IR: Information Retrieval
FIB, Master in Innovation and Research in Informatics

Slides by Marta Arias, José Luis Balcázar, Ramon Ferrer-i-Cancho, Ricard Gavaldá
Department of Computer Science, UPC

Fall 2018
http://www.cs.upc.edu/~ir-miri
10. Streaming Algorithms
1. Streaming Data and Stream Algorithms
2. Counting Items
3. Counting Distinct Items
4. Finding Frequent Items
5. Sliding Windows
Data streams everywhere

- Telcos - phone calls
- Satellite, radar, sensor data
- Computer systems and network monitoring
- Search logs, access logs
- RSS feeds, social network activity
- Websites, clickstreams, query streams
- E-commerce, credit card sales
- ...
We will have even more streaming data in the future

- We generate far more data than we can store
- Social networks: Planet-scale streams
- Smart cities
- Connected cars
- Sensors on our bodies
- Internet of Things
- Open data; governmental and scientific
In algorithmic words...

The Data Stream axioms:

1. One pass over infinite sequence of items
 - item t available at time t only
2. Low time per item - read, process, discard
3. Sublinear memory - only summaries or sketches
4. Anytime, real-time answers
5. The stream evolves over time
Approximate answers are often OK

For most problems on data streams,

- it is difficult to give always the exact answer,
- but one can give an approximate answer often
Approximate answers are often OK

- Algorithms are randomized: random bits or numbers
- Different runs give different outputs
- But most runs give approximately correct answers
The Item Counting Problem
How many items have we read so far in the data stream?

To count up to \(t \) elements exactly, \(\log t \) bits are necessary

But \(\log \log t \) bits suffice for approximate solutions
Approximate counting, v1
Init: $c \leftarrow 0$

Update:
- draw a random number $x \in [0, 1]$
- if $(x \leq 1/2)$ $c \leftarrow c + 1$

Query: return $2c$

$\mathbb{E}[2c] = t, \quad \sigma \simeq \sqrt{t/2}$

Space $\log(t/2) = \log t - 1 \rightarrow \text{we saved 1 bit!}$
Approximate counting: Saving k bits

Approximate counting, v2
Init: $c \leftarrow 0$

Update:
\[
\text{draw a random number } x \in [0, 1] \\
\text{if } (x \leq 2^{-k}) c \leftarrow c + 1
\]

Query: return $2^k c$

$E[c] = \frac{t}{2^k}$, \hspace{1cm} $\sigma \simeq \sqrt{\frac{t}{2^k}}$

Memory $\log t - k \rightarrow$ we saved k bits!

$x \leq 2^{-k}$: AND of k random bits, $\log k$ memory
Approximate counting: Morris’ counter

Morris’ counter [Morris77]

Init: \(c \leftarrow 0 \)

Update:
\[
\text{draw a random number } x \in [0, 1] \\
\text{if } (x \leq 2^{-c}) \quad c \leftarrow c + 1
\]

Query: return \(2^c - 2 \)

\[
E[c] \simeq \log t, \quad E[2^c - 2] = t, \quad \sigma \simeq t/\sqrt{2}
\]

Memory = bits used to hold \(c = \log c = \log \log t \) bits
Morris’ approximate counter

- Can count up to 1 billion with $\log \log 10^9 = 5$ bits
- Can count up to 2^{64} with 6 bits
- Problem? large variance, $\sigma \simeq 0.7 t$
Use basis $b < 2$ instead of basis 2:

- Places t in the series $1, b, b^2, \ldots, b^i, \ldots$ ("resolution" b)
- $E[b^c] \approx t$, $\sigma \approx \sqrt{(b - 1)/2} \cdot t$
- Space $\log \log t - \log \log b$ (>$\log \log t$, because $b < 2$)
- For $b = 1.08$, 3 extra bits, $\sigma \approx 0.2 t$
Reducing the variance, method II

- Run r parallel, independent copies of the algorithm
- On Query, average their estimates
- $E[\text{Query}] \approx t$, $\sigma \approx t/\sqrt{2r}$ (why?)
- Space $r \log \log t$
- Time per item multiplied by r

Worse performance, but more generic technique
Morris’ counter: A non-streaming application

In [VanDurme+09]

- Counting k-grams in a large text corpus
- Number of k-grams grows exponentially with k
- Highly diverse frequencies
- Should fit in RAM
- Use Morris’ counters (5 bits) instead of standard counters
3. Counting distinct elements

The Distinct Element Counting Problem

How many *distinct* elements have we seen so far in the data stream?
Motivation

Item spaces and # distinct elements can be large

- I’m a web searcher. How many different queries did I get?
- I’m a router. How many pairs (sourceIP,destinationIP) have I seen?
 - itemspace: potentially 2^{128} in IPv6
- I’m a text message service. How many distinct messages have I seen?
 - itemspace: essentially infinite
- I’m an streaming classifier builder. How many distinct values have I seen for this attribute x?
Counting distinct elements

- Item space I, $|I| = n$, identified with range $[n]$
- $d = \text{number of distinct elements in stream}$
- Often omit subindex t
- Solving \textit{exactly} requires $O(d)$ memory
- Approximate solutions using $O(d)$, $O(\log d)$ and $O(\log \log d)$ bits
Linear counting [Whang+90] ≈ Bloom filters

- build a bit vector B of size s
- choose a hash function $f : [n] \rightarrow s$

Update(x): $B[f(x)] \leftarrow 1$

Query:
- $w =$ fraction of 0s in B
- return $s \cdot \ln(1/w)$

(Details omitted) Good performance if $s = O(d)$
Cohen’s algorithm [Cohen97]

\[E[\text{gap between two 1’s in } B] = \frac{s - d}{d + 1} \approx \frac{s}{d} \]

Query: return \(s / (\text{size of first gap in } B) \)
Cohen’s algorithm [Cohen97]

Trick: Don’t store B, remember smallest key inserted in B

Init: $\text{posmin} = s$; choose hash function $h : [n] \rightarrow s$

Update(x): if $(h(x) < \text{posmin})$ $\text{posmin} \leftarrow h(x)$

Query: return s / posmin;

Storing posmin uses memory $O(\log d)$
Probabilistic Counting [Flajolet-Martin 85]

Bloom filter. But: Observe values of hash function $f(i)$, in binary

Idea: To see $f(i) = 0^{k-1}1 \ldots$, about 2^k distinct values inserted
And we don’t need to store B, just the smallest k
Flajolet-Martin probabilistic counter

Init: \(p \leftarrow 0 \)

Update(\(x \)):

 - let \(b \) be the position of the leftmost 1 bit of \(f(x) \)

 - if \((b > p) \) \(p \leftarrow b \)

Query: return \(2^p \)

\[
E[2^p] = \frac{d}{\varphi}, \text{ for a constant } \varphi = 0.77 \ldots
\]

Memory = (bits to store \(p \)) = \(\log p = \log \log d_{\text{max}} \) bits
Flajolet-Martin: reducing the variance

HyperLogLog [Flajolet+07]

- Maintain c copies of the sketch
- Use first $\log c$ bits of $f(x)$ to decide copy for x
- Same f can be used for all copies

- One sketch update per item - fast
- Query: Harmonic average of the c copies

- Memory = $c \log \log d_{\text{max}}$
- Variance $\simeq 1.03 d/\sqrt{c}$

“cardinalities up to 10^9 can be approximated within say 2% with 1.5 Kbytes of memory”
Application: Computing Distance Distributions in Graphs

For a directed graph $G = (V, E)$ and $u \in V$, neighborhood & distance functions

- $B(u, t) = \text{set of vertices at distance } \leq t \text{ from } u$
- $N(u, t) = |B(u, t)| - |B(u, t - 1)|$
- $N(t) = \sum_v N(u, t) = \text{number of pairs } (u, v) \text{ at distance } t$

Useful:

- $N(1)$ gives average degree
- $N(2)$ gives e.g. clustering coefficients
- max nonzero $N(t)$ gives diameter, etc.
Computing distance distributions

Traditional algorithm:

1. For each v, $B(v, 0) = \{v\}$

2. For $t = 1, 2, \ldots$

 for each $v \in V$,

 $B(v, t) = B(v, t - 1)$

 for each $(v, u) \in E$, $B(v, t) = B(v, t) \cup B(u, t - 1)$

3. For $t = 1, 2, \ldots$

 output $N(t) = \sum_v |B(v, t)| - N(t - 1)$

Problems:

- Random access to edges. Disk faults
- Memory $|V|^2$ in connected graphs, even if $|E| \ll |V|^2$
Computing distance distributions

Required:

- Access edges sequentially, as they are stored in disk
- Work well on small-world, sparse graphs
- Memory linear (or little more) in number of vertices
- Limited number of passes
HyperANF

ANF [Palmer, Gibbons, Faloutsos02]: Memory $O(n \log n)$
 - Graph with 2 billion links \rightarrow 30 minutes on 90 machines

HyperANF [Boldi, Rosa, Vigna11]: Memory $O(n \log \log n)$
 - 15 minutes on a laptop
HyperANF

Key observation 1:
We eventually need only $|B(v, t)|$, not $B(v, t)$ itself.

Key observation 2:
$|B(v, t)|$ is the number of distinct elements connected by one edge to nodes in $B(v, t - 1)$.

Key observation 3:
Hyperloglog keeps number of distinct elements, and can implement unions (is mergeable).
Keep a hyperloglog counter $H(v)$ for each $v \in V$. Then

$$B(v, t) = B(v, t - 1)$$
for each $(v, u) \in E$, $B(v, t) = B(v, t) \cup B(u, t - 1)$

\rightarrow

$$H'(v) = H(v)$$
for each $(v, u) \in E$, $H'(v) = \text{merge}(H'(v), H(u))$

Big Win: this can be done while reading edges sequentially!
add a few other optimizations and clever programming
HyperANF: applications

Diameter of the Facebook graph [Backstrom+11]

- 720M active users, 69B friendship links
- Average distance is 4.74 (= 3.74 degrees of separation)
- 92% of users are at distance ≤ 5
- 10 hours on 256Gb RAM machine
Finding Frequent Elements

Heavy Hitters, Elephants, Hotlist analysis, Iceberg queries
Finding frequent elements

θ-heavy hitters:

Given a sequence S of t elements, threshold θ, find all elements with frequency $> \theta t$

Many different algorithms [Berinde+09], [Cormode+08]
The Space Saving sketch [Metwally+05]

Init(k): Create
set of keys $K \leftarrow \emptyset$
vector $count$, indexed by K

Update(x):
if (x is in K) increment $count[x]$;
else, if ($|K| < k$) add x to K and set $count[x] = 1$;
else, replace an item with lowest count with x
and increase its count by 1

Query:
return the set K;
Why Does This Work?

Let min_t be the minimum value of a counter at time $t > 0$. Then

1. $\sum_x count_t[x] = t$
2. $min_t \leq t/k$
3. If $f_t(x) > min_t$, then $x \in K$ at time t
4. For every $x \in K$, $f_t(x) \leq count_t[x] \leq f_t(x) + min_t$

Proof of (2), (3) by induction on t

No false negatives: all heavy hitters are in K

May have false positives: non-heavy-hitters in K
The Count-Min Sketch [Cormode-Muthukrishnan 04]

Like Space Saving:

- Provides an approximation f'_x to f_x, for every x
- Can be used (less directly) to find θ-heavy hitters
- Uses memory $O(1/\theta)$

Unlike Space Saving:

- It is randomized - hash functions instead of counters
- Supports additions and deletions
- Can be used as basis for several other queries
- For example, RangeSum queries and Heavy Hitters

 Given items a and b, return frequency([a..b])
The Sliding Window Model

- Only last n items matter
- Clear way to bound memory
- Natural in applications: emphasizes most recent data
- Data that is too old does not affect our decisions

Examples:
- Study network packets in the last day
- Detect top-10 queries in search engine in last month
- Analyze phone calls in last hours
Statistics on Sliding Windows

- Want to maintain mean, variance, histograms, frequency moments, hash tables, ...
- SQL on streams. Extension of relational algebra
- Want quick answers to queries at all times
Basic Problem: Counting 1's

Obvious algorithm, memory n:

- Keep window explicitly
- At each time t, add new bit b to head, remove oldest bit b' from tail,
- Add b and subtract b' from count

Fact:
$\Omega(n)$ memory bits are necessary to solve this problem exactly
Exponential Histograms
[Datar, Gionis, Indyk, Motwani, 2002]

Deterministic algorithm to estimate the number of 1’s in a window of length n with multiplicative error $1/k$ using $O(k \log n)$ counters up to n which means $O(k(\log n)^2)$ bits of memory

Example:

- $n = 10^6; k = 10$, error=10 %, 200 counters, 4,000 bits
Exponential Histograms

- Each bit has a timestamp - time at which it arrived
- Bits with timestamp \leq now $- n$ are expired
- Bucket of capacity s records s 1's
- We have up to k buckets of capacities 1, 2, 4, 8 ...
- Errors: expired bits in the last bucket
- Errors \leq capacity of last bucket
 \leq (capacity of all buckets) $/ k \simeq n / k$
- → Relative error $\leq 1 / k$
Exponential Histograms

- Error $\leq n/k$ for a window of size n
- Relative error $\leq 1/k$
- Choose max bucket size $s = \log(n/k)$
- Total capacity $k(1 + 2 + \cdots + 2^s) \geq n$, enough!
- Required counters $= k \log(n/k)$
Exponential Histograms

Init: Create empty set of buckets

Query: Return total number of bits in buckets — (last bucket / 2)
Insert rule(bit):

- If bit is a 0, ignore it. Otherwise, if it’s a 1:
- Add a bucket with 1 bit and current timestamp t to the front
- for $i = 0, 1, \ldots$
 - If more than k buckets of capacity 2^i, merge two oldest as newest bucket of capacity 2^{i+1}, with timestamp of the older one
- if oldest bucket timestamp $< t - n$, drop it (all expired)
Generalizations

Technique can be applied to maintain many natural aggregates:

- Max, min, variance
- Distinct elements
- Histograms
- Hash tables
Conclusions

- More and more data will be streaming data
- Streaming model is becoming a fundamental algorithmic paradigm
- Many problems admit surprisingly efficient approximation solutions
- Randomization and approximation useful tools