Let B, c %‘” be any other sequence of acceptance regions 
with cy,, B = Py(BC,) < E. Let &B, = Pi@,). We will show that 

Pn,B 22 
-kD(P,((P,kE) . 

H”ere 

P n, 4, 
=P~(B,)~P~(An’B,) (12.215) 

= c P,(x) 
A”*Bn 

= C pl~x)2-n(~(P’IIP,)+~) 

An”Bn 

(12.216) 

(12.217) 

= 2 -nuw,((P2)+S 1 c Pi(x) (12.218) 
A,“Bn 

z(l - (y, - cy,, Bn)2-n(D(p1i’p2)+*) , (12.219) 

where the last inequality follows from the union of events bound as 
follows: 

(12.220) 

(12.221) 

'l-PICA',)-P,(B",) (12.222) 

1 -$og&,5 -HP,IIP,)-a- 
log(l - an - an, 8,) 

9 (12.224) 
n 

and since 6 > 0 is arbitrary, 

(12.225) 

Thus no sequence of sets B, has an exponent better than D(P, IIP,). But 
the sequence A, achieves the exponent D(P, I(P,). Thus A, is asymp- 
totically optimal, and the best error exponent is D(P, 11 P&. 0 
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12.9 CHERNOFF BOUND 

We have considered the problem of hypothesis testing in the classical 
setting, in which we treat the two probabilities of error separately. In 
the derivation of Stein’s lemma, we set a, I E and achieved 6, * 2-“4 
But this approach lacks symmetry. Instead, we can follow a Bayesian 
approach, in which we assign prior probabilities to both the hypotheses. 
In this case, we wish to minimize the overall probability of error given 
by the weighted sum of the individual probabilities of error. The 
resulting error exponent is the Chernoff information. 

The setup is as follows: X1, X,, . . . , X, i.i.d. - Q. We have two 
hypotheses: Q = P, with prior probability w1 and Q = P, with prior 
probability rr2. The overall probability of error is 

P;’ = ?r,ar, + nip, . (12.226) 

Let 

1 
D* = !.i+.iArnz” - ; log PF’ . (12.227) 

R 

Theorem 12.9.1 (Chenwff): The best achievable exponent in the 
Bayesian probability of error is D*, where 

D* = D(P#l) = D(P,*IIP,), (12.228) 

with 

(12.229) 

and A* the value of A such that 

D(p,#‘,) = W’,~IIP,) . (12.230) 

Proof: The basic details of the proof were given in the previous 
section. We have shown that the optimum test is a likelihood ratio test, 
which can be considered to be of the form 

D(P~rllP~)-D(P,,llP,)> 2’. (12.231) 

The test divides the probability simplex into regions corresponding to 
hypothesis 1 and hypothesis 2, respectively. This is illustrated in Figure 
12.9. 

Let A be the set of types associated with hypothesis 1. From the 
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Figure 12.9. The probability simplex and Chernoffs bound. 

discussion preceding (12.200), it follows that the closest point in the set 
A” to P, is on the boundary of A, and is of the form given by (12.229). 
Then from the discussion in the last section, it is clear that PA is the 
distribution in A that is closest to P2; it is also the distribution in A” that 
is closest to P,. By Sanov’s theorem, we can calculate the associated 
probabilities of error 

and 
ff?l 

= plf(AC)&2-nD(p~*11P1) 

p, = p;(A) & 2 -nD(P~*11P2) . 

(12.232) 

(12.233) 

In the Bayesian case, the overall probability of error is the weighted 
sum of the two probabilities of error, 

since the exponential rate is determined by the worst exponent. Since 
D(P, 11 PJ increases with A and D(P, 11 Pz) decreases with A, the maximum 
value of the minimum of {D(P, II P, ), D(P, II P, >} is attained when they 
are equal. This is illustrated in Figure 12.10. 

Hence, we choose A so that 

WqlP,) = D(P*IIP,) i C(P,, PSI. (12.235) 

Thus C(P,, Pz> is the highest achievable exponent for the probability of 
error and is called the Chernoff information. Cl 

The above definition is equivalent to the standard definition of Chernoff 
information, 
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Figure 12.10. Relative entropy D(P,IJP,) and D(P,(IP,) as a function of A. 

(12.236) 

It is left as an exercise to the reader to show (algebraically) the 
equivalence of (12.235) and (12.236). We will briefly outline the usual 
derivation of the Chernoff bound. The maximum a posteriori probability 
decision rule minimizes the Bayesian probability of error. The decision 
region A for hypothesis 1 for the maximum a posteriori rule is 

?r P (d 
A={x:-&>l (12.237) 

the set of outcomes where the a posteriori probability of hypothesis 1 is 
greater than the a posteriori probability of hypothesis 2. The probability 
of error for this rule is 

P, = Tl% + 48 (12.238) 

(12.239) 

= C min{ n,P,, r2P,} . (12.240) 

Now for any two positive numbers a and 6, we have 

min{a, b} sa*b’-*, for all 0~ AS 1. (12.241) 

Using this to continue the chain, we have 
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P, = C min{ qP,, ?r,P,) (12.242) 

(12.243) 

5 c P;P;-̂  . (12.244) 

For a sequence of i.i.d. observations, Pk(x) = II:= 1 Pk(xi ), and 

(12.245) 

(12.246) 

(12.247) 

= (c P:P:-^)’ , 
where (a) follows since rI 5 1, 7~~ I 1. Hence, we have 

i log Py 5 log c P;(x)P;-A(x) 

(12.248) 

(12.249) 

Since this is true for all A, we can take the minimum over 0 I h I 1, 
resulting in the Chernoff bound. This proves that the exponent is no 
better than C(P,, P,>. Achievability follows from Theorem 12.9.1. 

Note that the Bayesian error exponent does not depend on the actual 
value of ?rI and rZ, as long as they are non-zero. Essentially, the effect of 
the prior is washed out for large sample sizes. The optimum decision 
rule is to choose the hypothesis with the maximum a posteriori prob- 
ability, which corresponds to the test 

(12.250) 

Taking the log and dividing by n, this test can be rewritten as 

1 P,(x-1 
;1og3+---log&JsO, 

r2 i 2 i 
(12.251) 

where the second term tends to D(P, IIP,> or - D(P, IIP,> accordingly as 
PI or P2 is the true distribution. The first term tends to 0, and the effect 
of the prior distribution washes out. 

Finally, to round off our discussion of large deviation theory and 
hypothesis testing, we consider an example of the conditional limit 
theorem. 
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Example 12.9.1: Suppose major league baseball players have a batting 
average of 260 with a standard deviation of 15 and suppose that minor 
league ballplayers have a batting average of 240 with a standard 
deviation of 15. A group of 100 ballplayers from one of the leagues (the 
league is chosen at random) is found to have a group batting average 
greater than 250, and is therefore judged to be major leaguers. We are 
now told that we are mistaken; these players are minor leaguers. What 
can we say about the distribution of batting averages among these 100 
players? It will turn out that the distribution of batting averages among 
these players will have a mean of 250 and a standard deviation of 15. 
This follows from the conditional limit theorem. To see this, we abstract 
the problem as follows. 

Let us consider an example of testing between two Gaussian dis- 
tributions, fi = Crr(l, a2> and f, = JV( - 1, 02), with different means and 
the same variance. As discussed in the last section, the likelihood ratio 
test in this case is equivalent to comparing the sample mean with a 
threshold. The Bayes test is “Accept the hypothesis f = f, if a Cr=, Xi > 
0.” 

Now assume that we make an error of the first kind (we say f = f, 
when indeed f = f,> in this test. What is the conditional distribution of 
the samples given that we have made an error? 

We might guess at various possibilities: 

l The sample will look like a ( $, 4 ) mix of the two normal dis- 
tributions. Plausible as this is, it is incorrect. 

. Xi = 0 for all i. This is quite clearly very very unlikely, although it is 
conditionally likely that X, is close to 0. 

l The correct answer is given by the conditional limit theorem. If the 
true distribution is f, and the sample type is in the set A, the 
conditional distribution is close to f*, the distribution in A that is 
closest to f,. By symmetry, this corresponds to A = 4 in (12.229). 
Calculating the distribution, we get 

f*(x) = 
( 1 (*-1J2 l/2 -- 

m e 2u2 > ( 

1 (x+1j2 l/2 -- 

m e 2c72 > 

I( 1 (x-1J2 l/2 
-- > ( 1 (z+1j2 l/2 -- 

m e 2=2 m e 2u2 dx > 

1 -- (x2+1) 

m e 2u2 

= 
I 1 -- (x2+1) 

m e 202 dx 

(12.252) 

(12.253) 
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1 -- 
=- 

+j&3 e zcz2 (12.254) 

= h-(0, (r2). (12.255) 

It is interesting to note that the conditional distribution is normal 
with mean 0 and with the same variance as the original dis- 
tributions. This is strange but true; if we mistake a normal popula- 
tion for another, the “shape” of this population still looks normal 
with the same variance and a different mean. Apparently, this rare 
event does not result from bizarre looking data. 

Example 12.9.2 (Large deviation theory and football): Consider a very 
simple version of football in which the score is directly related to the 
number of yards gained. Assume that the coach has a choice between 
two strategies: running or passing. Associated with each strategy is a 
distribution on the number of yards gained. For example, in general, 
running results in a gain of a few yards with very high probability, 
while passing results in huge gains with low probability. Examples of 
the distributions are illustrated in Figure 12.11. 

At the beginning of the game, the coach uses the strategy that 
promises the greatest expected gain. Now assume that we are in the 
closing minutes of the game and one of the teams is leading by a large 
margin. (Let us ignore first downs and adaptable defenses.) So the 
trailing team will win only if it is very lucky. If luck is required to win, 
then we might as well assume that we will be lucky and play according- 
ly. What is the appropriate strategy? 

Assume that the team has only n plays left and it must gain I yards, 
where Z is much larger than n times the expected gain under each play. 
The probability that the team succeeds in achieving I yards is exponen- 
tially small; hence, we can use the large deviation results and Sanov’s 
theorem to calculate the probability of this event. 

Yards gained in pass Yards gained in run 

Figure 12.11. Distribution of yards gained in a run or a pass play. 
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To be precise, we wish to calculate the probability that Cy= 1 Zi 1 ncx, 
where Zi are independent random variables, and Zi has a distribution 
corresponding to the strategy chosen. 

The situation is illustrated in Figure 12.12. Let E be the set of types 
corresponding to the constraint, 

E={P: 2 Papa}. 
aE% 

(12.256) 

If P, is the distribution corresponding to passing all the time, then the 
probability of winning is the probability that the sample type is in E, 
which by Sanov’s theorem is 2-nD(PT”P1), where PT is the distribution in E 
that is closest to P,. Similarly, if the coach uses the running game all 
the time, the probability of winning is 2-RD(p5”p2! What if he uses a 
mixture of strategies? Is it possible that 2-nD(P;“PA), the probability of 
winning with a mixed strategy, PA = AP, + (1 - h)P,, is better than the 
probability of winning with either pure passing or pure running? 

The somewhat surprising answer is yes, as can be shown by example. 
This provides a reason to use a mixed strategy other than the fact that 
it confuses the defense. 

We end this section with another inequality due to Chernoff, which is 
a special version of Markov’s inequality. This inequality is called the 
Chernoff bound. 

Lemma 12.9.1: Let Y be any random variable and let e(s) be the 
moment generating function of Y, 

+5(s) = Eesy . 

Then for all s 2 0, 

Figure 12.12. Probability simplex for a football game. 
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Proofi 
able es7 

APPlY 
cl 

Pr(Y L a) I e-““+(s) . (12.258) 

Markov’s inequality to the non-negative random vari- 

12.10 LEMPEL-ZIV CODING 

We now describe a scheme for universal data compression due to Ziv and 
Lempel [291], which is simple to implement and has an asymptotic rate 
approaching the entropy of the source. The algorithm is particularly 
simple and has become popular as the standard algorithm for file 
compression on computers because of its speed and efficiency. 

We will consider a binary source throughout this section. The results 
generalize easily to any finite alphabet. 

Algorithm: The source sequence is sequentially parsed into strings 
that have not appeared so far. For example, if the string is 
1011010100010.. . , we parse it as 1,0,11,01,010,00,10,. . . . After every 
comma, we look along the input sequence until we come to the shortest 
string that has not been marked off before. Since this is the shortest 
such string, all its prefixes must have occurred earlier. In particular, the 
string consisting of all but the last bit of this string must have occurred 
earlier. We code this phrase by giving the location of the prefix and the 
value of the last bit. 

Let c(n) be the number of phrases in the parsing of the input 
n-sequence. We need log c(n) bits to describe the location of the prefix to 
the phrase and 1 bit to describe the last bit. For example, the code for 
the above sequence is (OOO,l)(OOO,O)(OOl,l)(OlO,l)( lOO,O)(OlO,O)(OOl,O), 
where the first number of each pair gives the index of the prefix and the 
second number gives the last bit of the phrase. Decoding the coded 
sequence is straightforward and we can recover the source sequence 
without error. 

The above algorithm requires two passes over the string-in the first 
pass, we parse the string and calculate c(n), the number of phrases in 
the parsed string. We then use that to decide how many bits (log c(n)) to 
allot to the pointers in the algorithm. In the second pass, we calculate 
the pointers and produce the coded string as indicated above. The 
algorithm described above allots an equal number of bits to all the 
pointers. This is not necessary, since the range of the pointers is smaller 
at the initial portion of the string. The algorithm can be modified so that 
it requires only one pass over the string and uses fewer bits for the 
initial pointers. These modifications do not affect the asymptotic ef- 
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ficiency of the algorithm. Some of the implementation details are 
discussed by Welch [269] and Bell, Cleary and Witten 1221. 

In the example, we have not compressed the string; instead, we have 
expanded the number of bits by more than a factor of 2. But for long 
strings the phrases will get longer, and describing the phrases by 
describing the location of the prefix will be more efficient. We will show 
that this algorithm asymptotically achieves the entropy rate for the 
unknown ergodic source. 

Without loss of generality, we will assume that the source alphabet is 
binary. Thus %’ = { 0, 1) throughout this section. We first define a pars- 
ing of the string to be a decomposition into phrases. 

Definition: A pursing S of a binary string x,x, . . . x, is a division of the 
string into phrases, separated by commas. A distinct pursing is a 
parsing such that no two phrases are identical. 

For example, O,lll,l is a distinct parsing of 01111, but O,ll,ll is a 
parsing which is not distinct. 

The Lempel-Ziv algorithm described above gives a distinct parsing of 
the source sequence. Let c(n) denote the number of phrases in the 
Lempel-Ziv parsing of a sequence of length n. Of course, c(n) depends on 
the sequence X”. The compressed sequence (after applying the Lempel- 
Ziv algorithm) consists of a list of c(n) pairs of numbers, each pair 
consisting of a pointer to the previous occurrence of the prefix of the 
phrase and the last bit of the phrase. Each pointer requires log c(n) bits, 
and hence the total length of the compressed sequence is c(n)(log c(n) + 
1) bits. We will now show that c(n’log$n) + ‘) + H(g) for a stationary 
ergodic sequence X1, X,, . . . , X,. Our proof is based on the simple proof 
of asymptotic optimality of Lempel-Ziv coding due to Wyner and Ziv 
[2851. 

We first prove a few lemmas that we need for the proof of the 
theorem. The first is a bound on the number of phrases possible in a 
distinct parsing of a binary sequence of length n. 

Lemma 12.10.1 (Lempel and Ziv): The number of phrases c(n) in a 
distinct parsing of a binary sequence Xl, X2, . . . , X, satisfies 

c(n) I 
n 

u- Qlogn 
(12.259) 

where l n+0 as n+m. 

Proof: Let 

k 

n& = C j2’ = (k - 1)2’+’ + 2 (12.260) 
j=l 
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be the sum of the lengths of all distinct strings of length less than or 
equal to k. The number of phrases c in a distinct parsing of a sequence of 
length n is maximized when all the phrases are as short as possible. If 
n = nA, this occurs when all the phrases are of length Sk, and thus 

C(?Z,)ZS A 2-j =p+l -2<2k+‘C&. - 
j=l 

(12.261) 

If nA 5 n < n,,,, we write n = nA + A, where A<(k + 1)2? Then the 
parsing into shortest phrases has each of the phrases of length Sk and 
Al(k + 1) phrases of length k + 1. Thus 

(12.262) 

we now bound the size of k for a given n. Let nA 5 n < nk +1* Then 

n2nik=(k-1)2A+1+2r2k, (12.263) 

and therefore 

kslogn. (12.264) 

Moreover, 

n 5 nA+l = k2 h+2+2~(k+2)2’+2r(logn+2)2”2 (12.265) 

by (12.264), and therefore 

k+2rlog n 
logn +2 ’ (12.266) 

or, for all n 2 4, 

k-lrlogn-log(logn+2)-3 (12.267) 

( 1 log(logn+2)+3 = - 
log n > log n (12.268) 

) 1 
( 

log(2logn)+3 - - 
log n > log n (12.269) 

= - 
( 
1 log(log n) + 4 

log n > log n (12.270) 

=(l- Qlogn. (12.271) 

Note that Ed = min(1, 
obtain the lemma. 0 

‘N:z,‘+ 4 }. Combining (12.271) with (12.262), we 
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We will need a simple result on maximum entropy in the proof of the 
main theorem. 

Lemma 12.10.2: Let Z be a positive integer valued random variable 
with mean p. Then the entropy H(Z) is bounded by 

H(Z)~(~+l)log(~+l1)-~log~. (12.272) 

Proofi The lemma follows directly from the results of Chapter 11, 
which show that the probability mass function that maximizes entropy 
subject to a constraint on the mean is the geometric distribution, for 
which we can compute the entropy. The details are left as an exercise for 
the reader. 0 

Let {Xi}~= --m be a stationary ergodic process with probability mass 
function P(q , x2, . . . , x,). (Ergodic processes are discussed in greater 
detail in Section 15.7.) For a fixed integer k, define the kth order Markov 
approximation to P as 

Qcb+l,, . . . 9 ~0, ~1, . - - 9 Xn) L ~(~o_(~-~)) fi P(~~~~;I:), (12.273) 
j=l 

where xi A 
txi> Xi+13 l *  *  

, xi), i 5 j, and the initial state JcO_(~-~) will be 
part of the specification of Qi. Since P(X, 1X:1:> is itself an ergodic 
process, we have 

+ -E log P(XjIXiI:) (12.275) 

= H(XjIX::_:). (12.276) 

We will bound the rate of the Lempel-Ziv code by the entropy rate of the 
kth order Markov approximation for all k. The entropy rate of the 
Markov approximation H(Xj IX~I: ) converges to the entropy rate of the 
process as k + 00 and this will prove the result. 

Suppose X?ck-lj = d&), and suppose that XI is parsed into c dis- 
tinct phrases, yl, y2, . . . , y,. Let vi be the index of the start of the ith 
phrase, i.e., yi =x:+‘-‘. For each i = 1,2,. . . , C, define Si = x:I:. Thus Si 
is the k bits of x ireceding yi. Of course, s1 = xfck -1 ). 

Let cl8 be the number of phrases yi with length I and preceding state 
Si = S for I = 1,2, . . . and s E %?. We then have 

c Cl* = c (12,277) 
1. 8 
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and Cl cl8 =n. 
1.8 

(12.278) 

We now prove a surprising upper bound on the probability of a string 
based on the parsing of the string. 

Lemma 12.10.3 (Ziv’s inequality): For any distinct parsing (in particu- 
lar, the Lempel-Ziv parsing) of the string x1x2 . . . x,, we have 

log Q&l, ~2, . . . > x,Is+ -c Cl8 logqs * 
1,s 

(12.279) 

Note that the right hand side does not depend on Qk. 

Proof: We write 

or 

QJx1, ~2, - - - 9 x,Isl) = Q<Y,, ~2, - - 0 9 ycls1) (12.280) 

= fi RY,lSi), (12.281) 
i=l 

log Q&, ~2, . . -3 X,ISl)= i l”gp(yi(si) (12.282) 
i=l 

=C C l”gp(yilsi) (12.283) 
I,8 i : (yi )=I, si=s 

where the inequality follows from Jensen’s inequality and the concavity 
of the logarithm. 

Now since the yi are distinct, we have C i:lyi I=l, .yi=,RYi(Si) 5 1. Thus 

1 
log &,(x1, ~2, . . -9 x,lsl) 5 2 cls log < 9 

1,s 

proving the lemma. 0 

We can now prove the main theorem: 

(12.286) 

Theorem 12.10.1: Let {X,,} be a stationary ergodicprocess with entropy 
rate H(Z), and let c(n) be the number of phrases in a distinct parsing of 
a sample of length n from this process. Then 



324 ZNFORMATZON THEORY AND STATISTICS 

lim sup c(n) log c(n) 5 H(E) 
n-+00 n 

(12.287) 

with probability 1. 

Proof: We will begin with Ziv’s inequality, which we rewrite as 

log Q&Q, x2, . . . 3 clsc x,IQ 5 -c Cl* log c 
1, s 

(12.288) 

= -c log c - c 2 s log c,, . 
1s c C 

(12.289) 

Writing rlS = %, we have 

from (12.227) and (12.278). We now define random variables U, V, such 
that 

Pr(U = Z, V= s) = q, . (12.291) 

Thus EU = $ and 

log Q&q, ~2, . . . , r,~s,)~cH(U,V)-clogc (12.292) 

or 

1 
- ; log Q&5, ~2, . . - 9 z,~s,~~~logc-~H~u,v~. 

(12.293) 

Now 

H(U, V) rH(U) + H(V), 

and H(V) 5 loglElk = k. By Lemma 12.10.2, we have 

(12.294) 

H(U)I(EU+~)~O~(EU+~)-EU~~~EU (12.295) 

=(~+l)Log(~+l)-;1og; 

= log p + (i+l)log(;+l). 

(12.296) 

(12.297) 

Thus 
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(12.298) 

For a given n, the maximum of $ log 3 is attained for the maximum 
value of c (for $ I i). But from Lemma 12.10.1, c 5 &(l + o(1)). Thus 

f log i 50(10;o;;n) (12.299) 

and therefore $H( U, V)+ 0 as n + 00. 
Therefore 

c(n) log c(n) 1 
n 

I -; i0g Qk(=cl, x2, . . . , x,Is~) + Ek(d (12.300) 

where ck(n) + 0 as n + 00. Hence, with probability 1, 

lim sup c(n) log c(n) < lirn 
n -llo,Q,Wl,x,,.. n--*m -n-m n - 9 x,IXL,) 

(12.301) 

= H(x,Ixq, . . . ,X-k) (12.302) 

+ mu ask+a. Cl (12.303) 

We now prove that Lempel-Ziv coding is asymptotically optimal. 

Theorem 12.10.2: Let {Xi}“_, b e a stationary ergodic stochastic process. 
Let z<x,,x,, . . . ,X,> be the Lempel-Ziv codeword length associated with 
XI, X2, . . . , X,,. Then 

lim sup 
1 
; RX,, X2, . . . , X,) 5 H(g) with probability 1 

n+m 

(12.304) 

where H(E) is the entropy rate of the process. 

Proof: We have shown that &XI, X,, . . . ,X,> = c(n)(log c(n) + 1), 
where c(n) is the number of phrases in the Lempel-Ziv parsing of the 
string XI, X,, . . . ,X,. By Lemma 12.10.1, lim sup c(n)ln = 0, and thus 
Theorem 12.10.1 establishes that 

lim sup 
zcx,,x,, ’ * - ,x,1 

n 
= lim sup 

with probability 1. q (12.305) 
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Thus the length per source symbol of the Lempel-Ziv encoding of an 
ergodic source is asymptotically no greater than the entropy rate of the 
source. The Lempel-Ziv code is a simple example of a universal code, i.e., 
a code that does not depend on the distribution of the source. This code 
can be used without knowledge of the source distribution and yet will 
achieve an asymptotic compression equal to the entropy rate of the 
source. 

The Lempel-Ziv algorithm is now the standard algorithm for com- 
pression of files-it is implemented in the compress program in UNIX 
and in the arc program for PC’s The algorithm typically compresses 
ASCII text files by about a factor of 2. It has also been implemented in 
hardware and is used to effectively double the capacity of communica- 
tion links for text files by compressing the file at one end and decom- 
pressing it at the other end. 

12.11 FISHER INFORMATION AND THE CRAMkR-RAO 
INEQUALITY 

A standard problem in statistical estimation is to determine the param- 
eters of a distribution from a sample of data drawn from that dis- 
tribution. For example, let X, , X2, . . . , X, be drawn i.i.d. - N( 0, 1). 
Suppose we wish to estimate 8 from a sample of size n. There are a 
number of functions of the data that we can use to estimate 8. For 
example, we can use the first sample X1. Although the expected value of 
X1 is 0, it is clear that we can do better by using more of the data. We 
guess that the best estimate -of 8 is the sample mean X, = a C Xi. 
Indeed, it can be shown that X, is the minimum mean squared error 
unbiased estimator. 

We begin with a few definitions. Let {fix; e)}, 8 E 0, denote an 
indexed family of densities, fix; 0) I 0, J fix; 6) dx = 1 for all 8 E 0. Here 
0 is called the parameter set. 

Definition: An estimator for 8 for sample size n is a function 
T:8?“+0. 

An estimator is meant to approximate the value of the parameter. It 
is therefore desirable to have some idea of the goodness of the approxi- 
mation. We will call the difference T - 8 the error of the estimator. The 
error is a random variable. 

Definition: The bias of an estimator T(x, , X,, . . . , X, ) for the parame- 
ter 8 is the expected value of the error of the estimator, i.e., the bias is 
E, T(x,,&, . . . , X,> - 8. The subscript 8 means that the expectation is 
with respect to the density fl. ; 0). The estimator is said to be unbiased if 
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the bias is zero, i.e., the expected value of the estimator is equal to the 
parameter. 

Example 12.11.1: Let X1,X,, . . . ,X, drawn i.i.d. - fly) = (l/A) e-x’A, 
x 2 0 be a sequence of exponentially distributed random variables. 
Estimators of h include X, and X,. Both estimators are unbiased. 

The bias is the expected value of the error, and the fact that it is zero 
does not guarantee that the error is low with high probability. We need 
to look at some loss function of the error; the most commonly chosen loss 
function is the expected square of the error. A good estimator should 
have a low expected squared error and should have an error that 
approaches 0 as the sample size goes to infinity. This motivates the 
following definition: 

Definition: An estimator T(x,, X,, . . . , X, > for 8 is said to be consistent 
in probability if T(X,,X,, . . . , XJ + 8 in probability as n + cc). 

Consistency is a desirable asymptotic property, but we are interested 
in the behavior for small sample sizes as well. We can then rank 
estimators on the basis of their mean squared error. 

Definition: An estimator TJX,, X,, . . . , X, > is said to dominate 
another estimator T2(Xl, X,, . . . , XJ if, for all 0, 

E,(T,(X,, X2, . . .,XJ-e)2~EB(T2(Xl,X2 ,..., XJ-~)~, (12.306) 

This definition raises a natural question: what is the minimum 
variance unbiased estimator of 0? To answer this question, we derive 
the Cramer-Rao lower bound on the mean squared error of any es- 
timator. We first define the score function of the distribution fix; 8). We 
then use the Cauchy-Schwarz inequality to prove the Cramer-Rao lower 
bound on the variance of all unbiased estimators. 

Definition: The score V is a random variable defined by 

V= 
5 f(x; to 

$lnf(x;e)= flxej , 9 
where X- fix; e). 

The mean value of the score is 

Ev= 
I 

5 fke) 

fix. 0) Rx; e)d31G 
9 

(12.307) 

(12.308) 
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= I 5 flx;eMx (12.309) 

(12.310) 

al =- 
ae 

= 0, 

(12.311) 

(12.312) 

and therefore EV2 = var(V). The variance of the score has a special 
significance. 

Definition: The Fisher information J(6) is the variance of the score, 
i.e., 

1 
2 

. (12.313) 

If we consider a sample of n random variables XI, X2, . . . , X, drawn 
i.i.d. - fix; e), we have 

flqr %> ’ ’ - 7 xn; e)= ii f(xi;e), (12.314) 
i-l 

and the score function is the sum of the individual score functions, 

vq, x2, l l l , x , ,  
=$lnflXI,X2,...,xn;e) (12.315) 

n a = i=l s ln f(xi; 0) c (12.316) 

= 2 v(xi>, (12.317) 
i=l 

where the V(Xi) are independent, identically distributed with zero 
mean. Hence the Fisher information is 

[ I 
2 

J,(e) = E, 3 In /7x,, x2, . . . ,x,; 0) (12.318) 

= E,V2(Xl, X2,. . . ,X,) (12.319) 

= Eo( i VWi))’ 
i=l 

= i E,V2(X ) i 
i=l 

= d(e). 

(12.320) 

(12.321) 

(12.322) 
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Consequently, the Fisher information for n i.i.d. samples is n times the 
individual Fisher information. The significance of the Fisher informa- 
tion is shown in the following theorem: 

Theorem: 12.11.1 (Cram&Rao inequality): The mean squared error of 
any unbiased estimator T(X) of the parameter 8 is lower bounded by the 
reciprocal of the Fisher information, i.e., 

1 
var(Tk JO . (12.323) 

Proof: Let V be the score function and 2’ be the estimator. By the 
Cauchy-Schwarz inequality, we have 

(EJW- E,V)(T - E,T)D2 5 E,(V- EJq2E,(T - E,zy2 . 
(12.324) 

By (12.312), E,V= 0 and hence E&V- E,V)(T - E,T) = EJVT). Also, by 
definition, var(V) = J(0). Substituting these conditions in (12.324), we 
have 

[E,(VT)12 5 J(O) var(T) . 

Now, 

Tb)fl~; e) dx (12.326) 

=$E,T 

(12.327) 

(12.328) 

(12.329) 

de =- 
de (12.330) 

= 1. (12.331) 

where the interchange of differentiation and integration in (12.328) can 
be justified using the bounded convergence theorem for appropriately 
well behaved fix; 0) and (12.330) follows from the fact that the estimator 
T is unbiased. Substituting this in (12.325), we obtain 
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1 
var(Tk JCS, , (12.332) 

which is the Cramer-Rao inequality for unbiased estimators. Cl 

By essentially the same arguments, we can show that for any 
estimator 

E,(T- to2 2 [l +J!(;;e)12 + b;(e), 

where br( 6) = E,T - 8 and b# ) is the derivative of b,( 0) with respect to 
6. The proof of this is left as an exercise at the end of the chapter. 

EmzmpZe 12.11.2: Let X1, X2, . . . ,X, be i.i.d. - .N(e, 02), o_” known. 
HereJ@)=$ LetZ’(X,,X2,...,X,)=X,=ACXi.ThenE,(X,-8)2= 
us- 1 
ii -J(B)* Thus Xn is the minimum variance unbiased estimator of 0, 
since it achieves the Cramer-Rao lower bound. 

The Cramer-Rao inequality gives us the lowest possible variance for 
all unbiased estimators. We now use it to define the most efficient 
estimator. 

Definition: An unbiased estimator 2’ is said to be efficient if it meets 
the Cramer-Rao bound with equality, i.e., if var(T) = &. 

The Fisher information is therefore a measure of the amount of 
“information” about 8 that is present in the data. It gives a lower bound 
on the error in estimating 8 from the data. However, it is possible that 
there does not exist an estimator meeting this lower bound. 
We can generalize the concept of Fisher information to the multi- 
parameter case, in which case we define the Fisher information matrix 
J(e) with elements 

J,(e) = 1 f(~; e) -& In f(x; e) -& In f(lx:; e) &. (12.334) 
i j 

The Cramer-Rao inequality becomes the matrix inequality 

x2P(e), (12.335) 

where Z is the covariance matrix of a set of unbiased estimators for the 
parameters 8 and I: I J-‘(S) in the sense that the difference Z - J-l is a 
non-negative definite matrix. We will not go into the details of the proof 
for multiple parameters; the basic ideas are similar. 
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Is there a relationship between the Fisher information J(e) and 
quantities like entropy defined earlier? Note that Fisher information is 
defined with respect to a family of parametric distributions, unlike 
entropy, which is defined for all distributions. But we can parametrize 
any distribution, fix), by a location parameter 0 and define Fisher 
information with respect to the family of densities { f(~ - 8)) under 
translation. We will explore the relationship in greater detail in Section 
16.7, where we show that while entropy is related to the volume of the 
typical set, the Fisher information is related to the surface area of the 
typical set. Further relationships of Fisher information to relative 
entropy are developed in the exercises. 

SUMMARY OF CHAPTER 12 

Basic identities: 

Q”(x) = 2- n(D(P,I)Q)+H(P,)) 
, 

pnl 5 (n + 1)‘“’ , 

1 T(P)1 s 2nH(P) , 

Q”(flp))d4-“~‘p114’. 

Universal data compression: 

where 

Pj”‘12 -nD(P;l(Q) , for all Q , 

Large deviations (Sanov’s theorem): 

Q”(E) = Q”(E n P,,) I (n + 1) WI 2-nD(P*“e), 

WP*IIQ) = p~;WllQ), 

If E is the closure of its interior, then 

Qn(E)&2-nD(p*118). 

5fI bound on relative entropy: 

(12.336) 

(12.337) 

(12.338) 

(12.339) 

(12.340) 

(12.341) 

(12.342) 

(12.343) 

(12.344) 

(12.345) 
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Pythagorean theorem: If E is a convex set of types, distribution Q$E, 
and P* achieves D(P*liQ) = minpEE D(P(lQ), we have 

for all PEE. 

D(PI(Q) 1 D(PI(P*) + D<P*llQ> (12.346) 

Conditional limit theorem: If X,, X2, . . . , X,, i.i.d. - Q, then 

Pr(X, = alPxm E E)* P*(a) in probability , (12.347) 

where P* minimizes D(P(( Q ) over P E E. In particular, 

(12.348) 

Neyman-Pearson lemma: The optimum test betwee% ~~~~,den~ities P, and 
Pz has a decision region of the form “Accept P = P, if ~~Cxl:xz~. . . : ,I, > T.” 

Stein’s lemma: The best achievable error exponent 6 ‘, if (Y, 5 E : 

P’,= min 6,. (12.349) 
A,CIP” 
a,-=t 

limFl.iW i logp’, = - mp, p,, * (12.350) 

Chernoff information: The best achievable exponent for a Bayesian prob- 
ability of error is 

D* = D(P,.(IP,) = D(P,eIjP,), (12.351) 

where 

with h = A* chosen so that 

D(P,(lP,)= D(P,IIP,), (12.353) 

Lempel-Ziv: Universal data compression. For a stationary ergodic source, 

lim sup 
z<x,,x,, . . . ,x,> 

= lim sup c(n) log c(n) 
n n 

5 H(%‘) . (12.354) 

Fisher information: 

(12.355) 

Cram&-Rao inequality: For any unbiased estimator 2’ of 0, 

E,(T(X) - 0)” = var(T) L --& . (12.356) 
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PROBLEMS FOR CHAPTER 12 

1. Stein’s lemma. Consider the two hypothesis test 

H,:f=f, vs. Hz:f=fi 

Find D(f,IIf,) if 
(a) fi(x) = MO, a:), i = 1,2 
(b) fi(x) = hieeAiX, x: 2 0, i = 1,2 
Cc) f,(x) is the uniform density over the interval [0, 11 and f&r) is the 

uniform density over [a, a + 11. Assume 0 < a < 1. 
(d) fi corresponds to a fair coin and fi corresponds to a two-headed 

coin. 

2. A relation between D(PII Q) and c&square. Show that the x2 statistic 

X2=X 
VW - QW2 

x Q(x) 

is (twice) the first term in the Taylor series expansion of D(P 11 Q ) 
about Q. Thus D(P(IQ) = $x2 +. . s . 

Hint: Write $ = 1 + v and expand the log. 

3. Error exponent for universal codes. A universal source code of rate R 
achieves a probability of error Pr’ + e-nD(P*“Q ‘, where Q is the true 
distribution and P* achieves min D(PIJ Q) over all P such that H(P) I 
R. 
(a) Find P* in terms of Q and R. 
(b) Now let X be b’ mary. Find the region of source probabilities 

Q(x), x E (0, l}, f or which rate R is sufficient for the universal 
source code to achieve Pr’+ 0. 

4. Sequential projection. We wish to show that projecting Q onto P, and 
then projecting the projection Q onto P, f~ P2 is the same as projecting 
Q directly onto P, n P,. Let 9, be the set of probability mass 
functions on 8? satisfying 

2 p(x) = 1 , (12.357) 
x 

Z p(x)h,(x) 2 q, i = 1,2, . . . , r . (12.358) 
x 

Let P2 be the set of probability mass functions on Z?Y satisfying 

Ix p(x) = 1 , (12.359) 

~pWg,(x)~pi, j=lJ,...,s. 
x 

(12.360) 

Suppose QgP, UP,. Let P* minimize D(PllQ) over all PE 8,. Let 
R* minimize D(R 11 Q) over all R E PI n P2. Argue that R* minimizes 
D(RI(P*) over all REP, CI P2. 
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5. Counting. Let 2f = {1,2, . . . , m}. Show that the number of sequences 
xn E $Y satisfying A Cy= 1 g(zi ) 1 LY is approximately equal to 2nH*, to 
first order in the exponent, for n sufficiently large, where 

H*= max HP). 
P:CYz”,, P(i )gCi &=a 

(12.361) 

6. Biased estimates may be better. Consider the problem of estimating p 
and g2 from n samples of data drawn i.i.d. from a .N( p, (r2) dis- 
tribution. 
(a) Show that X is an unbiased estimator of p. 
(b) Show that the estimator 

S:=~ ~ (xi-X,>2 
rl 

is biased and the estimator 

(12.362) 

is unbiased. 
(c) Show that 8: h as a lower mean squared error than Sz- 1. This 

illustrates the idea that a biased estimator may be “better” than 
an unbiased estimator. 

7. Fisher information and relative entropy. Show for a parametric family 
{p,(x)} that 

1 
e,+e (0 +),)2 weIlPe~)= lim ---- &J(e). (12.364) 

8. Examples of Fisher information. The Fisher information J(f?> for the 
family f,(z), 8 E R is defined by 

af,(x)iae 2 
J(e) =E,( f,(x) 1 I 

(f; I2 
= f, . 

Find the Fisher informatio? for the following families: 
(a) f,(x) = N(0, e) = -&CT+ 
(b) f,(=c> = K”“, x I 0 
(c) What is th e C ram&-Rae lower bound on E,($X) - e)“, where &X> 

is an unbiased estimator of 8 for (a) and (b)? 

9. Two conditionally independent looks double the Fisher information. Let 
g,b,, x2) = f,(=c,)fe(~,). show J,(e) = w,(e). 

10. Joint distributions and product distributions. Consider a joint distribu- 
tion Q(x, y) with marginals Q(x) and Q(y). Let E be the set of types 
that look jointly typical with respect to Q, i.e., 
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jp{p(qy): - ~P(%,y)logQ(x)-HCX)=O* 
x. Y 

- x p(x, y) log Q(y) - WY) = 0, x, Y 

- 2 Rx,, y) log Q<x, y) - H(X, Y) = O> . (12.365) 
x. Y 

(a) Let Q,(x, y) be another distribution on E x 9. Argue that the 
distribution P* in E that is closest to Q. is of the form 

f’*b, Y) = Q&, yk Ao+Al 101~ Q(x)+A2 log Q(y)++ log Q(x, y) 
, 

(12.366) 

where A,, A,, A, and A, are chosen to satisfy the constraints. 
Argue that this distribution is unique. 

(b) Now let Q,(x, y) = Q(x)&(y). Veri@ that Q(x, y) is of the form 
(12.366) and satisfies the constraints. Thus P*(x, y) = Q(x, y), i.e., 
the distribution in E closest to the product distribution is the joint 
distribution. 

11. Cnme’r-Rae inequality with a bias term. Let X-fix; 0) and let Z’(X) be 
an estimator for 8. Let b,(e) = E,T - 8 be the bias of the estimator. 
Show that 

E,(T - 812 2 ” +~j~‘12 + b;(e). (12.367) 

12. Lempel-Ziv. Give the Lempel-Ziv parsing and encoding of 000000110- 
10100000110101. 

HISTORICAL NOTES 

The method of types evolved from notions of weak typicality and strong 
typicality; some of the ideas were used by Wolfowitz [277] to prove channel 
capacity theorems. The method was fully developed by CsiszAr and Kiimer [83], 
who derived the main theorems of information theory from this viewpoint. The 
method of types described in Section 12.1 follows the development in Csiszir and 
Kiimer. The 2, lower bound on relative entropy is due to Csiszir [78], Kullback 
[151] and Kemperman [227]. Sanov’s theorem [175] was generalized by Csisz6r 
[289] using the method of types. 

The parsing algorithm for Lempel-Ziv encoding was introduced by Lempel 
and Ziv [175] and was proved to achieve the entropy rate by Ziv [289]. The 
algorithm described in the text was first described in Ziv and Lempel [289]. A 
more transparent proof was provided by Wyner and Ziv [285], which we have 
used to prove the results in Section 12.10. A number of different variations of the 
basic Lempel-Ziv algorithm are described in the book by Bell, Cleary and Witten 
Ia. 


