
Approximation of a variable density cloud of points
by shrinking a discrete membrane

Jordi Esteve Pere Brunet Àlvar Vinacua

e-mail: [jesteve, brunet, alvar]@lsi.upc.es
Universitat Politècnica de Catalunya. Barcelona

Abstract

This paper describes a method to obtain a closed surface that approximates a general 3D data point set with
non-uniform density. Aside from the positions of the initial data points, no other information is used. Particularly,
neither the topological relations between the points nor the normal to the surface at the data points are needed. The
reconstructed surface does not exactly interpolate the initial data points, but approximates them with a bounded
maximum distance. The method allows to reconstruct closed surfaces with arbitrary genus and closed surfaces
with disconnected shells.

ACM CSS: I.3.5 Computational Geometry and Object Modeling.
Keywords: Scattered data points, surface approximation, voxelization, discrete geometry.

1. Introduction

Scattered data points obtained from real objects with opti-
cal, ultrasonic, tactile or other sensors are frequently used as
data sources. Geometric modeling applications must process
these scattered data points to obtain a surface that approxi-
mates the data point set. In this way,

• The generated surface will be more compact than the ini-
tial data point set.

• A more realistic visualization can be obtained from the
surface.

• Standard geometric modeling operations (surface evalua-
tion and editing, surface-surface intersection, etc.) will be
feasible.

A large diversity of algorithms that approximate scattered
data points have been published. There are many valid so-
lutions approximating a cloud of points and each algorithm
provides a solution with its own “aesthetic”.

It is not possible to detail all published papers dealing with
this problem here. The reader can consult some of the exist-
ing State-of-the-Art reports1, 2. Some papers are mentioned

below. They are classified in four blocks according to the
taxonomy used in the Mencl and Müller report1:
• Spatial subdivision. The space is decomposed in cells,

then the cells that are stabbed by the final surface (sur-
face oriented algorithms) or the cells that do not belong
to the volume bounded by the surface (oriented to vol-
ume) are determined and, from them, the final surface is
computed. Some surface oriented algorithms use a regular
voxelization (Algorri et al.3 and Hoppe et al.4), others de-
compose the space in tetrahedrals (Bajaj et al.5, α-shapes
of Edelsbrunner et al.6, Amenta et al.7 and the Cocone al-
gorithm of Amenta et al.8). Examples of volume oriented
algorithms are Veltkamp9, Boissonnat10 and Isselhard et
al.11 (their strategy is based on computing a Delaunay
tetrahedrization of the convex-hull of the data point set
and eliminating successively the tetrahedrals carrying out
some properties).

• Distance function. The distance function calculates the
minimum distance from any point of the space to the final
surface. The distance function can give positive or neg-
ative values if the surface is closed. The final surface is
implicitly determined by the distance function. Examples
of algorithms using a distance function are Hoppe et al.4,

2 Esteve et al / Approximation of a cloud of points by shrinking a discrete membrane

Roth et al.12, Bajaj et al.5, Boissonnat et al.13 and the level
set method of Zhao et al.14.

• Deformation techniques or Warping. An initial surface
is deformed progressively to obtain a better approxima-
tion to the initial data points. In this kind of algorithm it is
convenient to start with a surface that is a coarse approx-
imation of the data point set. Examples are the “blobby
model” of Muraki15, the mass and spring model built from
a triangular mesh of Algorri et al.3 and the variational
level set method applied to implicit surfaces14. Also the
algorithms based on 3D snakes (energy-minimizing spline
which is attracted toward the initial point set) can be clas-
sified in this category (Takanashi et al.16 and Kass et al.17).

• Incremental construction. The surface is constructed in
an incremental way from the properties of the initial data
points. Normally, from an initial element (edge, triangle),
the algorithm works by successively adding new elements
(typically triangles) in its neighborhood enlarging the sur-
face. This is the idea of the surface oriented algorithm of
Boissonnat10 and the ball-pivoting algorithm of Bernar-
dini et al.18.

This taxonomy has several drawbacks. Some algorithms
can be included in more than one category. For example,
some spatial subdivision algorithms use a distance function
to find out which cells are stabbed by the surface4, 5. As we
will see later, our algorithm can be classified in two differ-
ent categories. Notice that this taxonomy classifies the algo-
rithms by the method being used, not by the obtained result.
For example, spatial subdivision algorithms can get a mesh
of triangles3, 4, tri-variate implicit Bernstein-Bezier patches5

or polytopes (sets of points, edges, triangles and tetrahedrals
not necessarily defining a closed and regular surface) in the
α-shapes algorithm6.

The problem framework is defined in next section. Section
3 introduces an overview of the algorithm. In Section 4 the
main part of the algorithm is discussed: the voxelization of
the space and the membrane shrinking. Section 5 describes
the relaxation of the membrane and section 6 the construc-
tion of the final surface. The results are explained in section
7 and the final conclusions are pointed out in section 8.

2. Problem definition

The reconstruction of surfaces from a cloud of points
has been intensely scrutinized in previous work when the
sampling is sufficiently dense (characterized by their ε-
sampling2 or r-sampling19 property or by other sampling
criteria20). The ε-sampling criterion, however, cannot be ver-
ified in practice. Boissonnat and Oudot21 discuss a variation
of this condition of more practical application when the sur-
face S is explicitely known.

Unfortunately practical models, obtained for instance
through 3D scanners, are often not so regular. We are inter-
ested in finding reasonably efficient and robust algorithms

to extract watertight models from non-uniformly and not
densely sampled surfaces.

To this end, let Σ be a solid bounded by a 2-manifold S =
∂Σ, and let M = {pi}i∈I be a set of point samples on S (∀i ∈
I, pi ∈ S). Similarly to α-shapes6, we will probe this model,
but the probe will be a cube rather than a sphere, for reasons
that will become evident.

A valid movement of this cubic probe is defined as a
rotation-free movement such that the center of the cube
sweeps a 1 or 2-manifold without touching any pi.

Definition 1. The model M is α-sparse if there is a valid
movement of a cube of edge size α that takes it from the
exterior of Σ to a position where it touches the inside of S
(see Figures 1 and 2).

α

Figure 1: The points of an α-sparse model M. S is shown as
a dashed line.

α

Figure 2: The points of a non-α-sparse model M

Definition 2. The model M is β-separable if it is not β-
sparse, but Σ has two separate components, and there is a
valid movement of a cube of edge size β along a 2-manifold
such that the envelope of the cube’s positions separates the
two components of Σ (see Figure 3).

Definition 3. The model M has a γ-hole if it is not γ-
sparse, and there is a valid movement along a 1-manifold
of a cube of edge size γ through a hole in Σ (the object in
Figure 3 has a β-hole if it is interpreted as the 2D section of
a connected genus 1 3D object).

The algorithm we propose, outlined in the next section, is
based on a discrete version of these concepts. Therefore we
start by immersing the model M (where S is now unknown)

Esteve et al / Approximation of a cloud of points by shrinking a discrete membrane 3

β

Figure 3: The points of a β-separable model M

in a voxelization of resolution l. Our probes are cubes made
up of these voxels, and valid movements are made up of
translations by a multiple of l in the direction of a coordi-
nate axis.

In some aspects our algorithm is similar to the algorithm
of α-shapes6. This method starts with a Delaunay tetra-
hedrization and a sphere of a given radius α. The algorithm
moves the sphere around without going through data ver-
tices, erasing the tetrahedrals, triangles and edges that it en-
counters, and obtaining polytopes. The success depends on
the selection of the parameter α. The main differences be-
tween the two algorithms are the object used to perform the
contraction/elimination (a cubic probe of size α vs. a sphere
of radius α) and that our method performs a sequence of
contractions with cubes of decreasing size to get a unique
solution vs. α-shapes, which calculates a family of solutions
each of them the result of eroding with a sphere of certain
radius.

3. Algorithm overview
The main goal is the construction of a closed surface S that
approximates a non uniform data point set M in the 3D space
which is known to approximate the boundary of a closed
solid Σ (Figure 20(a)). To achieve it, our algorithm uses
a regular spatial subdivision and proceeds in the following
way:

1. Voxelization of the space that contains the data point set.
The voxels are labeled according to whether they have
points in their inside (hard voxels) or not (soft voxels)
(Figure 20(b)).

2. Obtaining a discrete closed membrane: a set of
6-connected (face-connected) voxels that contain the fi-
nal surface. This voxel set is formed by 6-connected hard
and soft voxels and divide the remaining voxels in in-
side and outside. It is like a discrete rubber band. Ini-
tially a discrete membrane composed by the voxels of the
6 exterior faces of the voxelization is constructed (Fig-
ure 21(a)). Then this discrete membrane is contracted at
the locations where there are soft voxels (Figures 21(b),
21(c), 21(d) and 21(e)). The hard voxels stop the shrink-

ing. When this membrane cannot be further contracted,
the final 6-connected discrete membrane has been found
(Figure 21(f)).

3. Relaxation of the discrete membrane to obtain a smoother
surface. The soft voxels of the discrete membrane are dis-
placed slightly to reduce the local curvature (Figure 19).

4. Construction of the final surface from the discrete mem-
brane obtained in the previous step (see Figure 22).

Our algorithm can be included in the spatial subdivision
category of section 1: It uses a regular voxelization as spa-
tial subdivision and it is oriented to volume since it elim-
inates progressively those voxels not belonging to the vol-
ume bounded by the surface. It does not use any type of
distance function, and does not have to calculate distances
among points or find the neighbour points as it is usually
done by most of the previous algorithms. This strategy pro-
vides robustness and efficiency to the algorithm.

Our algorithm could also be classified into the deforma-
tion techniques category, since it starts with an initial dis-
crete membrane that it is deformed progressively by con-
tractions. We will also describe an improved version of the
algorithm that allows to deal with a set of isolated discrete
membranes to obtain a set of closed surfaces with discon-
nected shells.

Most of the existing algorithms construct a surface stab-
bing exactly all or almost all initial points. Rather, our al-
gorithm constructs a surface such that the initial points are
located at most at a distance d from it, where d =

√
3 l is

the length of the diagonal of the voxel used. Any surface
stabbing the discrete membrane constructed in the second
and third step will be a closed surface that approximates the
initial data points with a tolerance equal to the diagonal of
the voxel d. A surface approximating the data points with a
tolerance d is called d − error surface.

The fact that the final surface approximates the initial data
points is usually not a major problem, since most of the data
point sets are the result of 3D scanners and, therefore, con-
tain error. Voxels whose size has the same order of magni-
tude as the maximum error produced in the data acquisition
can be used. The approximating algorithm has the advantage
of filtering the noise and obtaining a smoother final surface.

Some of the main advantages and contributions of the pro-
posed algorithm are:

• Reconstruction of surfaces although the initial data point
set does not have a uniform density.

• Reconstruction of objects with genus ≥ 1 and/or objects
with disconnected closed shells.

• A final closed object is guaranteed.
• Error-bounded approximation supporting a final fairing.
• Explicit conditions on the genus of the final object.
• Robust and efficient algorithm.

4 Esteve et al / Approximation of a cloud of points by shrinking a discrete membrane

4. The discrete membrane shrinking
4.1. Basic concepts involved in our algorithm
The algorithm works in a spatial division (voxelization) of
a rectangular box containing the cloud of points with cubes
of the same size. In our problem the voxels are classified in
hard (those that have one or more initial data points inside)
and soft (those that do not have any data points).

Some voxels of the voxelization belong to a discrete
membrane (DM). The DM is a set of face-connected vox-
els (6-connected) that divides the remaining voxels in inside
and outside (there is no face-connected, edge-connected or
vertex-connected path (26-connected path) that allows to go
from an inside voxel to an outside voxel that does not include
any voxel of the DM). Figure 4(a) shows a 2D voxelization
with one DM (red voxels): The white voxels are outside and
the green ones are inside in relation to the DM.

(a) Discrete Membrane
(DM)

(b) Discrete Membrane
Set (DMS)

Figure 4: Examples of 2D Discrete Membranes

The DM is a discretization of the surface S. The solid Σ is
composed by the voxels belonging to the DM and the inside
voxels.

To deal with objects with disconnected shells we must al-
low for several membranes inside the voxelization (i.e. sets
of discrete membranes, or DMS). Any voxel of the voxeliza-
tion can be classified according to:

• HARDNESS: Hard, soft.
• POSITION: Inside (the voxel is inside one DM), Outside

(the voxel is outside of all DM’s), Boundary (the voxel
belongs to a DM).

Figure 4(b) illustrates a 2D voxelization with 2 DM’s: The
red voxels are boundary, the white ones are outside and the
green ones are inside in relation to the DMS.

Some definitions are introduced now to help discussing
the ideas used in the algorithm.

Plate of size n: Set of n×n contiguous voxels that form a
square parallel to a co-ordinate plane (all plate’s voxels are
face-connected). We will define the orientation of the plate

as a perpendicular vector ~p to the plate that allows to distin-
guish its front and back side. See Figure 5(a).

Y

X
Z

P

(a) Plate
with its
orientation

X

Y

Z

P

(b) Front and
Back Side

X

Y

Z

P

(c) Lateral Front
and Back Side

Figure 5: Plate of size n = 4

The Front Side (Back Side) of a plate of size n are the
n×n voxels located in front of (behind) the plate according
to its orientation. See Figure 5(b).

The Lateral Side of a plate of size n are the 4× (n + 1)
voxels located around the plate.

The Lateral Front Side (Lateral Back Side) of a plate of
size n are the 4×(n+1) voxels located around the front side
(back side) of the plate. See Figure 5(c).

Model Volume: It is the sum of the number of inside vox-
els plus boundary voxels within the voxelization.

The 6-neighborhood of a voxel V is the set of 6 voxels
sharing a face with V .

The 26-neighborhood of a voxel V is the set of 3× 3×
3−1 voxels that share a vertex, edge or face with V .

The 124-neighborhood of a voxel V is the set of 5×5×
5−1 neighbour voxels of V with V at the center.

In our algorithm the plate represents the frontal face of
the cubic probes in definitions 1, 2 and 3. Only the frontal
face of the cubic probes will interact with the DMS. The
DMS evolves changing the position of the voxels belonging
to a plate and also the voxels in its vicinity (front, lateral and
lateral front side of the plate).

4.2. DMS operations

Three different internal operations will be used to mod-
ify locally the DMS: CONTRACTION (the interior volume
is shrunk), UNDO CONTRACTION (a contraction is re-
versed) and FREEZING (conversion of boundary soft voxels
to hard voxels).

The CONTRACTION operation modifies the DMS with
a plate of size n that satisfies the following conditions:

Esteve et al / Approximation of a cloud of points by shrinking a discrete membrane 5

1. It is composed uniquely of one or more boundary soft
voxels and outside voxels (i. e. does not contain hard vox-
els or inside voxels).

2. The back side of the plate is composed only of outside
voxels.

The operation modifies the DMS as follows:

1. The boundary soft voxels that belong to the plate are con-
verted to outside voxels.

2. The front, lateral and lateral front voxels of the plate (8×
(n + 1)+ n× n voxels) that were inside are converted to
boundary voxels preserving their hardness.

P

(a) Before

P

(b) After

Figure 6: CONTRACTION operation with a plate of size
n = 4. The hard voxels are painted in red and the boundary
soft voxels in yellow.

Figure 6 shows how the CONTRACTION operation is
applied in a 2D voxelization. The plate of size n = 4 (blue
color) in the 2D case is one-dimensional. Observe how the
boundary voxels overlapped with the plate are converted to
outside voxels and the interior front, lateral and front lat-
eral voxels are converted to boundary voxels preserving their
hardness.

The properties of the CONTRACTION operation are:

1. Reduction of the model volume, since the plate must be
located on one or more boundary voxels and these are
converted to outside voxels.

2. It is an internal operation: The DMS is transformed to an-
other DMS. The result are sets of face-connected voxels
that divide the rest of the voxels in inside and outside.
This is because the voxels of the plate are replaced by
the front, lateral and lateral front side of the plate. Notice
that the front, lateral and lateral front side of the plate
are face-connected voxels and completely separate any
interior voxels from the voxels of the plate (FinalDM =
InitialDM− plate + f ront + lateral + lateral f ront).

3. The hard voxels are never converted to outside ones. Only
the boundary soft voxels overlapped with the plate are
marked as outside.

Note: Not only a DM is contracted when the CONTRAC-
TION operation is applied; also the cardinality of the DMS

can be incremented: the topology of the DMS may change,
which is crucial for the ability of our algorithm to deal with
models with holes and/or several connected components.
See Subsection 4.5 and Figure 13 for more details.

The UNDO CONTRACTION operation reverses the last
CONTRACTION operation performed, recovering the pre-
vious state. From the properties of CONTRACTION it is
obvious that UNDO CONTRACTION increases the model
volume and yields a DMS.

The FREEZING operation converts the boundary soft
voxels that are overlapped with a plate of size n in frozen
soft voxels which behave as hard voxels in all further tests,
except where indicated. Obviously this operation does not
alter the model volume and yields an DMS (as no voxels
have been added or removed from it).

The three previous operations depend on the size of the
plate n used. As discussed in the next Subsection, the algo-
rithm works with diminishing plate sizes to obtain succes-
sive DMS generations, each of them more contracted due to
the smaller size of the plate. A counter of the different plate
sizes n used by the algorithm allows to know the current gen-
eration. We store the generation as a property of the outside
voxels. We therefore know in which generation each of these
voxels was converted to outside (what plate size n caused
the conversion from boundary voxel to outside voxel). See
in Figure 7 how the outside voxels are labeled with the 1, 2,
3 and 4 generations that correspond to the plate sizes n = 12,
n = 6, n = 3 and n = 2 respectively.

1 1 1 1 1 1 1 1 1 1 1 1
11
1
1
1
1
1

1

1
1
1 1

1

11
1 1

11
1
1 1

1
1
1
1
1
111

1
1

1
1 1 1 1 1 1 1 1

1

2
2
2
2
2
2

3
3
3
3
3

3
3
34
3

3
3
3

3

4

Figure 7: Labeling the outside voxels with their generation

To detect whether the data point set M is α-sparse a dis-
crete Incursion Test is defined. The cubic probe of size α is
replaced by a discrete version of its frontal face: a plate of
size n where α = n · l. Recall that l is the length of the side
of a voxel. This Incursion Test detects when the plate of size
n reaches the interior face of the DM boundary (see Figure
9). The Incursion Test definition is based on the Local-Arc
Connectivity concept.

Local-Arc Connectivity: Two voxels in the 26-
neighborhood of the voxel V are local-arc connected when
there exists a face-connected path of outside voxels that con-
nects them in this neighborhood of the voxel V .

Observe, for example, the highlighted hard voxel at bot-

6 Esteve et al / Approximation of a cloud of points by shrinking a discrete membrane

tom right of Figure 7. The outside voxels located above and
below of the highlighted voxel are local-arc connected.

Incursion Test: An incursion is detected when two out-
side voxels of different generations at the opposed faces of
a boundary hard voxel are not local-arc connected between
them. How this relates to the continuous definition is dis-
cussed in section 4.4.

Observe Figure 8(a): No incursion has been detected in
the highlighted hard voxel since the voxels located at the op-
posed faces, though not local-arc connected, have the same
generation. Instead, in Figure 8(b), an incursion has been
detected since the voxels located at the opposed faces have
different generation.

1 1 1 1 1 1 1 1 1 1 1 1
11111

1 1 1 1
1
1
1
111

1
1
1 1

1
1

1

1
1
1 1

1

11
1 1

11
1
1 1

1
1 1 1

111
1
1
111

1 1 1 1
1

1
1 1 1 1 1 1 1 1

1 1 1

(a) No

1 1 1 1 1 1 1 1 1 1 1 1
11111

1 1 1 1
1
1
1
111

1
1
1 1

1
1

1

1
1
1

1

11
1 1

11
1
1 1

1
1 1 1

111
1
1
111

1 1 1 1
1

1
1 1 1 1 1 1 1 1

1 1 1

41 4 4 4 4 4
4 4 4 4 44

(b) Yes

Figure 8: Incursion

As is explained below, the algorithm, after applying the
CONTRACTION operation, will check if an incursion has
been produced in the hard voxels of the front, lateral and
lateral front side of the plate to decide the convenience of
applying the UNDO CONTRACTION and FREEZING op-
erations.

4.3. Algorithm
Algorithm 1 illustrates the main reconstruction algorithm.

The first step builds the voxelization from the initial data
point set. This step is immediate if the edge’s length of the
voxel l is known: We must divide the lengths (lx, ly, lz) of
the sides of the rectangular box that contains the data point
set by the edge’s length of the voxel to obtain the sizes of the
voxelization (nx = lx/l,ny = ly/l,nz = lz/l). When we build
the voxelization, the voxels that contain one or more points
of the initial set are labeled as hard voxels and the others as
soft voxels. In Figure 20(b) the hard voxels of the voxeliza-
tion of the data points of Figure 20(a) have been displayed.

If the length l is not known, it can be estimated as

l ≈
√

2 (lxly + lylz + lzlx)
npoints

(1)

where npoints is the number of the initial data points. This

Algorithm 1 Main algorithm scheme
vox := Voxelization(CloudOfPoints);
DMS := InitialDiscreteMembrane(vox);
n := max(vox.size.x, vox.size.y, vox.size.z);
repeat

n := (n+1) div 2;
FindContractionPlace(DMS, n, placeOk, place);
while placeOk do

incursion := FALSE;
NewStack(ContractionStack);
RecursiveContraction(DMS, n, place, Contraction-
Stack, incursion);
FindContractionPlace(DMS, n, placeOk, place);

end while
until n = 1

heuristics considers that the data point set defines a surface
of similar extension as the 6 faces of the rectangular box that
contains it. In all examples shown in Section 7 this formula
has been used, getting satisfactory results.

When the data point set has a very irregular sampling den-
sity, it is convenient to calculate the ratio number of voxels
containing two or more points divided by the number of vox-
els containing one point. If this value is too high we can re-
calculate the voxelization decreasing the edge’s length of the
voxel l.

From here on we will use the chosen l as unit length.

The second step constructs the initial discrete membrane
with the voxels belonging to the exterior faces of the vox-
elization. From then on the algorithm applies the 3 de-
fined operations (CONTRACTION, UNDO CONTRAC-
TION, FREEZING) to contract gradually the DMS until it
is adapted to the hard voxels. Concretely:

• It applies the CONTRACTION operation with a plate of
size n 'Voxelization Size and the plate size is reduced
progressively until n = 1. Each reduction of n defines a
new generation.

• From a fixed value of n, it searches in all boundary soft
voxels the locations where a CONTRACTION operation
with a plate of size n can be applied. The locations found
are the starting points to apply recursively the CON-
TRACTION operation.

To find easily a place where to start a recursive contraction
operation (function FindContractionPlace()), the boundary
soft voxels are stored in a list. This list is searched for the
first voxel that satisfies the required conditions to perform a
contraction operation (see section 4.2).

The results of the algorithm depend on the choice of the
initial plate size and how it is reduced progressively. The best
solution, though with more computational cost, is to start
with a plate size equal to the maximum of the three vox-
elization sizes n := max(nx,ny,nz) and decreasing the plate

Esteve et al / Approximation of a cloud of points by shrinking a discrete membrane 7

size 1 by 1. However, with data point sets obtained from 3D
scanners, normally it is sufficient to divide the size of the
plate by 2 in each iteration n := (n + 1)/2. In this way, the
run-time of the algorithm is reduced considerably. The re-
sults shown in Section 7 show that this choice is reasonable
under widely varying conditions. The algorithm can be sped
up even more with a pre-process consisting in shrinking the
initial DM to get the exterior silhouette of the hard voxels in
the X, Y and Z directions (Figure 21(b)).

From a fixed value n and a particular location where
the CONTRACTION operation can be applied, the CON-
TRACTION operation is applied recursively at the front, up,
down, left and right directions in relation to the plate orien-
tation (always with a plate of size n). Every time the CON-
TRACTION operation is applied, it is checked for incur-
sion in the hard voxels of the front, lateral and lateral front
side of the plate. If an incursion is detected (Figure 9(b)),
the UNDO CONTRACTION operation is applied as many
times as CONTRACTION operations were performed. Then
a FREEZING operation is applied (Figure 9(c)). This can-
cels an undesired expansion of the plate inside the solid.

11
1
1
1
1 1

1
1
1
1
1
1 1 1

1111
1

1
1
1
1

1
1 1 1 1 1 1 1 1 1

1
1
1
1
1
1
1
1
1
11

1
1

1
1
1
1
1

11
1

1
1
1
1
1

1
111111

1 1

1
1 1

1

1
1

1

1

1

P

(a) Before starting the
shrinking

1 1 1 1 1 1 1 1 1 1 1 1
11111

1 1 1 1
1
1
1
111

1
1
1 1

1
1

1

1
1
1

1

11
1 1

11
1
1 1

1
1 1 1

111
1
1
111

1 1 1 1
1

1
1 1 1 1 1 1 1 1

1 1 1

41 4 4 4 4 4
4 4 4 4 44

1

(b) Shrinking with
n = 2. Incursion
detection

���
���
���
���
���
���
���
���

11
1
1
1
1 1

1
1
1
1
1
1 1 1

1111
1

1
1
1
1

1
1 1 1 1 1 1 1 1 1

1
1
1
1
1
1
1
1
1
11

1
1

1
1
1
1
1

11
1

1
1
1
1
1

1
111111

1 1

1
1 1

1

1
1

1

1

1

(c) Backtracking and
freezing

Figure 9: Incursion detection

When the areas of undersampling are big, the algorithm is
also capable to fill the holes. The initial size of the plate to
perform the contractions must be bigger than the holes.

Function 1 shows the implementation of the recursive
contraction. The stack ContractionStack saves the CON-
TRACTION operations performed to undo them in inverse
order if an incursion is detected. A global Boolean variable
incursion is used to indicate the fact that an incursion has
been detected and avoid doing more CONTRACTION oper-
ations into the remaining calls to the RecursiveContraction
function.

Function 1 Scheme of the contraction recursive function
function RecursiveContraction(DMS, n, place, Contrac-
tionStack, incursion)
if incursion then

return;
end if
c := CONTRACTION(DMS, n, place);
PushStack(ContractionStack, c);
if IncursionTest(c) then

while NOT EmptyStack(ContractionStack) do
c := TopStack(ContractionStack);
PopStack(ContractionStack);
UNDOCONTRACTION(DMS, n, c);

end while
FREEZING(DMS, n, place);
incursion := TRUE;
return;

end if
for direction := {front, up, down, right, left} do

place2 := place + direction;
if ContractionOk(DMS, n, place2) then

RecursiveContraction(DMS, n, place2, Contraction-
Stack, incursion);

end if
end for
end function

4.4. Algorithm properties

In this section we will establish some fundamental properties
of our algorithm:

• Property 1: The algorithm always terminates.
The algorithm always finishes because each iteration ei-
ther decreases the model volume or it decreases the num-
ber of soft voxels in the DMS.

• Property 2: The result is a DMS (the voxels are face-
connected and they divide the remaining voxels in outside
and inside).
The algorithm’s result is a DMS because of starting with
an initial DM and applying internal operations (the 3 oper-
ations transform the DMS to other DMS; the CONTRAC-
TION operation can increase the cardinality of the DMS,
see section 4.5). Therefore each DM of the final set is
face-connected and divides the remaining voxels in out-
side and inside.

8 Esteve et al / Approximation of a cloud of points by shrinking a discrete membrane

• Property 3: The final boundary voxels that have an out-
side voxel in their 6-neighborhood are necessarily hard or
frozen soft voxels.
The boundary voxels having an outside voxel in their 6-
neighborhood are hard or frozen soft voxels, never reg-
ular soft voxels. The reason is that the algorithm works
with plates of diminishing size arriving to a size of n = 1.
When the plate size is n = 1, any boundary soft voxel hav-
ing an outside voxel in its 6-neighborhood is a suitable
location to initiate a sequence of CONTRACTION oper-
ations. If an incursion is not detected, this soft voxel has
been converted to outside. Otherwise a backtracking and
a freezing would have happened converting the soft voxel
to a frozen voxel.

• Property 4: Outside voxels are never hard.
The outside voxels are always soft, since the unique oper-
ation producing outside voxels is CONTRACTION and
this operation only converts to outside voxels the soft
ones.

Next we focus on the properties of the Incursion Test.

The surface reconstruction from a data point set is a com-
plex problem. Given an Algorithm A, one can always find
a data point set that causes A to produce a surface differ-
ent from “the expected” result. Furthermore, the problem is
more complex the more flexible the initial conditions and
the final results are, such as in our case (the initial data point
set has no requirement about its density distribution and the
final result can be a set of closed surfaces of any genus).

Consider a model M that is not α-sparse, where α≥ 1 (the
data point density is uniform and has the same magnitude as
the voxelization resolution). In this case, for any size of the
plate used in the shrinking process, an incursion detection
should not occur. However protuberances one-voxel thick
(Figure 10) and situations where the data, at the chosen reso-
lution, correspond to a non-manifold discrete surface (Figure
11) may cause failure. The model M is not α-sparse (α ≥ 1)
but in these cases incursions are detected and UNDO CON-
TRACTION operations are performed so the final result and
the expected result differ.

Cases like that in Figure 11 are really improbable and cor-
respond to an ill-choice of the discretization scale. So, we
have striven to deal correctly with protuberances one-voxel
thick. The Local-Arc Connectivity condition in our defini-
tion of Incursion Test addresses part of the problem:

• Property 5: If the hard voxels present a protuberance
of one voxel, the algorithm will not trigger an unwanted
backtracking.
Observe the highlighted hard voxel located at left of Fig-
ure 12: An incursion is not detected because there is local-
arc connectivity between the two outside voxels located at
the opposed faces of the highlighted hard voxel.

1

1
1
1
1
1
1
1
1 1

1
11

1

1 1 1 1 1 1 1 1 1 1

1 1
1

1 1 1 1 1 1 1
1

1
1
1
1
1

1
1
1
1
1
1
1

1
11
1

1

1

1
1

11

1
1 11

1

1
1
1
1
1

1

P

(a) Before starting the
shrinking

1

1
1
1
1
1
1
1
1 1

1
11

1

1 1 1 1 1 1 1 1 1 1

1 1
1

1 1 1 1 1 1 1
1

1
1
1
1
1

1
1
1
1
1
1
1

1
11
1

1

1

1
1

11

1
1

2

11
1

1
1
1
1
1

2
2

2
2
2
2
2

1

(b) Shrinking with
n = 6. Incursion
detection

�����
�����
�����
�����
�����
�����
�����
�����
	�	�	
	�	�	

�
�

�
�

�����
�����
�����
�����
��
��
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

1

1
1
1
1
1
1
1
1 1

1
11

1

1 1 1 1 1 1 1 1 1 1

1 1
1

1 1 1 1 1 1 1
1

1
1
1
1
1

1
1
1
1
1
1
1

1
11
1

1

1

1
1

11

1
1 11

1

1
1
1
1
1

1

(c) Backtracking and
freezing

Figure 10: Undesirable incursion: Protuberance one-voxel
thick

Similarly the labeling of the generation and its use in our
definition of Incursion Test addresses protuberances one-
voxel thick:

• Property 6: If the hard voxels present a protuberance of
more than one voxel, the algorithm will not backtrack un-
necessarily if both sides of the protuberance belong to the
same generation.
See the highlighted hard voxel at bottom right of Fig-
ure 12: An incursion has not been detected because the
two outside voxels sharing the opposed faces of the high-
lighted hard voxel have the same generation.

It is difficult to accept other types of protuberances with-
out losing the capability to detect incursions when the data
point density is no longer homogeneous. It is impossible to
distinguish if a protuberance one-voxel thick is due to the
shape of the surface to reconstruct or to a low data point
density nearby.

4.5. Mitosis and increase of the genus
Our algorithm is also capable of recovering the correct sur-
face of a data point set model M that is β-separable or has a
γ-hole. To achieve this the algorithm can remove DM pieces

Esteve et al / Approximation of a cloud of points by shrinking a discrete membrane 9

1

1
1
1
1
1
1
1
1 1

1
11

1

1 1 1 1 1 1 1 1 1 1

1 1
1

1 1 1 1 1 1 1
1

1
1
1
1
1

1
1
1
1
1
1
1

1
11
1

1

1

1
1

11

1
1

P

(a) Before starting the
shrinking

1

1
1
1
1
1
1
1
1 1

1
11

1

1 1 1 1 1 1 1 1 1 1

1 1
1

1 1 1 1 1 1 1
1

1
1
1
1
1

1
1
1
1
1
1
1

1
11
1

1

1

1
1

11
33

3
33
3

1
1

3

3333
3 3 3 3

3333

33
3
3 3

3

3

(b) Shrinking with
n = 3. Incursion
detection

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

1

1
1
1
1
1
1
1
1 1

1
11

1

1 1 1 1 1 1 1 1 1 1

1 1
1

1 1 1 1 1 1 1
1

1
1
1
1
1

1
1
1
1
1
1
1

1
11
1

1

1

1
1

11

1
1

(c) Backtracking and
freezing

Figure 11: Undesirable incursion: Non-manifold discrete
surface

1 1 1 1 1 1 1 1 1 1 1 1
11111

1 1 1 1
1
1
1
111

1
1
1 1

1
1

1

1
1
1 1

1

11
1 1

11
1
1 1

1
1 1 1

111
1
1
111

1 1 1 1
1

1
1 1 1 1 1 1 1 1

1 1 1

1

4
4

5

Figure 12: Discrete membrane with one-voxel thick protu-
berances correctly processed

formed only by soft voxels because the Incursion Test is ap-
plied in the boundary hard voxels but not in the soft ones.
This produces a mitosis of the DM (increase of the cardinal-
ity of the DMS) or, in the 3D case, it may result in an in-
crease of the genus of the DM instead. Figure 13 illustrates
a mitosis and Figure 21(c),(d) (at the handle) an increase of
the genus.

Unfortunately this cannot be achieved in all cases. A pro-
tuberance one-voxel thick at the rim of the gap between two
components, or of a hole may cause an undue incursion de-
tection. We call these protuberances obstructions (see figure

P

1

1
1
1
1
1
1
1
1 1

1
11

1

1 1 1 1 1 1 1 1 1 1

1 1
1

1 1 1 1 1 1 1
1

1
1
1
1
1

1
1
1
1
1
1
1

1
11
1

1

1

1
1

11
3
3
3
3

(a) Before starting the
shrinking

1

1
1
1
1
1
1
1
1 1

1
11

1

1 1 1 1 1 1 1 1 1 1

1 1
1

1 1 1 1 1 1 1
1

1
1
1
1

1
1
1
1
1
1
1

1
11
1

1

1

1
1

1
3

3
3

P

1
3 4

4
4 4 4 4 4

4
4 4

44
4

4

4 444

(b) Shrinking with
n = 2

1

1
1
1
1
1
1
1
1 1

1
11

1

1 1 1 1 1 1 1 1 1 1

1 1
1

1 1 1 1 1 1 1
1

1
1
1
1

1
1
1
1
1
1
1

1
11
1

1

1

1
1

1
3

3
3

1
3 4

4
4 4 4 4 4

4
4 4

44
4

4

4 444

14
4

(c) End of the shrinking

Figure 13: Shrinking that produces a mitosis of size 2

15). In the absence of these artifacts, however, the algorithm
performs correctly.

Property 7. The algorithm produces a mitosis if for a cer-
tain plate size n:

• The model M is β-separable, β ≥ n + 1.
• The separation between the two components exhibits no

obstructions.

In the example of Figure 13 a mitosis for n = 2 is pro-
duced: The model M is β-separable and there are no obstruc-
tions.

Figure 14 shows an example where there is not a mitosis
of size 2. The model is not β-separable because it is β-sparse.
The data point density (hard voxels density) around the pos-
sible separation is not sufficiently big in relation to the size
of the gap.

Property 8. The algorithm produces an increase of the
genus if for a certain plate size n:

• The model M has a γ-hole, γ ≥ n + 1.
• The hole exhibits no obstructions.

The last CONTRACTION operation causing a mito-
sis/increase of the genus (see the evolution of Figure 13(b)
to the 13(c)) also produces a reduction of the model volume:
Though the number of inside voxels is the same, the number
of boundary voxels is reduced.

10 Esteve et al / Approximation of a cloud of points by shrinking a discrete membrane

P

1

1
1
1
1
1
1
1
1 1

1
11

1

1 1 1 1 1 1 1 1 1 1

1 1
1

1 1 1 1 1 1 1
1

1
1
1
1
1

1
1
1
1
1
1
1

1
11
1

1

1

1
1

11
3 3
3
3
3

3
3 3

33

(a) Before starting the
shrinking

1

1
1
1
1
1
1
1
1 1

1
11

1

1 1 1 1 1 1 1 1 1 1

1 1
1

1 1 1 1 1 1 1
1

1
1
1
1
1

1
1
1
1
1
1
1

1
11
1

1

1

1
1

11
3 3
3
3
3

3
3

33
4
4

4 4 4 4
444 4

34
4

4
4
4 4

4
4

(b) Shrinking with
n = 2. Incursion
detection

���
���
���
���
���
���
 �
 �

1

1
1
1
1
1
1
1
1 1

1
11

1

1 1 1 1 1 1 1 1 1 1

1 1
1

1 1 1 1 1 1 1
1

1
1
1
1
1

1
1
1
1
1
1
1

1
11
1

1

1

1
1

11
3 3
3
3
3

3
3 3

33

(c) Backtracking and
freezing

Figure 14: Mitosis not performed due to a low data point
density

5. The discrete membrane relaxation

The results obtained in the previous Section are influenced
by the shape of the object (the plate) used in the succes-
sive contractions. In our case, due to the flat shape of the
plates, the final DMS shows flat regions or strongly stepping
in those zones where the initial data point density was low
(observe the upper left zone of Figure 16).

It is convenient to relax the DMS before obtaining the fi-
nal surface. The goal is keep the hard voxels and possibly
displace the soft voxels to smooth the local curvature on the
boundary voxels. We define a measure of the discrete lo-
cal curvature that will give a magnitude of the curvature on
a boundary voxel from the configuration of the neighbours
voxels. The relaxing process will attempt to decrease the dis-
crete local curvature on the whole DMS by performing local
moves of the boundary soft voxels.

Discrete Local Curvature: We define the discrete local
curvature of a boundary voxel as the difference between the
number of outside voxels less the number of inside voxels in
its 26-neighborhood. The discrete local curvature of a voxel
V will be named DLC(V). The DLC values are in the interval
[−25,25]. Figure 17 shows the DLC values of the boundary

P

1

1
1
1
1
1
1
1
1 1

1
11

1

1 1 1 1 1 1 1 1 1 1

1 1
1

1 1 1 1 1 1 1
1

1
1
1
1
1

1
1
1
1
1
1
1

1
11
1

1

1

1
1

11
3
3
3
3

(a) Before starting the
shrinking

1

1
1
1
1
1
1
1
1 1

1
11

1

1 1 1 1 1 1 1 1 1 1

1 1
1

1 1 1 1 1 1 1
1

1
1
1
1
1

1
1
1
1
1
1
1

1
11
1

1

1

1
1

11
3
3
3
3

4 4 4 4 4 4 4
444 4 4 4 4

(b) Shrinking with
n = 2. Incursion
detection

!"!
!"!
#"#
#"#

$"$
$"$
%"%
%"%

1

1
1
1
1
1
1
1
1 1

1
11

1

1 1 1 1 1 1 1 1 1 1

1 1
1

1 1 1 1 1 1 1
1

1
1
1
1
1

1
1
1
1
1
1
1

1
11
1

1

1

1
1

11
3
3
3
3

(c) Backtracking and
freezing

Figure 15: Mitosis not performed due to an obstruction

Figure 16: Planar regions in the final DMS

voxels in the 2D case (the 2D DLC values are in this case in
the interval [−7,7]).

The relaxing process first selects the boundary soft vox-
els V with DLC(V) ≤ −13. It starts to process the most
negative ones and finishes with those soft voxels having
DLC(V) = −13. To each selected voxel V the following
steps are applied:

1. The voxel V is converted to inside voxel (Figure 18(a)).
2. The outside voxels of the 26-neighborhood of V are con-

verted to boundary voxels (Figure 18(b)).
3. Recalculate the DLC on the boundary voxels in the 124-

Esteve et al / Approximation of a cloud of points by shrinking a discrete membrane 11

−4−1
−1

+1
+4

+1+4

 0

 0 +1 +3

 0

 0 0 0

−4+6
−1
+1

+3
+1
+4 +1

−1
−2
−1

 0

−1

−2

−3

+3+2
+4
+4

+2
+3

+3

Figure 17: Discrete Local Curvature (DLC) of the boundary
voxels

neighborhood of the voxel V (Figure 18(c)). Thus we as-
sure that all boundary voxels that could be affected by
the changes in the steps 1 and 2 have the DLC updated.
The voxels with DLC(V)≤−13 are added to the selected
voxel list.

Figure 18 illustrates the steps described previously ap-
plied on the highlighted voxel of Figure 17.

(a) Elimination of the
selected voxel

(b) Outside to boundary
voxel conversion

−3
−3

+1
+4

+4

 0 +1 +3

 0

 0 0 0

−4+6
−1
+1

+3
+1
+4 +1

−1
−2
−1

 0

−1

−2

−3

+3+2
+4
+4

+2
+3

+3

+2
 0

−1

(c) DLC recalculation

Figure 18: 2D Relaxing step

Afterward the above steps are applied symmetrically to
soft voxels with DLC(V) > 0 starting from the higher value
to DLC(V) = 13.

When the DLC of the selected voxel V is sufficiently

high, this method achieves a decrease of the curvature in the
nearby zone. It has been observed in the performed 3D tests
that the best results are obtained if the relaxing algorithm
only selects the voxels V with |DLC(V)| ≥ 13 (in the 2D
case |DLC(V)| ≥ 4). Threshold values of the DLC less than
13 causes the final DMS to present flat zones parallel to the
planes of co-ordinates or at 45o degrees. Moreover it causes
the relaxing process performed on voxels V with DLC(V) >
0 to destroy the previous relaxation done on voxels V ′ with
DLC(V ′) < 0. Applying the relaxing steps described previ-
ously on some voxel configurations with DLC(V) = 12 gen-
erates other boundary voxel V ′ with DLC(V ′) = −12 and
vice versa.

Figure 19 shows the teapot of Figure 21(f) after applying
the relaxing process on the boundary voxels.

Figure 19: 3D Relaxing

6. Final surface construction

The last step must build a surface stabbing the DMS ob-
tained in previous steps. For example, the discrete march-
ing cubes algorithm22 can be used to obtain a mesh of trian-
gles, the algorithm described in Vinacua et al.23 to obtain a
smooth surface (a piecewise algebraic surface defined as a
cubic Bspline isosurface) or, simply, using the outside faces
of the 6-connected boundary voxel sets to obtain a cuberille
model.

In Esteve et al.24, an improved conversion to a piecewise
algebraic surface has been proposed. The construction of this
piecewise algebraic surface stabbing the DMS uses fairing
techniques to achieve smoother surfaces and takes advantage
of the fact that the initial data points lie in the hard voxels,
to better approximate the final surface. First an initial isosur-
face is calculated setting positive or negative weights to the
vertices of the DMS depending on if the neighbour voxels
are exterior or interior. Then a battery of filters24 are applied
to fair the surface and approximate the central point of the

12 Esteve et al / Approximation of a cloud of points by shrinking a discrete membrane

hard voxels (in order to work with pre-calculated filters get-
ting faster algorithms). From this surface, a multiresolution
model can be constructed using the techniques that we de-
scribe in Esteve et al.25.

Figure 22 shows the final surface obtained with a discrete
marching cubes algorithm and with the piecewise algebraic
surface fitting and fairing algorithm from the relaxed discrete
membrane of the teapot.

A triangle mesh can also be obtained from the piecewise
algebraic surface. The vertex values and normals of the vox-
elization are calculated from the piecewise algebraic sur-
face and a triangle mesh is computed with a marching cubes
algorithm26.

7. Results

The first example is the approximation to the vertices of the
Utah teapot. It is the same that has been used to illustrate the
explanations in the previous sections.

A voxelization of size 164×104×82 has been built from
a set of 35910 points (Figure 20). There are 19144 hard vox-
els in the voxelization since 16766 points have coincided in
voxels where there were other points. Then the initial DM
has been built, a previous silhouette shrinking has been per-
formed and the DM has been contracted with plates of sizes
41, 21, 11, 6, 3, 2 and 1 (Figure 21). The table 1 shows the
evolution of the DM shrinking. In the table, for each size of
the plate, the number of soft voxels not frozen in the DMS
just before beginning the shrinking, the number of initiated
contractions with this plate size (number of different loca-
tions in the DMS where a recursive sequence of CONTRAC-
TION operations has been started to apply) and the number
of backtrackings performed (number of times that a recur-
sive sequence of CONTRACTION operations has been can-
celed and undone), are shown.

Table 1: Teapot gradual shrinking

Size Number soft Number of Number of
of the voxels in started backtrackings
plate the DMS contractions made

41 26105 3480 0

21 21276 53 0

11 20353 105 0

6 19172 112 0

3 18432 336 108

2 16913 987 718

1 12405 8850 8699

The final DM is composed of 18817 hard voxels (painted
in red) and 25822 frozen voxels (painted in blue). Inside the
DM 356639 soft voxels and 327 hard voxels remain. Hence
a little percentage of hard voxels stay inside the DM (1.7%).
Most of the data points (98.3%) are within the bounded dis-
tance to the surface. In all cases a post-process can be per-
formed to connect the remaining inside hard voxels with the
DM at the closest locations. Figure 22 shows the final sur-
face obtained from the DM with two different algorithms.

The second example uses a set of 100461 points model-
ing a toy bird. The voxelization has a size of 153×209×203
with 73156 hard voxels (27305 points are within hard voxels
that already contained other data points). The final DM (Fig-
ure 23(a)) is composed of 71386 hard voxels and 61618 soft
voxels. Inside the DM 1228510 soft voxels and 1770 hard
voxels (a 2.4% of the total of hard voxels) remain. The final
surface, a cubic Bspline isosurface displayed with a raycast-
ing algorithm, appears in Figure 23(b). The table 2 shows the
evolution of the DM shrinking of the toy bird. A backtrack-
ing with a plate of size 19 has been done because the initial
data point set has an area without any point (see the back of
the toy bird in Figures 23(c) and 23(d)).

Table 2: Toy Bird gradual shrinking

Size Number soft Number of Number of
of the voxels in started backtrackings
plate the DMS contractions made

38 103134 9152 0

19 63478 1397 1

10 45126 822 9

5 32808 450 19

3 26023 312 33

2 23605 596 46

1 21490 13184 12311

The third example uses a set of 56306 points modeling
a dinosaur. The voxelization has a size of 201 × 170 × 70
with 31089 hard voxels (25217 points are within hard vox-
els that already contained other data points). The final DM
(Figure 24(a)) is composed of 31067 hard voxels and 11250
soft voxels. Inside the DM 90855 soft voxels and 22 hard
voxels (a 0.07% of the total of hard voxels) remain. The fi-
nal surface displayed with a raycasting algorithm appears in
Figure 24(b). The table 3 shows the evolution of the DM
shrinking of the dinosaur.

Finally Figure 25 shows the DM obtained from a cloud of
543652 points modeling a Buddha sculpture. Notice how the
algorithm is capable to recover the holes of the model. The

Esteve et al / Approximation of a cloud of points by shrinking a discrete membrane 13

Table 3: Dinosaur gradual shrinking

Size Number soft Number of Number of
of the voxels in started backtrackings
plate the DMS contractions made

35 43025 2503 0

18 27934 600 0

9 14780 330 0

5 9060 250 0

3 5791 289 0

2 3185 316 2

1 1469 639 192

size of the voxelization is 309×745×309 with 375725 hard
voxels in its interior. The table 4 shows the evolution of the
DM shrinking. Figure 26 shows two different views of the
final surface.

Table 4: Buddha gradual shrinking

Size Number soft Number of Number of
of the voxels in started backtrackings
plate the DMS contractions made

50 688471 33132 0

25 975176 9285 0

13 946651 10350 4

7 847419 7801 28

4 761650 10734 4012

2 556938 40922 33644

1 312134 199489 197343

All these examples illustrate a correct and robust opera-
tion of the gradual DM shrinking algorithm.

The run-times of the whole shrinking process are listed
in Table 5. These times have been obtained on a personal
computer with a 1.6GHz AMD-XP CPU and 256Mb of main
memory. The reasons for the high run-time of the Buddha
model are the big size of the voxelization, the big size the
initial plate (50× 50) and the use of swap memory on hard
disk to store the model.

We have compared these results with those achieved by
Cocone8 on the same models. The Cocone algorithm en-
joys theoretical guarantees and a faster runtime. However, on

Table 5: Run-time of the shrinking process

Model Voxelization size Time (h:mm:ss)

Teapot 164×104×82 0:33

Toy bird 153×209×203 1:59

Dinosaur 201×170×70 0:33

Buddha 309×745×309 6:35:00

models like these where the hypothesis required for the the-
oretical guarantees fail, the algorithm produces models with
errors. Depending on the choice of the flatness-ratio param-
eter, the algorithm either introduces spurious triangles (for
small values of the parameter) or generates spurious holes
(for large values).

For instance, the large hole at the base of the bird model in
figure 23 violates the ε-sampling hypothesis. Cocone fails to
fill up that hole, but in its attempts to do so, generates several
artifact triangles.

8. Conclusions
An algorithm that obtains one or more closed surfaces ap-
proximating a data point set in the 3D space has been pre-
sented. The algorithm does not require to know the topolog-
ical relations among the points or other additional informa-
tion. The obtained surface approximates and does not stab
exactly the points: The approximation error has a certain tol-
erance d in relation to the initial data point set. By using a
shrinking plate of diminishing size, the algorithm allows to
reconstruct surfaces from initial data points not having a uni-
form density. Surfaces with genus ≥ 1 and/or surfaces with
disconnected shells can be reconstructed due to the way of
detecting the incursions to the interior of the surface. The al-
gorithm is robust and efficient since it works only with dis-
crete values (voxels) and does not need to calculate distances
among points or find the neighbour points (as normally done
by most of the existing algorithms).

The algorithm could be improved with the employment of
hierarchical structures like octrees. But it is important to re-
mark that the success of the algorithm is based on displacing
the plate one voxel every time.

A post process to relax the final membranes has been in-
troduced to get better results in zones where the initial data
point density was low. Different types of surfaces can be ob-
tained from the final membranes like meshes of triangles or
piecewise algebraic surfaces.

The construction of a piecewise algebraic surface stabbing
the final discrete membrane includes a constrained fairing
algorithm24 to achieve smoother surfaces and to approximate
better the final surface to the initial data points.

14 Esteve et al / Approximation of a cloud of points by shrinking a discrete membrane

Acknowledgments:

We wish to acknowledge the helpful remarks of the
anonymous reviewers, which have contributed to largely im-
prove this paper. We also thank the Spanish Ministery of
Science for support under grant TIN-2004-08065-C02-01,
and the Stanford 3D Scaning Repository and the CNR Vi-
sual Computing Lab for suppling some of the test data.

Esteve et al / Approximation of a cloud of points by shrinking a discrete membrane 15

(a) Initial data point set (b) Voxelization

Figure 20: Voxelization of a cloud of points

(a) Initial discrete mem-
brane

(b) Silhouette shrinking

(c) Shrinking with
n = 41

(d) Shrinking with
n = 6

(e) Shrinking with
n = 3

(f) n = 1: Final discrete
membrane

Figure 21: Discrete membrane shrinking

(a) Cubic Bspline isosur-
face obtained by the algo-
rithm described in Esteve
et al.24

(b) Mesh of triangles
obtained by discrete
marching cubes22 (dis-
played with a Gouraud
smoothing)

Figure 22: Construction of the surface stabbing the final
DMS

Figure 23: Toy bird: Discrete membrane, final surface and
detail of the big hole filled up

16 Esteve et al / Approximation of a cloud of points by shrinking a discrete membrane

Figure 24: Dinosaur: Discrete membrane and final surface

Figure 25: Buddha discrete membrane and detail of the
pedestal showing irregular sampling density

Figure 26: Buddha final surface: Front and back

Esteve et al / Approximation of a cloud of points by shrinking a discrete membrane 17

References
1. R. Mencl and H. Müller. Interpolation and approxima-

tion of surfaces from three-dimensional scattered data
points. Computer Graphics Forum (Proceedings of Eu-
rographics), pages 51–67, July 1998.

2. T. K. Dey. Curve and surface reconstruction. In Good-
man and O’Rourke, editors, Handbook of Discrete and
Computational Geometry. CRC press, 2001.

3. M.E. Algorri and F. Schmitt. Surface reconstruction
from unstructured 3d data. Computer Graphics Forum,
15(1):47–60, 1996.

4. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. Surface reconstruction from unorganized
points. SIGGRAPH. Computer Graphics Proceedings,
Annual Conference Series, 26(2):71–78, July 1992.

5. C. L. Bajaj, F. Bernardini, and G. Xu. Automatic re-
construction of surfaces and scalar fields from 3d scans.
SIGGRAPH. Computer Graphics Proceedings, Annual
Conference Series, pages 109–118, 1995.

6. H. Edelsbrunner and E. Mücke. Three-dimensional al-
pha shapes. ACM transactions on Graphics, 13(1):43–
72, 1994.

7. N. Amenta and M. Bern. Surface reconstruction by
Voronoi filtering. Discrete and Computational Geom-
etry, 22:481–504, 1999.

8. N. Amenta, S. Choi, T. K. Dey, and N. Leekha. A sim-
ple algorithm for homeomorphic surface reconstruc-
tion. International Journal of Computational Geometry
& Applications, 12(1):125–141, 2002.

9. R.C. Veltkamp. Boundaries through scattered points of
unknown density. Graphical Models and Image Pro-
cessing, 57(6):441–452, November 1995.

10. J.D. Boissonnat. Geometric structures for three-
dimensional shape representation. ACM transactions
on Graphics, 3(4):266–286, October 1984.

11. F. Isselhard, G. Brunnett, and T. Schreiber. Polyhe-
dral reconstruction of 3d objects by tetrahedra removal.
Technical Report 288/97, Fachbereich Informatik, Uni-
versity of Kaiserslautern, Germany, February 1997.

12. G. Roth and E. Wibowoo. An efficient volumetric
method for building closed triangular meshes from 3d
image and point data. Graphics Interface, pages 173–
180, 1997.

13. J. D. Boissonnat and F. Cazals. Smooth surface recon-
struction via natural neighbor interpolation of distance
functions. Proceedings of 16th Symposium on Compu-
tational Geometry, pages 223–232, 2000.

14. H.K. Zhao, S. Osher, and R. Fedkiw. Fast surface re-
construction using the level set method. Proceedings of

IEEE Workshop on Variational and Level Set Methods
in Computer Vision (VLSM 2001), page 194, July 2001.

15. S. Muraki. Volumetric shape description of range data
using “blobby model”. SIGGRAPH. Computer Graph-
ics Proceedings, Annual Conference Series, 25(4):227–
235, July 1991.

16. I. Takanashi, S. Muraki, A. Doi, and A. Kaufman.
3d active net for volume extraction. Proc. SPIE,
(3298):184–193, 1998.

17. M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Ac-
tive contour models. International Journal of Computer
Vision, (1):321–331, 1988.

18. F. Bernardini, J. Mittleman, and H. Rushmeier. The
ball-pivoting algorithm for surface reconstruction.
IEEE transactions on visualization and computer
graphics, 5(4):349–359, 1999.

19. N. Amenta, M. Bern, and M. Kamvysselis. A
new Voronoi-based surface reconstruction algorithm.
SIGGRAPH. Computer Graphics Proceedings, Annual
Conference Series, pages 415–421, 1998.

20. M. Gopi, S. Krishnan, and C.T. Silva. Surface recon-
struction based on lower dimensional localized delau-
nay triangulation. Computer Graphics Forum (Pro-
ceedings of Eurographics), 19(3), 2000.

21. J.-D. Boissonnat and S. Oudot. An effective condition
for sampling surfaces with guarantees. Proceedings 9th
Annu. ACM Symposium on Solid Modeling and Appli-
cations, pages 101–112, 2004.

22. C. Montani, R. Scateni, and R. Scopigno. Discretized
marching cubes. IEEE Visualization’94, pages 281–
287, 1994.

23. A. Vinacua, I. Navazo, and P. Brunet. Octtrees
meet splines. In G. Farin, H. Bieri, G. Brunett, and
T. DeRose, editors, Geometric Modelling, Computing
[Suppl], volume 13, pages 225–233. Springer-Verlag,
1998.

24. J. Esteve, P. Brunet, and A. Vinacua. Piecewise alge-
braic surface computation and fairing from a discrete
model. Technical Report LSI-04, Dept. L.S.I., Univer-
sitat Politècnica de Catalunya. A more extense version
is pending publication and is available as a preprint
from http://www.lsi.upc.edu/∼jesteve/algebraic-
surface-fairing.pdf, 2004.

25. J. Esteve, P. Brunet, and A. Vinacua. Multiresolution
for algebraic curves and surfaces using wavelets. Com-
puter Graphics Forum, 20(1):47–58, 2001.

26. W.E. Lorensen and H.E. Cline. Marching cubes: A high
resolution 3d surface construction algorithm. Computer
Graphics, 21(4):163–169, July 1987.

