
A Distributed Norm Compliance Model

Ignasi Gómez-Sebastià, Sergio Alvarez-Napagao and Javier Vázquez-Salceda a,1

a KEMLg, Universitat Politècnica de Catalunya

Abstract. Norms can be used in the scope of distributed computational systems to
provide reliable contexts of interaction between parties where acceptable behaviour
is specified in terms of regulations or guidelines. These have been explored in var-
ious formalisations, and many are the theoretical frameworks that allow to imple-
ment and operationalise them. However, when applying these frameworks to com-
plex, heterogeneous scenarios with multiple agents involved, the performance of
norm compliance systems may suffer due to bottlenecks, not only in the number
of events received, but also on the number and the complexity of the norms being
verified. In this paper we present a formal method to distribute norms through a dis-
tributed normative monitoring system, based on production systems for maximum
efficiency, and a grounding on Strongly Connected Components.

1. Introduction

With the continuous redefinition and evolution of distributed systems –e.g., Multi-Agent
Systems, Grid Computing, Service-Oriented Architectures, Cloud Computing–, there is
a growing need for these systems’ governance. In [5] governance is defined as the dis-
tributed control of complex policies in order to ensure the coherence and the stability of
these distributed systems as a whole.

There are several abstractions at different levels of expressivity that try to tackle this
problem in real-world scenarios, interpreting events as symbolic facts rather than limiting
themselves to pure numerical metrics. One of such abstractions is Normative Systems.
Research in Normative Systems focuses on the concepts of norms and normative envi-
ronments2 in order to provide normative frameworks to restrict or guide the behaviour of
(software) agents. The main idea is that the interactions among a group of such agents
are ruled by a set of explicit norms expressed in a computational language representation
that agents can interpret. Although some authors only see norms as inflexible restrictions
to agent behaviour, others see norms not as a negative, constraining factor but as an aid
that guides the agents’ choices and reduces the complexity of the environment, making
the behaviour of other agents more predictable.

In [2] we proposed a reduction from expressive norms to general production sys-
tems to build a norm monitoring mechanism that can be used both by agents to perceive
the current normative state of their environment, and for these environments to detect
norm violations and enforce sanctions. With such a reduction, an agent can configure,
at a practical level, the production system at run-time by adding abstract organisational

1c/Jordi Girona 1-3, E08034, Barcelona, Spain e-mail: {igomez, salvarez, jvazquez}@lsi.upc.edu
2Usually called institutions.

specifications –regulative norms– and sets of counts-as rules –constitutive norms. There-
fore, in our approach, the detection of normative states is a passive procedure consisting
in monitoring past events and checking them against a set of active norms. This type of
reasoning is already covered by the declarative aspect of production systems, so no ad-
ditional implementation in an imperative language is needed. Using a forward-chaining
rule engine, events will automatically trigger the normative state –based on the opera-
tional semantics– without requiring a design on how to do it.

An advantage of using general production systems is that the efficiency of the system
is bound to the complexity of such systems, which is linear to the number of productions
contained in the rules in the worst case and constant in the best case [8]. However, in
real-world scenarios this might not even be sufficient, as there may be bottlenecks on
both 1) the number of events received, and/or 2) the number of norms –and therefore, the
number of rules– loaded in the production system. In this paper we focus on the latter
and present a model for distributing the normative context among several monitoring
systems at run-time. The objective is to effectively reduce the number of events to be
taken into account by each monitor and allow each of them to process a smaller part
of the whole normative context. Distributed monitors are linked in order to collectively
infer the full normative state of the context, and the model ensures that these links are
kept to a minimum amount in order to minimise dependencies.

From a practical perspective, we intend to follow the model of distributed interpre-
tation introduced by Lesser et al. [10]: autonomous local nodes with a separate knowl-
edge base, each one responsible of their own area-of-interest, and with a decentralised
coordination. If we see normative contexts as interpretation areas of interest, our system
will provide a cooperative interpretation of brute events as relevant facts from a gover-
nance point of view, and thus will allow for norm compliance with high number of norms
and/or events to be handled efficiently by taking advantage of the resources of a dis-
tributed system. Coordination issues between nodes, such as conflict resolution, are out
of the scope of this paper due to space constraints, but we refer to [10] for general ideas
on how they can be tackled. In the current paper, we focus on how to split a normative
context into separate smaller normative contexts, that is, into separate areas of interest.

This paper is structured as follows: first, an overview of the formalism used to define
the normative monitor is provided. Secondly, this formalism is extended in order to detect
information (event) dependencies among the components of the normative context, and
among monitoring systems. The paper goes on by introducing an approach for dividing a
normative context among several monitors. Later, related work is analysed and compared
to the proposal presented in this paper. Finally authors’ conclusions are provided and
future work is outlined.

2. Normative Model

In this section, we introduce the formalism for monitoring normative systems which we
will use in the rest of the paper. For more details on this formalism, please refer to [2].

We assume the use of a predicate based propositional logic language LO with predi-
cates and constants taken from an ontologyO, and the logical connectives {¬,∨,∧}. The
set of all possible well-formed formulas of LO is denoted as wff(LO) and we assume
that each formula from wff(LO) is normalised in Disjunctive Normal Form (DNF).

Formulas in wff(LO) can be partially grounded, if they use at least one free variable,
or fully grounded if they use no free variables.

We define the state of the world st as the set of predicates holding at a specific
timestamp t, where st ⊆ O, and we will denote S as the set of all possible states of
the world, where S = P(O). We will call expansion F (s) of a state of the world s
as the minimal subset of wff(LO) that uses the predicates in s in combination of the
logical connectives {¬,∨,∧}. We define a substitution instance Θ = {x1 ← t1, x2 ←
t2, ..., xi ← ti} as the substitution of the terms t1, t2, ..., ti for variables x1, x2, ..., xi in
a formula f ∈ wff(LO). Thus, Θ(f(x1, x2, ..., xi)) ≡ f(t1, t2, ..., ti). We will denote
as ϑ(wff(LO),S) the set of all possible substitution instances containing the variables in
wff(LO) and the terms in S.

Definition 1 (Norm) A ’norm’ n is a tuple n = 〈fA, fM , fD, fw, w〉, where

• fA, fM , fD, fw ∈ wff(LO), w ∈ O,
• fA, fM , fD respectively represent the activation, maintenance, and deactivation

conditions of the norm; fw is the explicit representation of the target of the norm,
and w is the subject of the norm (role or agent).

We can formalise the norms of Definition 1 as the equivalent deontic expression
(using the formalism of [7]):

Property 1 A norm is considered fulfilled if, and only if:

fA → [Ow(Ewfw ≤ ¬fM)U fD]

where U is the CTL∗ until operator.

Intuitively, Property 1 states that after the norm activation, the subject is obliged to
see to it that the target becomes true before the maintenance condition is negated (either
the deadline is reached or some other condition is broken) until the norm is deactivated
(which is either when the norm is fulfilled or has otherwise expired).

Definition 2 (Violation handling norm3) A norm n′ = 〈f ′A, f ′M , f ′D, f ′w, w′〉 is a vi-
olation handling norm of n = 〈fA, fM , fD, fw, w〉, denoted as n n′ iff fA ∧
¬(fMUfD) ` f ′A

Violation handling norms are special in the sense that they are only activated once
another norm is violated. They are used as sanctioning norms, if they are to be fulfilled
by the norm violating actor (e.g., the obligation to pay a fine if the driver broke a traffic
sign), or as reparation norms, if they are to be fulfilled by an institutional actor (e.g. the
obligation of the authorities to fix the broken traffic sign).

A norm is defined in an abstract manner, affecting all possible participants enacting
a given role. Whenever a norm is active, we will say that there is a norm instance ni =
〈n, θ〉 for a particular norm n and a substitution instance Θ.

In order to track the normative state of an institution at any given point of time, we
will define three sets: an instantiation set IS, a fulfillment set FS, a violation set V S, and

3Informally: the unfulfillment of the obligation of norm n entails the activation of norm n′.

Event processed:

ei = 〈α, t, p〉

〈s〉
ep
B 〈s ∪ {p}〉

(1)

Norm instantiation:

activated(n,Θ) n ∈ N ¬∃n′ ∈ N,n′ n 〈n,Θ〉 /∈ is

〈is〉
nii
B 〈is ∪ {〈n,Θ〉}〉

(2)

Norm instance violation:

¬maintained(〈n,Θ〉) NR =
⋃

n n′
〈n′,Θ〉 n ∈ N 〈n,Θ〉 ∈ is 〈n,Θ〉 /∈ vs

〈is, vs〉
niv
B 〈(is− {〈n,Θ〉}) ∪NR, vs ∪ {〈n,Θ〉}〉

(3)

Norm instance fulfilled:

deactivated(n,Θ′) n ∈ N 〈n,Θ〉 ∈ is Θ′ ⊆ Θ

〈is, fs〉
nif
B 〈is− {〈n,Θ〉}, fs ∪ 〈n,Θ〉〉

(4)

Norm instance violation repaired:

〈n′,Θ〉 ∈ fs n, n′ ∈ N n n′ 〈n,Θ〉 ∈ vs

〈vs, rs〉
nir
B 〈vs− {〈n,Θ〉}, rs ∪ {〈〈n,Θ〉, 〈n′,Θ〉〉}〉

(5)

Figure 1. Inference rules for the transition relation B

a repairment set RS. Each of them contains norm instances {〈ni,Θj〉, ..., 〈ni′ ,Θj′〉}.
We adapt the semantics for normative states from [11]:

Definition 3 (Norm Lifecycle) Let ni = 〈n,Θ〉 be a norm instance, such that n =
〈fA, fM , fD, w〉, and s be a state of the world with an expansion F (s). Then we define
the lifecycle for a norm instance ni by the following normative state predicates:

activated(ni)⇔ ∃f ∈ F (s),Θ(fA) ≡ f
maintained(ni)⇔ ∃Θ′, ∃f ∈ F (s),Θ′(fM) ≡ f ∧Θ′ ⊆ Θ
deactivated(ni)⇔ ∃Θ′, ∃f ∈ F (s),Θ′(fD) ≡ f ∧Θ′ ⊆ Θ
instantiated(ni)⇔ ni ∈ IS
violated(ni)⇔ ni ∈ V S
fulfilled(ni)⇔ ni ∈ FS
repaired(ni, ni′)⇔ 〈ni, ni′〉 ∈ RS

where IS is the instantiation set, FS is the fulfillment set, V S is the violation set,
and RS is the set of those norm instances ni′ that have repaired a norm instance ni.

Definition 4 (Event) An event e is a tuple e = 〈α, t, p〉, where

• α ∈ O, an actor of the system,
• t is the timestamp of the reception of the event, and
• given a fully grounded subset of the set of states of the world p′ ∈ S : p = p′∨p =
¬p′

We define E as the set of all possible events, E = P(P × S).

Definition 5 (Normative Monitor) A Normative Monitor MN for a set of norms N is a
tuple MN = 〈N,S, IS, V S, FS,RS,E〉.

ΓMN
is the set of all possible configurations of a Normative Monitor MN .

Definition 6 (Labelled Transition System) The Labelled Transition System LTSMN
for

a Normative Monitor MN is defined by LTSMN
= 〈ΓMN

, L,B〉 where

• L = {ep, nii, niv, nif, nir} is a set of labels, respectively representing event
processed, norm instantiation, norm instance violation, norm instance fulfilled,
and norm instance violation repaired, and

• B is a transition relation such that B ⊆ ΓMN
× L× ΓMN

The inference rules for the transition relation B are described in Figure 1.
This formalism, as shown in [2], has been reduced to the semantics of general pro-

duction systems and an implementation in DROOLS is already available.

3. Formalizing Norm dependency

In this section we extend the monitoring formalism introduced in Section 2 for defining
dependencies between formulas. Then, these dependencies are then extended to depen-
dencies between norms and monitors.

3.1. Inter-formula dependency

Informally speaking, two formulas are dependent when they share common predicates
and, therefore, some parts of the state of the world may affect them both at the same
time. More formally, we define two formulas as mutually dependent if, and only if, there
is at least one possible state of the world in S at which both formulas have a grounding
of their predicates and both groundings share one or more predicates.

In order to formalise this, we introduce the transition function δ which given a for-
mula and the actual state of the world will output a not partial grounding:

Definition 7 (State grounding function) We define the function δ as:

δ : wff(LO)× S → ϑ(wff(LO),S)

Given f ∈ wff(LO) and σ ∈ S:

δ(f, σ) =

{
Θ iff ∃Θ : ∃g ∈ F (σ) : Θ(f) ≡ g
∅ otherwise

Using the transition function δ we can state that two formulas are dependent if, given
the same state of the world, it returns two sets of substitutions –groundings– with at least
one common element:

Definition 8 (Formula dependency) Given two formulas fx, fy such that fx, fy ∈
wff(LO) we state fx and fy are dependent, and denote it by fx! fy

fx! fy ⇔ ∃σ ∈ S : δ(fx, σ) ∩ δ(fy, σ) 6= ∅

The previous definitions do not take into consideration how the formulas are defined
and thus are too general. In our particular case, we use formulas in propositional logic
which are normalisable to DNF. The following definitions introduce how to compute
fx! fy with DNF formulas.

Given a formula f , we define D(f) as the DNF of f . The DNF is the disjunction of
a set of conjunctive clauses. Given a conjunctive clause f ′, the function C(f ′) returns the
set of predicates p on the clause. Formally: C(f ′) =

⋃
p∈f ′

p. We use C(f ′) to define the

function F(f) returning the predicates of a formula. The set of predicates of a formula
in DNF form is the union of the set of predicates of every conjunctive clause f ′ in the
formula:

Definition 9 (Predicates of a formula) Given the DNF form of a formula
f = f ′1 ∨ f ′2 ∨ ... ∨ f ′n, the function F(f) is defined as follows:

F(f) =
⋃

f ′∈D(f)

C(f ′)

For instance, let fM be a formula that defines when an agent is working either on the
camera ready version or on the presentation of a paper he has submitted to a conference:

fM = (camera ready of(R,P) ∧ submited to(P,C) ∧ working on(A,R)) ∨

presentation of(S, P) ∧ submited to(P,C) ∧ working on(A,S))

F(fM) = {camera ready of(R,P), presentation of(S, P), submited to(P,C),

working on(A,R), working on(A,S)}

Intuitively, we can see that given two formulas f, f ′, the fact that f and f ′ have at
least one common predicate is equivalent to the fact that they are dependent:

Proposition 1 Given two formulas f, f ′:

F(f) ∩ F(f ′) 6= ∅ ⇔ f! f ′

In this section, the concepts of predicate of a clause and predicate of a formula have
been used for introducing the concept of formula dependency. This last concept is used
in the next section for introducing the concept of norm dependency.

3.2. Inter-norm dependency

This subsection extends the definitions provided in Section 3.1 to provide a formal defi-
nition of dependencies between norms.

First, we use F(f) to define the functionQ(n) that returns the predicates of a norm:

Definition 10 (Predicates of a Norm) Given a norm n = 〈fA, fM , fD, fw, w〉, the func-
tion Q(n) is defined as follows:

Q(n) =
⋃

f∈{fA,fM ,fD}

F(f)

The concept of predicates of a norm allows us to introduce the concept of norm
dependency. We state two norms are dependent if their sets of predicates are not disjoint:

Definition 11 (Norm Dependency) Given two norms n and n′ we state they are depen-
dent, and denote it by n� n′ when:

n� n′ ⇐⇒ Q(n) ∩Q(n′) 6= ∅

The concept of norm-dependency is used to define the concept of normative monitor
dependency. Two normative monitors are dependent if and only if for at least one norm
in one of the monitors, there is a norm on the other monitor dependent on it:

Definition 12 (Monitor Dependency) Given two monitors MN and MN ′ we state they
are dependent, and denote it by MN �MN ′ when:

MN �MN ′ ⇐⇒ ∃n ∈ N, ∃n′ ∈ N ′ : Q(n) ∩Q(n′) 6= ∅

4. Architecture for distributed monitoring

This section introduces the architecture for splitting a normative context –bound to a
single monitor– to a set of normative contexts bound to a set of interconnected and dis-
tributed monitors. The idea is to perform the context splitting in such a way that the con-
nections between distributed monitors are reduced to the minimum. This will allow to
reduce communication overhead between monitors and to reach higher efficiency.

4.1. From norms to graphs

This subsection introduces the idea of modelling a set of norms as a graph. First of all, we
define the graph resulting from a set of norms. Then we introduce some basic concepts
on Strongly Connected Component (SCC from now on) applied to graphs. Finally, we
glue all these concepts together by applying SCCs [4] to sets of norms.

Definition 13 (Graph) We define a (directed) graph as a pair G = 〈V,E〉. V is a finite
set of nodes and E ⊆ V × V is a set of edges. We denote the existence of a path from v
to w of length k as path(v, w, k).

From the definition of a graph we can model the normative framework as a graph:

Definition 14 Given a monitor for a normative frameworkMN we define a graphGN =
〈GV , GE〉 such that:

1. The set of nodes in the graph is the set of norms: GV = N
2. ∀n,n′ ∈ N : (n, n′) ∈ GE ⇔ n� n′

GN denotes the graph representation of the norms in the normative monitor MN .

Now we are ready to apply our normative model to Strongly Connected Components.
A SCC of G = 〈V,E〉 is a maximal set C ⊆ V such that: ∀v, w ∈ C, path(v, w, i). A
SCC is not trivial if: ∀v, w ∈ C, path(v, w, i) ∧ i > 0. Given a node v ∈ V , SCC(v)
denotes the SCC that contains v.

Figure 2. Graph with norm dependencies and resulting strongly connected components(SCC)

Definition 15 (Component graph of a normative context) The component graph GN of
the normative context GN is GN (GN) = 〈V ′, E′〉, where

• V ′ = {SCC(v) | v ∈ V }
• E′ = {(C = SCC(v), C ′ = SCC(v′)) | C 6= C ′ ∧ (v, v′) ∈ E}

Figure 2 shows a set of norms and dependency relationships among them. SCC are
identified and depicted as clouds grouping the norms.

4.2. Distributing the graph

In the previous section we have introduced means for representing the normative context
associated to a monitor as a Graph, and computing the SCC of the graph. The idea is
replacing every SCC by a single vertex, in order to obtain a smaller graph, known as
component graph. We can reduce the original problem to sub-problems on each partic-
ular SCC, plus one more sub-problem on the component graph. If such sub-problems
are distributed among different computational nodes we have effectively distributed the
computational process associated to the original problem.

When applying the notion of graph and SCC to a Normative Monitor for a set of
norms, we can effectively reduce the problem of monitoring the original set of norms to
several sub-problems: monitoring the sub-set of norms in each SCC of the graph. Each
of these sub-problems can be computed by a different normative monitor. The process of
splitting a Normative Monitor consists of three steps: 1) Computing the graph associated
to the set of norms of the monitor. Then, computing the component graph of the graph.
2) For every SCC (that is, every node in the component graph), create an empty monitor
that will compute these sub-set of norms from now on. 3) For every monitor created,
subscribe it to another monitor4 when the corresponding SCC are connected by a vertex
on the component graph 14 vertices are created based on norm dependency. Therefore

4This subscription allows a monitor to notify events to other monitors dependent on it

we can state that two SCC are connected if they contain dependent norms. As seen in
Definition 12, norm dependency can be extended to Normative Monitor dependency.
Therefore, we can state that two monitors are connected when at least a pair of norms,
one of each monitor, are dependent between themselves.

Algorithm 1 Normative Monitor Splitting
Require: MN = 〈N,S, IS, V S, FS,RS,E〉

MonitorSet = ∅ : graph = GN : componentGraph = G(graph)
for all v ∈ componentGraph do

Mv = 〈v, S, ∅, ∅, ∅, ∅, E〉 : MonitorSet = MonitorSet ∪Mv

for all MN ,MN′ ∈MonitorSet do
if MN �MN′ then

Subscribe(MN ,MN′)

We will use the concepts and the algorithm introduced during this section to for-
malise monitor splitting. If a monitor becomes overflowed –e.g., it is receiving more
events than it can process–, it can be split by Algorithm 1.

5. Related work

Artikis [3] proposed to use a knowledge representation framework for distributing part
of the monitoring infrastructure in order to provide runtime support to large-scale multi-
agent systems regulated by norms. Artikis defines a scenario based on the Open Packet
World, where agents move on a grid-like world and score points when they deliver pack-
ets. Artikis runs a set of experiments on a 40 × 40 grid area and 10, 30 and 50 agents
respectively, finding out the time needed to compute the social and physical state (that
is, normative state) of a container is proportional to the number of events taking place in
the container. By distributing the grid that represents the world in two (20× 40) and four
(20×20) containers, a gain in performance is achieved. Our proposal is similar to Artikis’
in the sense that we aim to split the events into distributed and interconnected monitors.
However, there is a fundamental difference. Our approach does not rely on a physical
division of the normative context, and this provides an important benefit: our approach
can be applied to scenarios where the representation of the world is either unclear, hard
or even impossible to define.

Cheng [6] and Gupta [9] explore parallel execution as an approach to achieve higher
execution speed on rule-based expert systems. Cheng creates a vertex for each rule in
the production system and adds a direct edge between every pair of nodes if the rules
represented by the nodes are dependent. After that, it computes the SCC on the graph,
concluding every SCC is a forward independent rule-set. Gupta [9] explores high-speed
implementations of a particular kind of rule-based production system (OPS5) via a par-
allel implementation of the RETE algorithm. When compared to Cheng’s and Gupta’s
work, our approach is more generic, as we are building a dependency graph of a set of
norms, no matter how these norms are computed internally by each monitor (either pro-
duction rules, Java programs or alternative approaches). Our approach has been adapted
to new techniques, mainly, substituting parallelism for distributed computing.

6. Conclusions and further work

In this paper we have presented a model to reduce a normative context to a SCC com-
ponent graph, and thus facilitating the distribution in real-time of the interpretation of
normative states and addressing the problem of efficiency of norm-compliance monitor-
ing for the governance of distributed architectures. The use of SCC’s allows us to apply
state-of-the-art mechanisms, such as component detection algorithms [4]. Although our
focus in this paper has been on regulative norms, we intend to extend the support to con-
stitutional norms [1]. An important aspect of our approach is that, instead of focusing
on the events, we intend to tackle the interpretation part, which is often rather computa-
tional consuming when working at a symbolic level. Thus, we have an architecture for
distributed interpretation [10]. While in this paper we have focused on the structural part
of this problem –i.e., how to split the context–, there is also the topic of how to coordinate
the local nodes for handling their dependencies, and the topic of improving the context
merging procedure to better balance load in the remaining monitors. We will present our
approach to these issues in immediate future work.

Finally, we still have no extensive experimental results, but we will provide them
in further work, along with an analysis of the algorithmic complexity of the distributed
system and a procedure for merging divided contexts.

References

[1] H. Aldewereld, S. Alvarez-Napagao, F. Dignum, and J. Vázquez-Salceda. Making Norms Concrete. In
Proc. of 9th Int. Conf. on AAMAS 2010, pages 807–814, May 2010.

[2] S. Alvarez-Napagao, H. Aldewereld, J. Vázquez-Salceda, and F. Dignum. Normative Monitoring: Se-
mantics and Implementation. In COIN 2010, pages 321–336. Springer, Berlin Heidelberg, May 2011.

[3] A. Artikis, M. Sergot, and J. Pitt. Specifying norm-governed computational societies. ACM Transactions
on Computational Logic, 10(1):1–42, Jan. 2009.

[4] R. Bloem, H. N. Gabow, and F. Somenzi. An Algorithm for Strongly Connected Component Analysis
in n log n Symbolic Steps. In Formal Methods in System Design, pages 37–56. Springer Science +
Business Media, Inc., The Netherlands, 2006.

[5] F. Brazier, F. Dignum, V. Dignum, M. H. Huhns, T. Lessner, J. Padget, T. Quillinan, and M. P. Singh.
Governance of Services: A Natural Function for Agents. In Proceedings of the 8th International Work-
shop on Service-Oriented Computing: Agents, Semantics and Engineering, Toronto, Canada, May 2010.

[6] A. M. K. Cheng. Parallel execution of real-time rule-based systems. In Proceedings of Seventh Interna-
tional Parallel Processing Symposium, pages 779–786, Newport, CA , USA, Apr. 1993. IEEE.

[7] F. Dignum, J. Broersen, V. Dignum, and J.-J. Meyer. Meeting the Deadline: Why, When and How. In
Formal Approaches to Agent-Based Systems, pages 30–40. Springer, Berlin Heidelberg, Apr. 2004.

[8] C. L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern match problem. Artificial
Intelligence, 19:17–37, 1982.

[9] A. Gupta, C. Forgy, and A. Newell. High-speed implementations of rule-based systems. ACM Transac-
tions on Computer Systems (TOCS), 7(2):119–146, May 1989.

[10] V. R. Lesser and L. D. Erman. Distributed interpretation: A model and experiment. IEEE Transactions
on Computers, 29(12):1144–1163, Dec. 1980.

[11] N. Oren, S. Panagiotidi, J. Vázquez-Salceda, S. Modgil, M. Luck, and S. Miles. Towards a formalisation
of electronic contracting environments. In Coordination, Organizations, Institutions and Norms in Agent
Systems IV, pages 156–171. Springer, Berlin / Heidelberg, May 2009.

