
Information Retrieval Lab, Session 2: Programming with ElasticSearch

In this session:

• We will learn how to tell ElasticSearch to apply different tokenizers and filters to the documents,
like removing stopwords or stemming the words.

• We will study how these changes affect the terms that ElasticSearch puts in the index, and
how this in turn affects searches.

• We will complete a program to display documents in the tf-idf vector model.

• We will compute document similarities with the cosine measure.

1 Modifying ElasticSearch index behavior

One of the tasks of the previous session was to remove from the documents vocabulary all those
string that were not proper words. Obviously this is a frequent task and all these kinds of DB have
standard processes that help to filter and reduce the terms that are not useful for searching.

Text before being indexed can be subjected to a pipeline of different processes that strips it from
anything that will not be useful for a specific application.

The first step of the pipeline is usually a process that converts raw text into tokens. We can for
example tokenize a text using blanks and punctuation signs or use a language specific analyzer that
detects words in an specific language or parse HTML/XML...

This section of the ElasticSearch manual explains the different text tokenizers available.

After we have tokens, we can also normalize the strings and filter valid tokens that are not useful.
For instance, usually strings are transformed to lowercase so all occurrences of the same word have
the same token no matter if it is capitalized or not. Also, there are words that are not semantically
useful when searching such as adverbs, articles or prepositions, in this case each language will have
its own standard list of words, these are usually called stop words. Another language specific token
normalization is stemming. The stem of a word corresponds to the common part of a word from
all variants are formed by inflection or addition of suffixes or prefixes. For instance, the words
unstoppable, stops and stopping all derive from the stem stop. The idea is that all variations of a
word will be represented by the same token.

This section of ElasticSearch manual will give you an idea of the possibilities.

2 The index reloaded

The first task of this session is to study how this pipeline changes the tokens and its total number.
You have a new version of the last session indexer script named IndexFilesPreprocess.py. This
has two additional flags --token and --filter.

The flag --token changes the text tokenizer, you have four options whitespace, classic, standard
and letter. Use each one of them with the novels documents and compare the results. Do not
change the filter that is used by default (in this case only lowercasing the string). Have a look into
the documentation to understand what these tokenizers do. Use the CountWords.py script from the
last session (included in this session scripts) to see how many tokens are obtained.

After this, use the more aggressive tokenizer and use the filters available in the script: lowercase

(obvious), asciifolding (gets rid of strange non ASCII characters that some languages love to use),

1

https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html


stop (remove standard english stopwords) and the different stemming algorithms for the english
language (snowball, porter stem and kstem). You have to use the --filter flag, that must be the
last one and you can put the filters to use separated by blank spaces, for instance:

$ python IndexFilesPreprocess.py --index news --path /tmp/20_newsgroups \

--token letter --filter lowercase asciifolding

Now you can answer the question, what word is the most frequent one in the English language? (you
will be surprised, or not, if you do this with the arxiv corpus)

As a bonus, you can learn how to configure the text analyzer of an index and you can change the
script so more options can be used.

As a side project, you can check also if all this preprocessing changes or improves the fitting of Zipf’s
law.

3 Computing tf-idf’s and cosine similarity

This part of the session is to make sure we understand the tf-idf weight scheme for representing
documents as vectors and the cosine similarity measure. We will complete a script that receives the
paths of two files, obtains its ids from the index, computes the tf-idf vectors for the corresponding
documents, optionally prints the vectors and finally computes their cosine similarity

The script TFIDFViewer.py has a set of incomplete functions to do all this:

• The main program follows the schema just explained

• The search file by path function returns the id of a document in the index (the path has to
be the exact full path where the documents were when indexed, not just a filename)

• The document term vector function returns two lists of pairs, the first one is (term, term
frequency in the document), the second one is (term, term frequency in the index). Both lists
are alphabetically ordered by term.

• The incomplete toTFIDF function that returns a list of pairs (term, weight) representing the
document with the given docid. It:

1. First gets two lists with term document frequency and term index frequency

2. Gets the number of documents in the index.

3. Then finally creates every pair (term, TFIDF) entry of the vector to be returned.

Your task here is to complete the computations of the tf-idf value to fill this vector. You have
all the ingredients ready, and you only have to apply the formulas explained in class.

• The incomplete normalize function should compute the norm of the vector (square root of the
sums of components squared) and divide the whole vector by it, so that the resulting vector
has norm (length) 1. Complete this function.

• The incomplete print term weigth vector prints one line for each entry in the given vector
of the form (term, weight). Complete this function.

• The incomplete cosine similarity function can be implemented by first normalizing both
arguments (if they are not already), then computing their inner product. Complete this func-
tion. IMPORTANT: It must be an efficient implementation, with at most one scan of each
vector. Use strongly that the vectors are sorted by term alphabetically.

2



For computing the square root and log10 you can use the numpy library functions log10 and sqrt.
This library is already imported in the script as np.

In order to test your implementation you have a set of documents inside the doc directory that
correspond to the ones used in the theory slides examples.

4 Experimenting

Once you are done with your program, try it out with the test collections from the previous sessions.
First, test your implementation by computing the similarity of a file with itself (what should it give?).

You can do all sorts of experiments, for example, are the documents of a specific subset of the
corpus 20 newgroups more similar among them that to other unrelated subset (e.g alt.atheism vs
sci-space)?, ... (you know l’imagination au pouvoir).

A final question, have you noticed that we are searching the documents using the path name? By
default, all text fields are tokenized. Yet, if the path field had been tokenized, these searches would
not succeed, right? What did we do differently when indexing the documents so we can look for an
exact match in the path field? Check the script.

5 Deliverables

To deliver : Write a short report (3-4 pages max) with your results and thoughts. PDF format is
preferred. Make sure it has your names, date, and title.

For the first part of the session, comment on the effects you observed on the index (size, number of
terms etc). Avoid using only vague terms like ”many”, ”a lot”, etc. but also avoid giving too many
numbers, tables, screenshots, etc. and no conclusion.

For the second part of the session, explain

1. if you read and understood the code that was provided

2. if you succeeded in implementing everything

3. any major difficulties you found

4. any observations on your experiments or on what you learned this way

You must also deliver all the modified python scripts. Please mark with visible comments the parts
where you made changes. Pack everything in a .zip file.

You are welcome to add conclusions and thoughts that depart from what we asked you to do. In fact,
they’ll be highly valued if they are intelligent and show that you can go beyond following instructions
literally.

Rules: 1. You should solve the problem with one other person, we discourage solo projects, but if you
are not able to find a partner it is ok. 2. No plagiarism; don’t discuss your work with others, except
your teammate if you are solving the problem in two; if in doubt about what is allowed, ask us. 3. If
you feel you are spending much more time than the rest of the group, ask us for help. Questions can
be asked either in person or by email, and you’ll never be penalized by asking questions, no matter
how stupid they look in retrospect.

To deliver: You must deliver a brief report describing your results and the main difficulties/choices
you had while implementing this lab session’s work. You also have to hand in the source code of
your implementations.

3



Procedure: Submit your work through the raco platform as a single zipped file.

Deadline: Work must be delivered within 2 weeks from the lab session you attend. Late submissions
risk being penalized or not accepted at all. If you anticipate problems with the deadline, tell me as
soon as possible.

4

http://www.fib.upc.edu/en/serveis/raco.html

