2. Information Retrieval Models
What is an Information Retrieval Model?

We need to clarify:

- A proposal for a **logical view** of documents
 (what info is stored/indexed about each document?),

- a **query language**
 (what kinds of queries will be allowed?),

- and a notion of **relevance**
 (how to handle each document, given a query?).
Focus for this course:

- **Boolean model,**
 - Boolean queries, exact answers;
 - extension: phrase queries.

- **Vector model,**
 - weights on terms and documents;
 - similarity queries, approximate answers, ranking.
Boolean Model of Information Retrieval
Relevance assumed binary

Documents:
A document is completely identified by the set of terms that it contains.

- Order of occurrence considered irrelevant,
- number of occurrences considered irrelevant
 (but a closely related model, called bag-of-words or BoW, does consider relevant the number of occurrences).

Thus, for a set of terms $T = \{t_1, \ldots, t_T\}$, a document is just a subset of T.

Each document can be seen as a bit vector of length T, $d = (d_1, \ldots, d_T)$, where

- $d_i = 1$ if and only if t_i appears in d, or, equivalently,
- $d_i = 0$ if and only if t_i does not appear in d.
Atomic query:
a single term.

The answer is the set of documents that contain it.

Combining queries:

- OR, AND: operate as union or intersection of answers;
- Set difference, $t_1 \text{ BUTNOT } t_2 \equiv t_1 \text{ AND NOT } t_2$;
- motivation: avoid unmanageably large answer sets.

In Lucene: +/- signs on query terms, Boolean operators.
Analogy:

- Terms act as propositional variables;
- documents act as propositional models;
- a document is relevant for a term if it contains the term, that is, if, as a propositional model, satisfies the variable;
- queries are propositional formulas (with a syntactic condition of avoiding global negation);
- a document is relevant for a query if, as a propositional model, it satisfies the propositional formula.
Consider 7 documents with a vocabulary of 6 terms:

d1 = one three

d2 = two two three

d3 = one three four five five five

d4 = one two two two two three six six

d5 = three four four four six

d6 = three three three six six

d7 = four five
Example, II

Our documents in the Boolean model

\[
\begin{array}{ccccccc}
\text{five} & \text{four} & \text{one} & \text{six} & \text{three} & \text{two} \\
\hline
\text{d1} = & [& 0 & 0 & 1 & 0 & 1 & 0] \\
\text{d2} = & [& 0 & 0 & 0 & 0 & 1 & 1] \\
\text{d3} = & [& 1 & 1 & 1 & 0 & 1 & 0] \\
\text{d4} = & [& 0 & 0 & 1 & 1 & 1 & 1] \\
\text{d5} = & [& 0 & 1 & 0 & 1 & 1 & 0] \\
\text{d6} = & [& 0 & 0 & 0 & 1 & 1 & 0] \\
\text{d7} = & [& 1 & 1 & 0 & 0 & 0 & 0] \\
\end{array}
\]

(Invent some queries and compute their answers!)
Queries in the Boolean Model, III

No ranking of answers

Answers are not quantified:
A document either

- matches the query (is **fully relevant**),
- or does not match the query (is **fully irrelevant**).

Depending on user needs and application, this feature may be good or may be bad.
Phrase queries: conjunction plus adjacency

Ability to answer with the set of documents that have the terms of the query consecutively.

▶ A user querying “Keith Richards” may not wish a document that mentions both Keith Emerson and Emil Richards.

▶ Requires extending the notion of “basic query” to include adjacency.
Options:

- Run as conjunctive query, then doublecheck the whole answer set to filter out nonadjacency cases. This option may be very slow in cases of large amounts of “false positives”.

- Keep in the index dedicated information about adjacency of any two terms in a document (e.g. positions).

- Keep in the index dedicated information about a choice of “interesting pairs” of words.
Vector Space Model of Information Retrieval, I

Basis of all successful approaches

- Order of words still irrelevant.
- Frequence is relevant.
- Not all words are equally important.
- For a set of terms $\mathcal{T} = \{t_1, \ldots, t_T\}$, a document is a vector $d = (w_1, \ldots, w_T)$ of floats instead of bits.
- w_i is the weight of t_i in d.
Vector Space Model of Information Retrieval, II
Moving to vector space

- A document is now a vector in IR^T.
- The document collection conceptually becomes a matrix terms × documents.
 but we never compute the matrix explicitly.
- Queries may also be seen as vectors in IR^T.
The tf-idf scheme
A way to assign weight vector to documents

Two principles:

- The more frequent \(t \) is in \(d \), the higher weight it should have.

- The more frequent \(t \) is in the whole collection, the less it discriminates among documents, so the lower its weight should be in all documents.
The tf-idf scheme, II

The formula

A document is a vector of weights

\[d = [w_{d,1}, \ldots, w_{d,i}, \ldots, w_{d,T}] \].

Each weight is a product of two terms

\[w_{d,i} = tf_{d,i} \cdot idf_i. \]

The term frequency term \(tf \) is

\[tf_{d,i} = \frac{f_{d,i}}{\max_j f_{d,j}}, \quad \text{where } f_{d,j} \text{ is the frequency of } t_j \text{ in } d. \]

And the inverse document frequency \(idf \) is

\[idf_i = \log_2 \frac{D}{df_i}, \quad \text{where } D = \text{number of documents} \]
and \(df_i = \text{number of documents that contain term } t_i \).
Example, I

<table>
<thead>
<tr>
<th>five</th>
<th>four</th>
<th>one</th>
<th>six</th>
<th>three</th>
<th>two</th>
<th>maxf</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d_1 =$</td>
<td>$\begin{bmatrix} 0 & 0 & 1 & 0 & 1 & 0 & \end{bmatrix}$</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d_2 =$</td>
<td>$\begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 2 & \end{bmatrix}$</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d_3 =$</td>
<td>$\begin{bmatrix} 3 & 1 & 1 & 0 & 1 & 0 & \end{bmatrix}$</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d_4 =$</td>
<td>$\begin{bmatrix} 0 & 0 & 1 & 2 & 1 & 4 & \end{bmatrix}$</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d_5 =$</td>
<td>$\begin{bmatrix} 0 & 3 & 0 & 1 & 1 & 0 & \end{bmatrix}$</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d_6 =$</td>
<td>$\begin{bmatrix} 0 & 0 & 0 & 2 & 3 & 0 & \end{bmatrix}$</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d_7 =$</td>
<td>$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & \end{bmatrix}$</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>df</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>
Example, II

\[\text{df} = \begin{bmatrix} 2 & 3 & 3 & 3 & 6 & 2 \\ \end{bmatrix} \]

\[d3 = \begin{bmatrix} 3 & 1 & 1 & 0 & 1 & 0 \\ \end{bmatrix} \]

\[\Rightarrow d3 = \begin{bmatrix} \frac{3}{3} \log_2 \frac{7}{2} & \frac{1}{3} \log_2 \frac{7}{3} & \frac{1}{3} \log_2 \frac{7}{3} & \frac{0}{3} \log_2 \frac{7}{3} & \frac{1}{3} \log_2 \frac{7}{6} & \frac{0}{3} \log_2 \frac{7}{2} \\ \end{bmatrix} \]

\[= \begin{bmatrix} 1.81 & 0.41 & 0.41 & 0 & 0.07 & 0 \\ \end{bmatrix} \]

\[d4 = \begin{bmatrix} 0 & 0 & 1 & 2 & 1 & 4 \\ \end{bmatrix} \]

\[\Rightarrow d4 = \begin{bmatrix} \frac{0}{4} \log_2 \frac{7}{2} & \frac{0}{4} \log_2 \frac{7}{3} & \frac{1}{4} \log_2 \frac{7}{3} & \frac{2}{4} \log_2 \frac{7}{3} & \frac{1}{4} \log_2 \frac{7}{6} & \frac{4}{4} \log_2 \frac{7}{2} \\ \end{bmatrix} \]

\[= \begin{bmatrix} 0 & 0 & 0.61 & 1.22 & 0.11 & 3.61 \\ \end{bmatrix} \]
Similarity of Documents in the Vector Space Model

The cosine similarity measure

- “Similar vectors” may happen to have very different sizes.
- We better compare only their directions.
- Equivalently, we normalize them before comparing them to have the same Euclidean length.

\[\text{sim}(d_1, d_2) = \frac{d_1 \cdot d_2}{|d_1||d_2|} = \frac{d_1}{|d_1|} \cdot \frac{d_2}{|d_2|} \]

where

\[v \cdot w = \sum_i v_i \cdot w_i, \text{ and } |v| = \sqrt{v \cdot v} = \sqrt{\sum_i v_i^2}. \]

- Our weights are all nonnegative.
- Therefore, all cosines / similarities are between 0 and 1.
Cosine similarity, Example

\[
\begin{align*}
 d_3 &= \begin{bmatrix}
 1.81 & 0.41 & 0.41 & 0 & 0.07 & 0 \\
 0 & 0 & 0.61 & 1.22 & 0.11 & 3.61
 \end{bmatrix} \\
 d_4 &= \begin{bmatrix}
 0 & 0 & 0.61 & 1.22 & 0.11 & 3.61
 \end{bmatrix}
\end{align*}
\]

Then

\[|d_3| = 1.898, \quad |d_4| = 3.866, \quad d_3 \cdot d_4 = 0.26\]

and \(sim(d_3, d_4) = 0.035\) (i.e., small similarity).
Query Answering

- Queries can be transformed to vectors too.
- Sometimes, tf-idf weights; often, binary weights.
- $\text{sim}(doc, query) \in [0, 1]$.
- Answer: List of documents sorted by decreasing similarity.
- We will find uses for comparing $\text{sim}(d_1, d_2)$ too.