
WizArg: Visual Argumentation
Framework Solving Wizard

Ignasi GÓMEZ-SEBASTIÀ, Juan Carlos NIEVES a,1

a Knowledge Engineering and Machine Learning Group

Abstract. Extension-based argumentation semantics have shown to be a suitable
approach for performing practical reasoning. An important concern in extension-
based-argumentation semantics is the computational complexity of the decision
problems that has been shown to range from NP-complete to Π

(p)
2 -complete.

In this paper, we introduce a generic extension-based argumentation semantics
solver, that is called WizArg. The WizArg project consists in two main compo-
nents: The WizArg Argumentation library (that can be used by any generic software
to solve argumentation frameworks and answer questions about extension-based-
argumentation semantics) and the WizArg front-end (a generic software component
that allows users to create, save, and load their own argumentation frameworks).

Keywords. Argumentation Theory, Argumentation-reasoning tool, Answer-set
programming.

Introduction

Argumentation theory is a formal discipline within Artificial Intelligence where the aim
is to make a computer assist in or perform the act of argumentation. During the last
years, argumentation has been gaining increasing importance in Multi-Agent Systems
(MAS), mainly as a vehicle for facilitating rational interaction (i.e. interaction which
involves the giving and receiving of reasons) [2]. An agent may also use argumentation
techniques to perform its individual reasoning on the need of making decisions under
complex preference policies or in highly dynamic environments.

Although several approaches have been proposed for capturing representative pat-
terns of inference in argumentation theory, Dung’s approach, presented in [4], is a unify-
ing framework which has played an influential role on argumentation research and Arti-
ficial Intelligence (AI). Dung’s approach is regarded as an abstract model where the main
concern is to find the set of arguments which are considered as acceptable i.e., to find
sets of arguments which represent coherent points of view. The strategy for analyzing
the attack relationship, and then inferring the sets of acceptable arguments, is based on
extension based semantics such as grounded, stable, preferred and complete semantics.
Even though each of these argumentation semantics represents different patterns of se-
lection of arguments all of them are based on the concept of an admissible set. Some au-
thors have pointed out that the grounded, stable and preferred semantics are of particular

1Departament de Llenguatges i Sistemes Informàtics. Universitat Politècnica de Catalunya (UPC)
C/Jordi Girona 1-3, E-08034 , Barcelona, Spain. E-Mail:{igomez, jcnieves}@lsi.upc.edu

Figure 1. Decision problems in finite argumentation frameworks

interest since they capture representative patterns of inference in argumentation theory
[1,2].

Even thought Dung’s approach is a versatile and powerful tool for the abstract anal-
ysis of defeasible reasoning, one can find some potential problems, i.e., emptiness, non-
existence, multiplicity [2]. In order to manage these problems, one can find different ap-
proaches for defining new extension-based argumentation semantics such as the based
on strongly connected components [1] and logic programming semantics [10]. Among
these new argumentation semantics, the CF2 argumentation semantics is a representa-
tive semantics which overcomes some problems of extension-based semantics based on
admissible sets. CF2 was introduced in [1] and has been characterized in terms of logic
programming semantics [10,11].

Another important concern in abstract argumentation theory is the computational
complexity of the decision problems that has been shown to range from NP-complete
to Π

(p)
2 -complete. A summary of this is given in Figure 1 (taken from [5]). Observe

that the figure only presents complexity results with respect to the stable and preferred
semantics; however, one can see that the CF2 semantics are, in the best case, as complex
(in computational terms) as the preferred semantics.

From Figure 1, one can see that the computational complexity of the decision prob-
lem of argumentation semantics is hard. However, recognizing the benefits of Dung’s ap-
proach, a number of algorithms has been proposed in the literature [9,11]. There are sev-
eral platforms/tools for implementing argumentation-based systems, e.g., [6]. However,
they do not consider extension-based argumentation semantics, e.g., preferred seman-
tics, CF2 semantics. The lack of libraries supporting extension-based argumentation in-
ference increase the gap between theoretical argumentation results and extension-based
argumentation systems.

Nowadays in the close relationship between extension-based argumentation seman-
tics and logic programming semantics, there are novel results which have shown that
extension-based argumentation semantics can be characterized in terms of logic pro-
gramming semantics [9,11]. In fact, not only a logic programming approach can char-
acterize extension-based argumentation semantics but also it can define new extension
based argumentation semantics [10]. These results suggest some approaches for using
algorithms of general purpose such as the algorithm of the answer set solver DLV [3] in
order to implement argumentation inference.

In this paper we introduce the WizArg2 project, which aims to provide a library
that enables generic computational processes (e.g. Java processes) to use argumentation
metainterpreters. The project includes a demonstration of libraries usage in the form of

2http://sourceforge.net/projects/wizarg/

a front-end where users can design their own argumentation frameworks, solve them
using the WizArg libraries and visualize the results (that is, the classification of each
argument as justified, defeated or irresolvable). At the same time, this paper shows how
a generic-purpose ASP (Answer Set Programming) algorithms can be used to explore
argumentation-based reasoning methods. The current version of WizArg gives support to
the grounded, stable, preferred and CF2 argumentation semantics in order to give answer
to questions of the form presented in Figure 1.

The rest of the paper is structured as follows: In §1, some concepts of argumentation
theory are presented. In §2, the WizArg library is described. In the last section, our
conclusions and the issues of our future work are outlined.

1. Background

This section is going to present the formal definitions of the extension-based semantics
which are supported by the WizArg library, i.e., the grounded, stable, preferred and CF2
semantics, and a short overview of an argumentation labeling process.

1.1. Extension based argumentation semantics based on admissible sets

A fundamental Dung’s definition is the concept called argumentation framework which
is defined as follows:

Definition 1 [4] An argumentation framework is a pair AF = 〈AR, attacks〉, where
AR is a set of arguments, and attacks is a binary relation on AR, i.e.attacks⊆ AR×AR.

Following Dung’s reading, we say that A attacks B (or B is attacked by A) if
attacks(A,B) holds. Similarly, we say that a set S of arguments attacks B (or B is at-
tacked by S) if B is attacked by an argument in S.

Definition 2 [4]

• A set S of arguments is said to be conflict-free if there are no arguments A, B in S
such that A attacks B.

• An argument A ∈ AR is acceptable with respect to a set S of arguments if and
only if for each argument B ∈ AR: If B attacks A then B is attacked by S

• A conflict-free set of arguments S is admissible if and only if each argument in S
is acceptable w.r.t. S.

The (credulous) semantics of an argumentation framework can be defined by the
notion of the stable and preferred extensions.

Definition 3 [4]

• A preferred extension of an argumentation framework AF is a maximal (w.r.t.
inclusion) admissible set of AF.

• A conflict-free set of arguments S is called a stable extension if and only if S
attacks each argument which does not belong to S.

Dung also defined a skeptical semantics which is called grounded semantics and it
is defined in terms of a characteristic function.

Definition 4 [4] The characteristic function, denoted by FAF , of an argumentation
framework AF = 〈AR, attacks〉 is defined as follows:

FAF : 2AR → 2AR

FAF (S) = {A| A is acceptable w.r.t. S }

Definition 5 [4] The grounded extension of an argumentation framework AF, denoted
by GEAF , is the least fixed point of FAF

1.2. Semantics CF2

We present some definitions w.r.t. the argumentation semantics CF2. The details of these
definitions are presented in [1].

Definition 6 [1] Given an argumentation framework AF = 〈AR, attacks〉, the binary
relation of path-equivalence between nodes, denoted as PEAF ⊆ (AR×AR), is defined
as follows:
— ∀a ∈ AR, (a, a) ∈ PEAF ,
— given two distinct nodes a, b ∈ AR, (a, b) ∈ PEAF if and only if there is a path from
a to b and a path from b to a.

Given an argumentation framework AF = 〈AR, attacks〉, the strongly connected
components of AF are the equivalent classes of nodes which are defined according to
path-equivalence relaction. The set of the strongly connected components of AF is de-
noted as SCCSAF . Given a node a ∈ AR, the strongly connected component a belongs
to is denoted as SCCAF (a).

Definition 7 [1] Let AF = 〈AR, attacks〉 be an argumentation framework, and let S ⊆
AR be a set of arguments. The restriction of AF to S is the argumentation framework
AF ↓S= 〈S, attacks ∩ (S × S)〉.

Considering an argumentation framework, AF = 〈AR, attacks〉, a set E ⊆ AR
and a strongly connected component S ∈ SCCSAF . We will present the definition of
some useful sets, the formal definition of these sets is in [1]. The set DAF (S,E) consists
of the nodes of S attacked by E from outside S, the set UAF (S,E) consists of the
nodes of S that are not attacked by E from outside S and are defended by E (i.e., their
defeaters from outside S are all attacked by E), and PAF (S,E) consists of the nodes
of S that are not attacked by E from outside S and are not defended by E (i.e., at least
one of their defeaters from outside S is not attacked by E). Finally, UPAF (S,E) =
(S \DAF (S,E)) = (UAF (S,E) ∪ PAF (S,E)).

Here, we define GF (AF,C) for an argumentation framework AF = 〈AR, attacks〉
and a set C ⊆ A, representing the defended nodes of AF : two cases have to be consid-
ered in this respect.

If AF consists of exactly one strongly connected component, it does not admit a
decomposition in which can be applied the directionality principle, therefore it has to
be assumed that GF (AF,C) coincides in this case with a base function, denoted as

BFS(AF,C), that must be assigned in order to characterize a particular argumentation
semantics S.

On the other hand, if AF can be decomposed into several strongly connected com-
ponents, then, GF (AF,C) is obtained by applying recursively GF to each strongly con-
nected component of AF , deprived of the nodes in DAF (S,E). Formally, this means that
for any S ∈ SCCSAF , (E ∩ S) ∈ GF (AF ↓UPAF (S,E), C

′), where C ′ represents the
set of defended nodes of the restricted argumentation framework AF ↓UPAF (S,E). The
set C ′ can be determined by taking into account both the attacks coming from outside
AF and those coming from other strongly connected components of AF .

Definition 8 [1] A given argumentation semantics S is SCC-recursive if and only if for
any argumentation framework AF = 〈AR, attacks〉, ES(AF) = GF (AF,AR), where
for any AF = 〈AR, attacks〉 and for any set C ⊆ AR, the function GF (AF,C) ⊆ 2AR

is defined as follows: for any E ⊆ AR, E ∈ GF (AF,C) if and only if

• in case |SCCSAF | = 1, E ∈ BFS(AF,C),
• otherwise,∀S ∈ SCCSAF (E ∩ S) ∈ GF (AF ↓UPAF (S,E)

, UAF (S,E) ∩ C).

where BFS(AF,C) is a function, called base function, that, given an argumentation
framework AF = 〈AR, attacks〉 such that |SCCSAF | = 1 and a set C ⊆ AR, gives a
subset of 2AR.

Definition 8 does not define any particular semantics, but defines a general structure,
where if one changes the base function, BFS(AF,C), one can induce several semantics.
In particular, when BFS(AF,C) is the function that returns all sets that are free of
maximal conflicts, max_conflict_freeSets(AF), then CF2 is obtained.

1.3. Extension-based Argumentation Semantics via Labeling

The labeling process is based in a labeling mapping. In this paper, we are going to con-
sider the mapping presented by Caminada in [7]. A labeling mapping is a set of labels
(one per argument in the framework) where each label can represent three different val-
ues: IN, OUT and UNDEC. This mapping is defined as follows: Given an argumentation
framework AF = 〈AR, attacks〉, for any argument a ∈ AR one can define functions
IN(a), OUT (a) and UNDEC(a) that return true if the argument a is labeled IN ,
OUT and UNDEC respectively, and false otherwise. IN , OUT and UNDEC also
represent the sets of arguments labeled IN , OUT and UNDEC respectively.

Some authors have shown that by considering a mapping process one can character-
ize the extension-based argumentation semantics defined by Dung in [4] and also some
other new argumentation semantics that have been defined by the argumentation com-
munity.

2. WizArg software

The WizArg software aims to provide generic Java processes with argumentation-based
reasoning capabilities. The WizArg project allows generic software processes to use ar-
gumentation meta-interpreters, effectively enabling them to solve argumentation frame-
works using a wide range of argumentation semantics. By solving argumentation frame-

Figure 2. WizArg Argumentation library example: framework solving

works, generic software components can show intelligent behavior, such as: a) negotia-
tion [13] including skeptical and credulous reasoning b) knowledge refination [8], includ-
ing justification of information and processes to deal with dynamic on incomplete infor-
mation. The WizArg project consists in two main components: 1) The WizArg Argumen-
tation library, that can be used by any generic software to solve argumentation frame-
works and answer questions about them, such as: is an argument credously/skeptically
accepted in a given framework for a given semantics? 2) The WizArg front-end, a generic
software component that allows users to create, save, and load their own argumentation
frameworks. Argumentation frameworks can be processed by the Argumentation library,
enabling users to visualize the framework solutions and interactively ask questions about
them.

2.1. WizArg Argumentation library

The WizArg Argumentation library, makes use of the DLV wrapper project [12] to invoke
the logic programs (which characterize the extension-based argumentation semnatics)
that act as argumentation meta-interpreters for the different semantics implemented. The
WizArg library hides the invocation details to the user, enabling an easy and fast access
to the different argumentation meta-interpreters. The WizArg library provides two main
capabilities: Framework solving and question answering.

The framework solving capability is performed by the SolveFramework operation of
the FrameworkSolver class. This operation takes as inputs: a) a file with an argumentation
framework, b) filter (typically ’IN,OUT,UNDEC’) c) the name of the semantics to be
used. The operation will return a set of answers, that is, possible solutions for the tuple
framework - semantics specified, filtered via the filter parameter. Each of this answers
contains a set of labeled arguments representing the solution. The labels used are based
on the ones defined in Section 1.3, that is, IN for accepted arguments, OUT for defeated
arguments and UNDEC for the ones that are undecidable. Figure 2 shows an example of
the invocation of the SolveFramework function, including: 1) graphical representation of
the framework used in the example, 2) representation of this framework on the file used
as input. 3) Java code used for invoking the function, 4) graphical representation of the
result returned by the SolveFramework function, including three possible solutions with
three labeled arguments each.

Please, notice that, given an argumentation framework AF = 〈AR, attacks〉 the
input file includes a representation of the arguments of the form ar(X) such that X ∈

AR and a representation of the attack relations of the form at(X,Y) such that (X,Y) ∈
attacks.

Figure 3. WizArg Argumentation library question answering example and WizArg architecture

The question answering capability is performed by the SolveQuery operation of the
FrameworkSolver class. This operation takes as inputs: a) a file with an argumentation
framework, b) the name of the semantics to be used, c) the question to be answered, that
is, a label (IN,OUT or UNDEC) applied to an argument in the framework (e.g. IN(x)?) d)
the type of reasoning to be performed, either brave or cautious3. The operation will return
a text String with the answer to the question. Figure 3 shows an example of the invocation
of the SolveQuery function, including: 1) graphical representation of the framework used
in the example, 2) representation of this framework on the file used as input. 3) Java code
used for invoking the function, 4) result returned by the function, including evidence to
support it.

Figure 3 also shows the information flow of an invocation to the WizArg Argumen-
tation library. First, an External application invokes the argumentation library (1) for
solving an argumentation framework or answering questions about it for a given seman-
tics. Then, the Framework Solver class gathers parameters about the semantics via the
Singleton class(2). This parameters include the name of the dlv meta-interpreter file to
be used. Later, the Framework Solver invokes the DLV Wrapper (3) with the parameters
gathered both from the invocation and the Singleton class. It is time for the DLV Wrap-
per to solve the framework, picking up the meta-interpreter to be used from the set of
Meta-interpreter files (4). The associations semantic - metainterpreter are stored on the
Singleton class. Then, the results are returned to the Framework Solver(5) that finally
passes them to the External Application (6).

WizArg is an open-source project, and thus, advanced users can modify its code
adapting it to their needs. One of the most immediate adaptations one can think of is
adding new meta-interpreters to support new argumentation semantics or modify the ex-
isting ones. The WizArg library presents an architecture that makes this modifications
easy and immediate. Modifying an existing meta-interpreter is as easy as editing the as-
sociated dlv file. This operation can be done even on the fly, while a program using the
WizArg library (such as the WizArg front-end) is running. Adding a new meta-interpreter

3A fact is bravely true if it is true in at least one of the possible models of the world. A fact is cautiously true
if it is true in all possible models of the world

requires following these steps: a) create a new dlv file for the meta-interpreter b) Add
the parameters of the new semantics to the Singleton file, modifying functions translate-
Semantics (to enable the WizArg front-end to use this semantics), initFileSemanticsMap
(associating the semantics to the meta-interpreter file) and initDeterministicSemantic-
sMap (typically, setting it as non deterministic semantics). Future versions of the project
will include a meta-interpreter configuration file to make this process even easier.

2.2. WizArg front-end

The WizArg front-end makes use of the WizArg Argumentation library and the Jung4 li-
braries. The WizArg library provides means to effectively solve the argumentation frame-
works specified by the user, and answer questions about them. The Jung libraries allow
the user to graphically design their own argumentation frameworks (or modify the ones
provided along with the WizArg software) and show the results of the solving process.

The WizArg front-end takes an approach based on labeling (see Section 1.3) for
representing the argumentation frameworks graphically. Given an argumentation frame-
work AF = 〈AR, attacks〉, WizArg is drawing a directed graph of the form Graph =
〈Nodes,Edges〉 where the nodes are the arguments (i.e. Nodes = AR) and there is a
directed edge between two arguments when there is an attack relation between them (i.e.
∀X,Y ∈ AR∧ ∈ Edges : 〈X,Y 〉 ∈ attacks iff 〈X,Y 〉 ∈ Edges). Notice that for
any element in the Edges set the first node represents the origin node (corresponds to
attacker argument on Argumentation Framework) and the second one, destination node
(corresponds to attacked argument on Argumentation Framework).

When solving argumentation frameworks, the WizArg front-end will paint the nodes
following a labeling approach, applying the following colors to each of the nodes: a)
red if the argument represented by the node is defeated (corresponds to OUT label) b)
green if the the argument represented by the node is accepted (corresponds to IN label) c)
yellow if the argument represented by the node is undecidable (corresponds to UNDEC
label).

When designing new argumentation frameworks or modifying existing ones, user
can add and delete nodes or attack relations, and move existing nodes (making the graph
that represents the framework easier to understand visually). When visualizing results,
user is not allowed to add or delete elements, but can freely move existing ones. What’s
more, user can make use of a wide range of graph drawing algorithms to automatically
order the elements on the graph.

Figure 4 shows the different windows available on the WizArg front-end: 1) Main
windows where user can choose to edit argumentation frameworks (a) or solve them (b)
by specifying the framework (c) and the semantics to be used (d) 2) Framework editing
window where users can define arguments and attack relations on the editing zone (e)
(clicking on the editing zone will create an argument, clicking on an argument will create
an arrow that can be dropped on an argument effectively creating an attack relation),
import existing frameworks to modify them (f) and save the actual framework to a format
the WizArg library can process (g) 3) Framework solving window where users can see
the results of the framework solving on the solving zone (h), re-draw the framework to
visualize it better (i), check the different solutions available (j) and ask several questions
regarding the framework (k).

4http://jung.sourceforge.net/index.html

Figure 4. WizArg front-end example

3. Conclusions and future work

The Dung’s argumentation style, introduced in [4] and extended by several authors
[1,10], is a versatile and a powerful tool for defeasible reasoning. However, one can
accept that there is a lack of open source planforms/tools for implementing extension-
based argumentation systems. This lack of friendly libraries supporting argumentation
inference bases on extensions-based argumentation semantics increase the gap between
theoretical argumentation results and extension-based argumentation systems. Possibly
one of the main reasons of this lack of general purpose libraries for supporting argumen-
tation inference is the fact that the computational complexity of argumentation inference
is hard, see Figure 1.

In this paper, we introduce a general purpose library for supporting and exploring
extension-based argumentation semantics, this library is called WizArg. The WizArg
project allows generic software processes to use argumentation meta-interpreters, effec-
tively enabling them to solve argumentation frameworks using a wide range of argumen-
tation semantics. The current version of WizArg gives support to the grounded, stable,
greferred and CF2 argumentation semantics in order to give answer to questions of kind
presented in Figure 1. The WizArg project consists in two main components: 1) The Wiz-
Arg Argumentation library, that can be used by any generic software to solve argumen-
tation frameworks and answer questions about them, 2) The WizArg front-end, a generic
software component that allows users to create, save, and load their own argumentation
frameworks. Argumentation frameworks can be processed by the Argumentation library,
enabling users to visualize the framework solutions and ask questions about them.

A line of future work is on integrating the WizArg library on Multi-Agent plat-
forms based on Java Code (such as AgentScape5 and PAWS6). This would allow agents
to perform argumentation based reasoning in order to solve different issues. Future
lines of work include tackling two main problems via argumentation based reasoning:

5http://www.iids.org/research/aos
6http://sourceforge.net/projects/paws-ai/

1) Distributed plan agreement. When a global plan, divided into different sub-plans
has to be enacted collaboratively between a set of intelligent agents, and each of this
agents can choose among a set of different alternatives to enact its sub-plan. Agents
can play arguments in favor or against the enactment of a certain sub-plan alternative
and argumentation-based reasoning can help to reach a justified global agreement about
which alternatives have to be chosen in order to collaboratively enact the global plan.
2) Meta-reasoning. When a given agent has several reasoning modules available (e.g.
CBR, inference-based reasoning, etc.) means to decide which one of them will be used
on a given situation are required. Exploring how argumentation based reasoning can help
in providing a feasible and efficient way of taking this decision even in the presence of
dynamic and uncertain information (a flexible alternative to the static rule-based process
used on most meta-reasoning methods) is an open line of future work.

It must be remarked the authors want the WizArg project to be an active project. The
most important line of future work is to keep the WizArg project alive, extending and
improving int as the community using it requires so.

Acknowledgements

We are grateful to anonymous referees for their useful comments. This research has been
partially supported by the EC founded project ALIVE (FP7-IST-215890). The views
expressed in this paper are not necessarily those of the ALIVE consortium.

References

[1] P. Baroni, M. Giacomin, and G. Guida. SCC-recursiveness: a general schema for argumentation seman-
tics. Artificial Intelligence, 168:162–210, October 2005.

[2] T. J. M. Bench-Capon and P. E. Dunne. Argumentation in artificial intelligence. Artificial Intelligence,
171(10-15):619–641, 2007.

[3] S. DLV. Vienna University of Technology. http://www.dbai.tuwien.ac.at/proj/dlv/, 1996.
[4] P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,

logic programming and n-person games. Artificial Intelligence, 77(2):321–358, 1995.
[5] P. E. Dunne. Computational properties of argument systems satisfying graph-theoretic constraints. Ar-

tificial Intelligence, 171(10-15):701–729, 2007.
[6] A. J. García and G. R. Simari. Defeasible logic programming: An argumentative approach. Theory and

Practice of Logic Programming, 4(1-2):95–138, 2004.
[7] S. Modgil and M. Caminada. Argumentation in Artificial Intelligence, chapter Proof Theories and Al-

gorithms for Abstract Argumentation Frameworks, pages 105–129. Springer, 2009.
[8] D. P. N. Karacapilidis and T. Gordon. An argumentation based framework for defeasible and qualitative

reasoning. In Advances in Artificial Intelligence, volume 1159/1996 of Lecture Notes in Computer
Science, pages 1–10. Springer-Verlag Berlin Heidelberg, 2006.

[9] J. C. Nieves, M. Osorio, and U. Cortés. Preferred Extensions as Stable Models. Theory and Practice of
Logic Programming, 8(4):527–543, July 2008.

[10] J. C. Nieves, M. Osorio, and C. Zepeda. A Schema for Generating Relevant Logic Programming Se-
mantics and its Applications in Argumentation Theory. Fundamenta Informaticae, accepted, 2010.

[11] M. Osorio, J. C. Nieves, and I. Gómez-Sebastiá. CF2-extensions as Answer-set Models. In the Third
International Conference on Computational Models of Argument COMMA’2010.

[12] F. Ricca. A java wrapper for dlv. Answer Set Programming, 2003.
[13] M. Schroeder. An efficient argumentation framework for negotiating autonomous agents. In Multi-

Agent System Engineering, volume 1647/1999 of Lecture Notes in Computer Science, pages 140–149.
Springer-Verlag Berlin Heidelberg, 2007.

