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Abstract

This paper describes a multiresolution method for implicit curves and surfaces. The method is based on wavelets,
and is able to simplify the topology. The implicit curves and surfaces are defined as the zero-valued piece-wise
algebraic isosurface of a tensor-product uniform cubic B-spline. A wavelet multiresolution method that deals with
uniform cubic B-splines on bounded domains is proposed. In order to handle arbitrary domains the proposed
algorithm dynamically adds appropriate control points and deletes them in the synthesis phase.
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sion algorithms.

1. Introduction

In this paper a planar curve and surface multiresolution
method that simplifies the topology is presented. We will
work with algebraic curves and surfaces defined as the zero-
valued algebraic isosurface of a tensor-product uniform cu-
bic B-spline. Thus, the cubic B-spline has one dimension
more than the dimension of objects to be represented (bi-
variate B-splines for curves and trivariate B-splines for sur-
faces). The B-spline approximation will produce the simpli-
fication of the objects and the change of their topology in a
simple way.

A preprocess is required to convert the initial object model
in a way that B-spline algebraic curve/surfaces can be used.
After a voxelization of the initial object (a polyhedral BRep,
a surface model, etc.), the conversion method from voxel
and octree representations to B-spline algebraic surfaces de-
scribed in Vinacua et al.1 can be used to obtain the initial
data for the wavelet decomposition.

There are a lot of efforts around the solid multiresolution
or simplification, due to the interest of interacting with sim-
plified versions for complex models. However, because of
the complexity of the topological relations inside the classi-
cal models used in CAD (triangular meshes, BReps, CSGs)
it is actually difficult to make changes directly in their topol-
ogy.

Many algorithms simplify triangular meshes doing edge
collapses, for example Hoppe et al.2 and Hoppe3 . Some also
make topological changes joining the nearest vertices of dif-
ferent triangles: Rossignac et al.4, Ronfard et al.5, Popovic
et al.6, Garland et al.7. Although they do topological sim-
plification, they produce non-regular surfaces (isolate edges
and vertices appear) or non-manifold objects (not every sur-
face point has a neighbourhood topologically equivalent to a
disk).

The algorithms that get topological changes keeping the
solid correctness are based on space decomposition models,
usually voxels and octrees. It is the case of He et al.8 with
voxels and Andújar et al.9 with octrees. Nevertheless, they
have several drawbacks: they must do two conversion steps
to and from the space decomposition model, the second one
is very hard if we want to compress the large number of gen-
erated faces and it is complicated to save information needed
for the reconstruction of the initial object.

In our multiresolution algorithm we use a very powerful
tool: the wavelets. The wavelet methods allow doing a fast
decomposition that minimizes the error data (the detail lost
in the decomposition) and, later, we can reconstruct the orig-
inal solid. Furthermore, the decomposed solid plus the error
data use the same storage space as the original solid.

Other curve and surface multiresolution methods based on
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wavelets exist, but they do not use algebraic curves/surfaces
and they cannot simplify the topology either. Reissell10 im-
plements a parametric curves/surfaces multiresolution with a
type of wavelets called coiflets. The method works over the
co-ordinates of the surface points and the approximations
are only linear interpolations of the scaling coefficients. Fre-
quently, the wavelets multiresolution methods have been ap-
plied over B-spline surfaces (see Section 3). Using the ideas
of Lyche et al.11, Kazinnik et al.12 presents a multiresolu-
tion over a parametric surface defined as a tensor-product
of non-uniform B-splines. Finkelstein et al.13 does the same
over tensor-products of end-interpolating uniform cubic B-
splines. In Lounsbery et al.14 the wavelets are applied over
recursive subdivision surfaces with any topology, although
they cannot simplify this topology.

In Vinacua et al.1, a conversion method from a voxel or
octree representation to an algebraic surface defined as the
zero-valued algebraic isosurface of a tensor-product uniform
cubic B-spline is described. The multiresolution is based on
an octree level selection and a subsequent conversion to the
algebraic surface. However, this conversion has an impor-
tant cost. The goal of our implementation is a quick mul-
tiresolution thanks to directly handling the B-spline control
points that define the algebraic surface. Furthermore, our al-
gorithm produces better approximations due to the use of
wavelet methods.

In the next section we present the formal definition of the
algebraic curves and surfaces used in the application. In Sec-
tion 3 we discuss how to fit the wavelet multiresolution to
decompose/reconstruct models of arbitrary size voxel spaces
(i.e. not necessary powers of 2). Section 4 exposes the par-
ticularities of our algorithm: how to set the unknown control
points in the decomposition and how we can do the recon-
struction process. Also, it describes a convenient data struc-
ture for the model. Section 5 includes several examples in
2D and 3D domains. Finally, we point out some conclusions
and possible improvements of our work.

2. B-Spline-Based Algebraic Surface Models

Let be the voxel model of an object surface. We do not need
all the data contained in the voxel model, it is enough to store
the set of voxels (nodes) stabbed by the object surface. This
set of nodes is called Node-Collection.

The Node-Collection can be obtained easily from voxel
and octree representations. The Node-Collection can also
be calculated from polyhedral BReps and surface models
through a voxelization or 3D scan conversion algorithm15.

Using the Node-Collection to represent the surface offers
us flexibility. Any surface stabbing all nodes in the Node-
Collection is an acceptable representation of the initial ob-
ject. This allow us to get smoother surfaces. As always, this
discretization comes at the price of ignoring detail below

its node’s resolution. Therefore, the resolution of the Node-
Collection must be chosen according to the size of the fea-
tures that we are interested in.

In our case, a functional B-spline has been chosen to de-
fine the surface stabbing the Node-Collection. The surface
is the zero-valued algebraic isosurface of the functional B-
spline.

To model a planar curve, for example, we consider a 3D
B-spline function defined on the rectangular grid (now the
nodes are 2D). The intersection of its graph with the zero-
valued plane defines the curve (see Figure 1). The Node-
Collection is the set of the 2D nodes on the rectangular grid
stabbed by the curve (see Figure 2). To model a surface, we
define a B-spline function on the 3D regular grid such that
the intersection of its graph with the zero-valued hyperplane
(w � 0) produces the surface.

C

Figure 1: The intersection of the 3D B-spline function with
the zero-valued plane defines the object boundary curve

Figure 2: The Node-Collection is the set of shaded nodes

Let us now define G as the set of spatial indices of the
nodes of the Node-Collection

G � ���
i � j ��� Ni j � �

Node � Collection 	
	 (1)

where Ni j represents a unit cube with the vertices
�
i � δ1 � j �

δ2 � , with δ1 � δ2 being either 0 or 1. Observe that the cardinal-
ity of G grows in the same manner as the size of the object
does (quadratically if we are modeling a surface).

On the other hand, let us define I as the set of spatial in-
dices of the nodes in the immediate vicinity of the Node-
Collection:
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I � ���
i � j � with

�
i � δ1 � j � δ2 � � G � δ1 � δ2 � � � 1 � 0 �
� 1 �
� 2 	
	

(2)

The cardinality of I is of the order of 4 times the cardinal-
ity of G. A similar expression is easily obtained in a 3D case.
Let us now consider the uniform, tensor-product B-spline
function F defined on the regular grid. F is an integral, func-
tional spline and we are only interested in evaluating it on
the Node-Collection, to find its zero-isosurface.

F
�
x � y � � ∑�

i � j ��� I

wi j Ni
�
x � N j

�
y � � 0 (3)

F is a valid representation if its zero-isosurface stabs all
nodes in the Node-Collection. Let us consider that F � 0
inside the object and F � 0 outside the object (only in nodes
belonging to the Node-Collection). Since F is defined on a
regular grid (induced by the voxels), we choose to represent
it as a tensor-product uniform cubic B-spline.

Our multiresolution algorithm consists of two main steps:

1. The B-spline algebraic surface is obtained. The B-spline
functional F must be calculated from an initial Node-
Collection. This is an iterative algorithm that tries to min-
imize the curvature of the final B-spline algebraic sur-
face. Our implementation is based on Vinacua et al.1. We
initially assign weights of � 1 to the vertices in the set
I (Equation 2) that lie outside the object and � 1 to the
interior vertices in that set. We then filter these weights
using a discrete Laplacian instead of the more elaborated
method described in1.

2. A surface multiresolution is calculated applying a
wavelet multiresolution method to the B-spline func-
tional F. The object surface approximations are the zero-
isosurfaces of the wavelet approximations of F .

This paper focuses on this last point. Before presenting
a detailed discussion in Section 4 we include for complete-
ness and notational convenience an introduction to wavelets-
based B-spline multiresolution in the next section.

3. Wavelet Multiresolution

Wavelets are a mathematical tool with a wide variety of
applications in several fields. A lot of B-spline wavelet
methods exist. In Finkelstein et al.13 a method for end-
interpolating uniform cubic B-splines has been presented.
Chui16 contains a study of the uniform B-spline wavelets on
unbounded domains. In Lyche et al.11 and, later, in Kazin-
nik et al.12 the use of wavelets with non-uniform B-splines
is described.

In our case, due to the kind of algebraic surface to de-
compose, we will use uniform cubic B-splines on bounded
domains (their knot sequence is uniformly spaced, with all

knots of multiplicity 1 and the domain is finite). We de-
velop a wavelet multiresolution method, similar to the end-
interpolating B-splines in Finkelstein et al.13, implemented
with pre-calculated band matrices. This will allow us to per-
form the analysis and synthesis processes of a row of coeffi-
cients with linear cost. Our method produces similar results
as Chui16 does, but using wavelets defined on bounded do-
mains. In Chui16 the same filter is applied to all coefficients
in the analysis/synthesis process (a moving average algo-
rithm). The disadvantage of the wavelets in Chui16 is that
the analysis filters are infinite and must be truncated (caus-
ing precision errors).

Before describing our algorithm, we briefly review the
main ideas behind wavelet multiresolution and define the no-
tation used. For a more complete description and implemen-
tation details see, for example, Finkelstein et al.13 and Esteve
et al.17. It is important to remark that, in this paper, the vector
and matrix indices represent the number of intervals where
the B-spline function is defined instead of a level counter in
the multiresolution process.

A B-spline on a bounded domain with 2n � 1 intervals can

be represented as a column vector of control points C2n � 1

(made up of 2n � 1 � degree control points). The goal is to
approximate the B-spline with another B-spline function of
half resolution (its domain will have half number of inter-
vals). This function can be represented as a column vector
of fewer control points C2n

. Classical wavelets use a matrix
A2n

to compute

C2n � A2n

C2n � 1

(4)

and an accompanying matrix B2n
to capture detail

D2n � B2n

C2n � 1

(5)

These two matrices (called analysis filters) have indepen-
dent columns, and the process can be inverted using the syn-
thesis filters P2n

and Q2n
:

C2n � 1 � P2n

C2n � Q2n

D2n

(6)

without loss of information. Furthermore, the space required

to store C2n
and D2n

is the same as that required for C2n � 1
.

This process can be iterated yielding a multiresolution
scheme (with each level using half as much detail), which
can be stored using the same space as one approximation C1

and a sequence of detail vectors D1 � D2 � D4 ��������� D2n
.

We shall need to apply this level of analysis in contexts
where the number of intervals of the B-splines involved is
arbitrary, not a power of two, and we will thus introduce
modifications to this scheme in the following section.

Before dealing with that aspect of our problem, we need to
borrow one more ingredient of classical wavelets. The syn-
thesis matrices P2n

and Q2n
for our bounded-domain uni-

form B-splines are banded and, therefore, yield to economic
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numerical handling. However, their “inverses” A2n
and B2n

are full, which means that the analysis phase using (4) and
(5) has a quadratic cost (in the number of control points).
Quak et al.18 shows how to improve on this. Noting by Φ2n

the vector of B-spline basis functions (the scaling functions)
and by Ψ2n

the vector of basis functions of the orthogonal
of the resolution 2n B-splines in the space of resolution 2n � 1

B-splines (the wavelet functions) one can form the matrices
I2n

and J2n
of inner products of these, which satisfy18 � 17

I2n

C2n ���P2n � T I2n � 1

C2n � 1

(7)

J2n

D2n ���Q2n � T I2n � 1

C2n � 1

(8)

and are banded. Thus, the analysis amounts to computing
the right-hand sides of these and solving two banded linear
systems, which gives a linear cost19. Our technical report17

discusses this in more detail and also include the compu-
tation of the synthesis matrices P2n

and Q2n
and the inner

product matrices I2n
and J2n

for the uniform cubic B-splines
defined on a bounded domain.

Next, we move on to discuss our adaptation of these algo-
rithms to our problem, extending in Section 4.1 their appli-
cability to an arbitrary even number of intervals.

4. The Proposed Wavelet Algorithm

We have adapted the wavelet multiresolution to our applica-
tion, since the B-spline function is not defined on the whole
domain, but only on the nodes of the 3D grid that belong to
the “Node-Collection”. The main contributions of the pro-
posed wavelet algorithm are next summarized:

1. The family of analysis and synthesis matrices has been
extended. This is necessary, as the B-spline functions
must be defined on a domain more general than domains
having 2n intervals. We restrict the B-splines to have an
even number of intervals. This generalizes the usual anal-
ysis/synthesis process.

2. At each iteration, only B-spline control points in the
vicinity of the zero-isosurface are stored.

3. We must set some unknown control points (control points
whose indices do not belong to the set I) before decom-
posing the B-spline. The reasons are:
� We need that the B-splines have an even number of

intervals to decompose them, as indicated above.� Intervals which are close together can be joined in the
decomposition. In this case, we must set the control
points in between.� The decomposed B-spline plus the produced detail
should use the least space possible (ideally the same
as the original B-spline).

4. In the reconstruction we must recover the control points
whose indices belonged to the set I using the information

obtained in the analysis process and keeping a linear time
cost. We will also reject the control points that we have
set in the decomposition process.

Figure 3 shows the changes in the Node-Collection dur-
ing the analysis process. The area that is occupied by the
Node-Collection grows. We must take into account the un-
known control points around these new areas of the Node-
Collection.

(a) Level 2n (b) Level n

Figure 3: Changes in the Node-Collection

4.1. Wavelet Multiresolution on Domains of Even
Length

The single condition we will impose on the multiresolution
is that the B-spline must have an even number of intervals
where it is defined (the number of control points must be odd
since we are using cubic B-splines). In the decomposition
process, the number of intervals will be divided by 2.

Thus, the decomposition of a B-spline defined on 2n in-
tervals C2n in one defined on n intervals Cn and its detail Dn

and the inverse reconstruction can be written (analogously
to Equations (4), (5) and (6)) as

Cn � AnC2n (9)

Dn � BnC2n (10)

C2n � PnCn � QnDn (11)

In the iterative application of the analysis process we can
obtain a B-spline with an odd number of intervals. Then, we
must set additional control points at each end of the B-spline
to return to an even interval B-spline and, in this way, con-
tinue the decomposition. Subsection 4.2 discusses how to set
these additional control points. Therefore, we need to add an
assignment process between the decomposition steps. Also,
during the reconstruction phase, we must reject the control
points thus introduced at each level:
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Analysis

C2n Cn
C2m Cm �����

Dn Dm �����

 An

! ! ! !#"
Bn

 set  Am

! ! !#"
Bm

Synthesis

C2n Cn
C2m Cm �����

Dn Dm �����

$ Pn $ re ject $ Pm

!!!! %
Qn !!! %

Qm

The synthesis matrices Pn and Qn and the inner product
matrices In and Jn for the uniform cubic B-splines defined
on a domain with an arbitrary even number of intervals are
listed in Esteve et al.17.

4.2. Analysis Process and the Assignment of Extra
Control Points

As previously discussed, before applying the analysis pro-
cess we must set the value of some unknown control points.
Hence, we must decide which control points must be as-
signed and which will be their value. We have studied several
alternatives about how to set these control points.

In the following examples we detail and explain the de-
composition of the 10th row (we work on unidimensional
examples that represent the decomposition/reconstruction in
one specific direction of the tensor product).
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13
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15

16

X

X

X X X
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X X X X X X

Figure 4: Horizontal Decomposition

First (see Figure 5), the B-spline functional Cinitial is de-
fined on the intervals [2, 3] and [19, 22]. We have to set
control points with odd indices (in positions 5 and 17) to get

0 1 2 3 4 5 6 7 8 9 10 13 14 15 16 17 18 20 21 2211 12 19

C

D

C

C

X X XX X X X X

X X X XX X X X

X X X X X X X

X X

X X

X X
n

initial

2n

n
X X X

X X

Figure 5: 10th row decomposition

the B-spline C2n defined on two domains with even indices
([2, 4] and [18, 22]). Then we can apply the decomposition
process described in the previous section to obtain Cn and
Dn.

However, there is a problem: when working with a tensor
product of the basis functions (on a 2 or 3D grid), after sev-
eral steps of decomposition artifacts do appear (empty space
inside the solid and/or solid inside the empty space). The rea-
son is that the basis functions of the uniform cubic B-splines
on a bounded domain are similar except at the endpoints,
which are truncated. To minimize the error produced, the
wavelet decomposition plays with the endpoint basis func-
tions, that have less energy than the others, giving them high
weights and sign changed with respect to the neighbours ba-
sis functions. The control points at each end in one direction
can become interior control points when we change the di-
rection of the decomposition process. In short, the value of
the control points are weights of basis functions with differ-
ent energy depending on the direction we are decomposing.

To overcome this problem, the B-spline function has been
extended at each end before applying the decomposition pro-
cess. In this way, the truncated basis functions have no influ-
ence in the region of interest. Setting 3 additional control
points at each side is enough because the uniform cubic B-
splines on bounded domains have 3 truncated basis functions
at each end. Our implementation, however, sets 4 additional
control points at each side which yields simpler algorithms.

For example, Figure 6 shows a piece of the 10th row de-
composition. First, as we described before, the control points
with odd indices are assigned (the control point in position 5)
to get C2n. Then, 4 additional control points at both sides are
assigned (Cset). We shall call these accessory control points.
And finally C2n � Cset is decomposed in Cn � 4 and Dn � 4.

Obviously, this proposal produces 8 additional control
points in Cn � 4 plus Dn � 4 than those in C2n. To overcome
this drawback, first observe that only the control points of
Cn � 4 and Dn � 4 needed to reconstruct the initial B-spline C2n

must be stored. Since Pn is a band matrix such that its mid-
dle rows have 2 or 3 non-zero coefficients, all the C2n control
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0 1 2 3 4 5 6 7 8 9 10 11 12

X X X X

X X X X X

X XOOOO X X O O O O

XXXX

XXX X X

X

C
initial

C
2n

C

C

2n
+C

set

n+4

Dn+4

X XXX

Figure 6: Piece of 10th row decomposition. 4 additional
control points at both sides are assigned to C2n

points (in positions 1, 2, 3, 4 and 5) are calculated from the
Cn control points in positions 0, 2, 4 and 6 (for example —
the position is indicated by subindices— C2n

1 is recovered
form Cn

0 and Cn
2 , C2n

2 is recovered form Cn
0 , Cn

2 and Cn
4 , etc).

Therefore we can reject 2 control points at both sides of each
interval of Cn � 4. We cannot do the same with Dn � 4 because
Qn has the middle rows wider than Pn (Qn has 5 or 6 non-
zero coefficients in the middle rows).

In this way, each interval decomposition produces 4 ad-
ditional control points in Cn plus Dn � 4 than those in C2n.
Next observe that if in the reconstruction process we know
the values assigned to the accessory control points of C2n

during the decomposition process we may do without these
extra 4 control points. In the present work we set the acces-
sory control points of C2n in the following way: they can
be � K or � K (K is a model constant whose value is in the
same order of magnitude as the control points) and, further,
all correlative control points have the same sign and they co-
incide in sign with the functional B-spline at the endpoints
of the domain where it is defined. This is consistent with the
semantics of our model: negative values correspond to the
interior whereas positive values correspond to the exterior.
In this way, we don’t need keep so many control points of
Dn � 4 in the decomposition, because we take advantage of
knowing several fragments of C2n. The computational pro-
cedure to take advantage of this information is discussed in
Section 4.3. As can be seen in Figure 7, we achieve that the
number of control points stored in Cn plus Dn is the same as
the initial number in C2n.

We have tested other ways to set the accessory control
points. For example, setting the accessory control points as
the average value of the closest known control point at the
left side and the closest known control point at the right side.
Or setting the accessory control points as the average value

0 1 2 3 4 5 6 7 8 9 10 13 14 15 16 17 18 20 21 2211 12 19

D

C

C

C

X X X

X XOOOO X X O O O O O O O O

O O XOOXXXXOO

2n

2n

+C

+D

+C

rej

rej

set

XOO O O O O X X O O

X X X X O O

X X X X X X O O O O

X X X X X X

n

n

X

X X

X X

Figure 7: 10th row decomposition. 4 additional control
points at both sides are assigned to C2n and, later, 2 con-
trol points at both sides are rejected from Cn and Dn

of the functional B-spline evaluated at the ends of the Node-
Collection at the left side and right side. We have also tested
the assignment of accessory control points that minimizes
the error data in the wavelet decomposition. None of them
can take advantage of knowing several fragments of C2n to
reduce the number of control points stored in the decom-
position. And none of them has produced so good results
as the assignment of � K or � K we have previously de-
scribed. This assignment produces B-spline functions with
strong slopes around their zeroes in the nodes of the Node-
Collection, leading to better approximations.

Note that, in the analysis process, if two intervals of
known control points of C2n are very close, they can be con-
verted into one interval in Cn. This happens when the dis-
tance of the nearest endpoint control points of two intervals
(situated on odd positions) is lower or equal than 4 (see Fig-
ure 8). In these cases we cannot use the economies discussed
above, and our scheme will need a few more control points to
represent the multiresolution (see Section 5 for figures mea-
suring the impact of this in several examples).

1 2 3 4 5 6 7 8 9 10 13 14 15 16 17 18 20 2111 12 19 220

C
2n

2n
C

C
n
+C

D

X X XX X X X X X X X X X X

OXXXXXOOOO X X X X X X X X X X X

OO X X X X X X X X X

+C
set

rej

+D
n rej

O O X X X X X X X X

X X X X

O O O X X X X X O O O O

X X X X OO

X X X O O

X

XX X

Figure 8: 4th row decomposition. Joining of 3 close inter-
vals

4.3. Synthesis Process and the Recovery of Control
Points

Let us see how to do the reconstruction C2n � Pn Cn � Qn Dn

under these conditions. We start by knowing the previous
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accessory control points of C2n (with value � K or � K) and
those stored in Cn and Dn. From the reconstruction point
of view the known control points of C2n, Cn and Dn of the
example in Figure 7 are marked in Figure 9.

1 2 3 4 5 6 7 8 9 10 13 14 15 16 17 18 20 21 2211 12 190

D

C

C
set

n

n

O O O O O O O O O O O O

X X X X

X

O O O O

X X X X

X X

X

Figure 9: 10th row reconstruction. Known control points of
C2n, Cn and Dn

Splitting each column vector C in two vectors with the
known Ck and unknown Cu control points (C, Ck and Cu have
the same dimension. Ck is filled with zeroes in the entries
where there are unknown control points. Cu is filled with
zeroes in the entries where there are known control points.)
and applying the synthesis filter:

C2n � C2n
k � C2n

u (12)

Cn � Cn
k � Cn

u (13)

Dn � Dn
k � Dn

u (14)

I
�
C2n

k � C2n
u � � Pn � Cn

k � Cn
u ��� Qn � Dn

k � Dn
u � (15)

IC2n
k � PnCn

k � QnDn
k
� PnCn

u � QnDn
u � IC2n

u (16)

The left-hand side in the last equation can be evaluated: it
is the independent term V of the linear equation system. The
right-hand side can be expressed with a single matrix and a
single vector of unknown control points if we eliminate the
matrix columns that are multiplied by zero (the vectors and
matrices simplified are marked with ’)

V ���P & n 'Q & n ' � I & � �C & nu
'D & nu 'C & 2n

u
� T (17)

Reordering the columns of matrix � P & n 'Q & n ' � I & � , we
transform it into a band matrix. So, we have a banded lin-
ear system that can be solved in linear time doing an LU
decomposition19 .

In the reconstruction process we must reject the acces-
sory control points of C2n that have been assigned. So, we
must store additional information about which control points
are assigned during the analysis process (in the present im-
plementation we store the intervals where there are defined
control points, see next section).

4.4. Data Structure

Because our model only works with the control points with
spatial indices contained in I, a set usually much smaller
than the possible control points that can be defined inside
the domain’s grid, we think it is suitable to store the control
points in a hash table. We also keep some additional data
about the intervals where the control points are defined in
one direction (a vector of interval lists in 2D and a matrix of
interval lists in 3D). The hashing table enables the storage
of the known control points in a compact way (the storage
space is proportional to the known control points, not to the
domains’s grid) and to consult them in an almost constant
time. The interval information about where the defined con-
trol points are, avoids searching for unknown control points
in the hashing table. Thus, it will be feasible to do fast com-
putations in the direction of the interval data in the analysis
and synthesis process. Furthermore, this information will be
very useful in the reconstruction process since it will allow
us, in one multiresolution level, to distinguish between the
known and the accessory control points.

Due to the alternation of the direction of the evaluations in
both the analysis and the synthesis processes we must calcu-
late the interval information in one direction from the same
information in other direction. This costs O

�
n � in 2D and

O
�
n2 � in 3D (it needs to visit only once each element in the

interval vector/matrix: we assume the same n dimension in
all directions of the data domain). This cost has the same
order of magnitude as each decomposition and reconstruc-
tion step if we consider that the control points in the Node-
Collection are sparse in relation to the domain’s grid and,
therefore, the analysis and synthesis process of each row of
few control points has a constant cost. This is only true at
high resolution. It is there, however, that the question of cost
if meaningful.

5. Examples and Discussion

We have tested the proposed algorithm over several curves
and surfaces. Figures 10 through 13 show examples of
curves, whereas Figures 14 and 15 show two 3D solids.
Figure 10 shows a multiresolution of the African continent,
Figure 11 of a camera, Figure 12 of a skeleton and Figure
13 of a tiger. The images correspond to the resolution lev-
els after doing the decomposition process in the two direc-
tions. Therefore, there is an intermediate resolution between
two consecutive images. The initial curve is obtained from
a bitmap image. We have developed a simple algorithm for
that conversion. Table 1 lists the dimensions of the domain,
the number of control points stored (spatial indices of I) and
the number of defined nodes (same order of magnitude as the
Node-Collection G) for each resolution level. The number of
coefficients in the wavelet transform of Africa (Africa in the
lowest resolution level plus all the detail data produced in
the decomposition process) is 27116, 22.4% more than the
original curve. The wavelet transform of tiger has 152062
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coefficients, 8.3% more than the original curve (140397 co-
efficients). This increase is due to set the accessory control
points in the decomposition process.

Figure 10: Africa multiresolution

Figure 11: Camera multiresolution

Figure 14 shows a multiresolution of a medical model

Figure 12: Skeleton multiresolution

(an image of the voxelization of a skull from a computer-
ized tomography). Finally, Figure 15 shows a multiresolu-
tion of a mechanical part’s boundary. The initial surface is
obtained from an octree and using the conversion algorithm
presented in Vinacua et al.1. The images correspond to the
resolution levels after doing the decomposition process in
the three directions. Therefore, there are two intermediate
resolutions between two consecutive images. Tables 2 and 3
list the same parameters as the previous table, but here for
the surface models. The wavelet transform of the skull has
178067 coefficients, 14.4% more than the original surface.
The wavelet transform of the mechanical part has 50473 co-
efficients, 17.2% more than the original.

Because of the small thickness of the skull, the surface
topology becomes more complicated (holes and solid frag-
mentation) in the intermediate resolutions.

Figure 16 shows the same mechanical surface as Figure
15, but now the simplification is achieved pruning one or
more levels of the octree structure and using the conversion
algorithm of Vinacua et al.1. From the images we realize
that our wavelet multiresolution produces results closer to
the initial object than pruning the octree, surely because of
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Figure 13: Tiger multiresolution

Figure 14: Skull multiresolution

the error minimization property of wavelet analysis and the
good approximation properties of B-splines.

Note that in the first simplification steps we get objects
very similar to the originals along with an important data re-
duction (if the detail data is thrown out). In fact, we could
use the wavelet method as a compression algorithm if we
only preserve the most simplified solid along with the sig-
nificant detail coefficients. Due to the linear time cost in 2D
and the quadratic cost in 3D, the multiresolution is calcu-
lated quickly. For example, the run-times of each decompo-

Table 1: Curve multiresolution: Africa

Resolution Domain #defined #defined
level dimension coeff.

�
I � nodes ( � �

G �
1 367x343 22159 12380
1a 173x367 14077 7349

2 185x173 8624 4362
2a 88x185 5599 2816

3 94x88 3453 1785
3a 46x94 2225 1174

4 49x46 1345 780
4a 25x49 853 544

5 26x25 488 320
5a 14x26 293 182

6 15x14 175 97
6a 9x15 121 58

7 9x9 76 31
7a 6x9 52 16

8 6x6 35 8
8a 5x6 30 6

9 5x5 25 4
9a 4x5 20 2

10 4x4 16 1

sition step for the mechanical part are 6.067, 1.571, 0.465,
0.111, 0.037, 0.019, 0.012 seconds respectively. Each de-
composition step consists in doing three decomposition sub-
steps and changing the direction X, Y, Z of decomposition.
These times have been obtained on a personal computer with
a 350Mhz AMD-K6-2 CPU and 64 Mb of main memory.

6. Conclusions and Future Work

We have presented a multiresolution method to simplify the
geometry and also the topology of curves and surfaces. The
proposed scheme uses wavelet decomposition and obtains a
set of multiresolution algebraic surface models.

By raising the problem’s dimension and viewing the ob-
ject as a level curve/surface of a function in one more di-
mension, we allow topological changes in the object when
we analyse this function. The proposed algorithm calculates
the simplification and reconstruction directly over the known
control points of the function using wavelet multiresolu-
tion methods. This allows obtaining an object decomposition
(the lowest resolution version plus several detail at different
levels) that needs almost the same space as the initial ob-
ject. Further, the detailed data (error) of the B-spline func-
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Figure 15: Mechanical part multiresolution

Figure 16: Mechanical part multiresolution pruning the oc-
tree levels

tion that defines the algebraic curve/surface is minimized
according to the inner function product � f

�
u ��� g

�
u �)� �*

f
�
u � g

�
u � du.

It is not easy to describe how minimizing the B-spline
error affects the B-spline zeroes that define the algebraic
curve/surface. For example, we can get better approxima-
tions using B-spline functions with strong slopes around
their zeroes, at least in the first simplification steps.

Table 2: Surface multiresolution: Skull

Resolution Domain #defined #defined
level dimension coeff.

�
I � nodes ( � �

G �
1 97x97x70 155659 76649
1a 97x37x97 95641 45979
1b 37x50x97 56031 25582

2 50x50x37 32547 14022
2a 50x20x50 20214 8567
2b 20x27x50 12234 4949

3 27x27x20 7420 2877
3a 27x12x27 4679 1875
3b 12x15x27 2973 1062

4 15x15x12 1802 582
4a 15x8x15 1194 318
4b 8x9x15 811 190

5 9x9x8 517 112
5a 9x6x9 374 59
5b 6x6x9 270 36

6 6x6x6 180 18
6a 6x5x6 144 9
6b 5x5x6 120 6

7 5x5x5 100 4
7a 5x4x5 100 4
7b 4x4x5 80 2

8 4x4x4 64 1

The algorithm uses wavelets on general domains (not
restricted to 2n). A specific wavelet scheme for analy-
sis/synthesis on general even domains has been developed,
including strategies for addition and rejection of control
points. At each iteration, only B-spline control points in the
vicinity of the zero isosurface are stored. As a consequence,
the number of defined control points in general for the 3D
case is proportional to n2 - surface area of the object - and
not to the dimension n3 of the complete voxel domain. The
wavelet algorithms present linear cost in 2D and quadratic
cost in 3D, and 2D and 3D cases are based on repeated appli-
cation of one-dimensional analysis and synthesis. The com-
plexity of one simplification step is of the order of the total
surface area of the object.

Working with algebraic isosurfaces of cubic B-splines is
well suitable for applications that deal with smooth curves
and surfaces. The main drawback of these algebraic isosur-
faces is the inability to represent sharp features.

To improve the results and avoid shrinking/dilating the
solid we are exploring the possibility to change the isosur-
face value or, on the other hand, to start with a initial ob-
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Table 3: Surface multiresolution: Mechanical part

Resolution Domain #defined #defined
level dimension coeff.

�
I � nodes ( � �

G �
1 129x129x129 43114 13204
1a 129x66x129 26973 8760
1b 66x66x129 17421 5451

2 66x66x66 10184 3080
2a 66x35x66 6459 2148
2b 35x35x66 4342 1612

3 35x35x35 2626 871
3a 35x19x35 1634 473
3b 19x19x35 1239 285

4 19x19x19 781 154
4a 19x11x19 504 102
4b 11x11x19 414 60

5 11x11x11 276 30
5a 11x7x11 198 18
5b 7x7x11 168 12

6 7x7x7 140 8
6a 7x5x7 100 4
6b 5x5x7 100 4

7 5x5x5 80 2
7a 5x4x5 64 1
7b 4x4x5 64 1

8 4x4x4 64 1

ject that has been modified with the same energy where the
B-spline function is positive (solid) as where the B-spline
function is negative (empty space).

It is interesting in complex models to save memory space.
Thus, we are comparing several compression techniques to
reduce the amount of detail or error. We are also studying
other ways to set the accessory control points that, generat-
ing correct simplifications, could reduce the total error.

Also, we are working on directly computing a B-spline
algebraic surface from a sufficiently dense set of points in
3D space.

In the future, we will work on the multiresolution editing
of the curves and surfaces defined by this model. This is a
very useful tool in multiresolution environments: we can edit
in one multiresolution level and, later, add the other levels
to get the object with local or global changes. To make this
editing more useful, we are investigating ways to localize the
simplification.
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6. J. Popović and H. Hoppe. Progressive simplicial com-
plexes. SIGGRAPH. Computer Graphics Proceedings,
Annual Conference Series, pages 217–224, 1997.

7. M. Garland and P. S. Heckbert. Surface simplifica-
tion using quadric error metrics. SIGGRAPH. Com-
puter Graphics Proceedings, Annual Conference Se-
ries, pages 209–216, 1997.

8. T. He, L. Hong, A. Kaufman, A. Varshney, and
S. Wang. Voxel based object simpliication. In G. M.
Nielson and D. Silver, editors, Visualization’95, pages
296–303, Atlanta, GA, 1995.

9. C. Andújar, D. Ayala, P. Brunet, R. Joan-Arinyo, and
J. Solé. Automatic generation of multiresolution
boundary representations. Computer Graphics Forum,
15(3), 1996.

10. L.-M. Reissell. Wavelet multiresolution representation
of curves and surfaces. Graphical Models and Image
Processing, 58(3):198–217, 1996.

11. T. Lyche and K. Mørken. Spline-wavelets of minimal
support. Numerical Methods of Approximation Theory,
9:177–194, 1992.

12. R. Kazinnik and G. Elber. Orthogonal decomposition
of non-uniform bspline spaces using wavelets. Com-
puter Graphics Forum (Proceedings of Eurographics),
16(3):27–38, 1997.

13. A. Finkelstein and D. H. Salesin. Multiresolution
curves. SIGGRAPH. Computer Graphics Proceedings,
Annual Conference Series, pages 261–268, 1994.

14. M. Lounsbery, T. DeRose, and J. Warren. Multiresolu-
tion analysis for surfaces of arbritary topological type.



12 Esteve, Brunet and Vinacua / Algebraic surface multiresolution

Technical Report 93-10-05b, Dept. of Computer Sci-
ence and Engineering. University of Washington, 1994.

15. M. Sramek and A. E. Kaufman. Alias-free voxelization
of geometric objects. IEEE transactions on visualiza-
tion and computer graphics, 5(3):251–267, 1999.

16. Charles K. Chui. An introduction to Wavelets. Aca-
demic Press, 1992.

17. J. Esteve, P. Brunet, and A. Vinacua. Multires-
olution for algebraic curves and surfaces us-
ing wavelets. Technical Report LSI-98-60-R,
http://www.lsi.upc.es/dept/techreps/1998.html, Dept.
L.S.I., Universitat Politècnica de Catalunya, 1998.

18. E. Quak and N. Weyrich. Decomposition and recon-
struction algorithms for spline wavelets on a bounded
interval. Technical Report CAT 294, Center for Ap-
proximation Theory, Texas A&M University, 1993.

19. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.
Fetterling. Numerical Recipes. Cambridge University
Press, Cambridge, second edition edition, 1992.


