
CF2-extensions as Answer-set Models

Mauricio Osorio a,1

a CENTIA

Juan Carlos Nieves and Ignasi Gómez-Sebastià b,2

b Knowledge Engineering and Machine Learning Group

Abstract. Extension-based argumentation semantics have shown to be a suitable
approach for performing practical reasoning. Since extension-based argumentation
semantics were formalized in terms of relationships between atomic arguments, it
has been shown that extension-based argumentation semantics based on admissi-
ble sets such as stable semantics can be characterized in terms of answer sets. In
this paper, we present an approach for characterizing SCC-recursive semantics in
terms of answer set models. In particular, we will show a characterization of CF2
in terms of answer set models. This result suggests that not only extension-based
argumentation semantics based on admissible sets can be characterized in terms of
answer sets; but also extension-based argumentation semantics based on Strongly
Connected Components can be characterized in terms of answer sets.

Keywords. Argumentation Theory, Answer-set Semantics, Extension-based Argumentation
Semantics.

1. Introduction

Although several approaches have been proposed for capturing representative patterns
of inference in argumentation theory, Dung’s approach, presented in [8], is a unifying
framework which has played an influential role on argumentation research and Artifi-
cial Intelligence (AI). The kernel of Dung’s framework is supported by the following
extension-based argumentation semantics (also called abstract argumentation seman-
tics): grounded, stable, preferred and complete semantics. Even though each of these ar-
gumentation semantics represents different patterns of selection of arguments all of them
are based on the concept of an admissible set. An admissible set can be regarded as a
coherent point of view from a conflicting set of arguments. When Dung introduced his
argumentation approach, he proved that some extension-based argumentation semantics
can be regarded as a special form of logic programming with negation as failure. This re-
sult defines a general method for generating metainterpreters for argumentation systems
as well as a general method for studying the abstract argumentation semantics’ prop-
erties in terms of logic programming semantics’ properties. It is worth mentioning that
following Dung’s approach, other authors have defined additional argumentation seman-

1Universidad de las Américas, Sta. Catarina Mártir, Cholula, Puebla, 72820 México. E-
Mail:{osoriomauri@googlemail.com

2Departament de Llenguatges i Sistemes Informàtics. Universitat Politècnica de Catalunya (UPC)
C/Jordi Girona 1-3, E-08034 , Barcelona, Spain. E-Mail:{jcnieves,igomez}@lsi.upc.edu

tics, such as the semi-stable semantics [4], ideal-semantics [9] and the SCC-recursive
semantics [2].

Extension-based argumentation semantics based on admissible sets have shown
unexpected behaviors when computing some argumentation frameworks (for instance,
frameworks presenting odd-length cycles) [2, 17]. In these cases approaches such as
the SCC-recursive semantics [2] come in handy. This approach is based on splitting
an argumentation framework in strongly connected components (obtaining sets of ar-
guments whose status does not depend on the status of arguments outside the set) and
processing them separately. An order (known as directionality principle) is defined be-
tween the resulting strongly connected components. Given two strongly connected com-
ponents SCCA and SCCB it is said that SCCA precedes SCCB if there is a directed path in
〈AR, attacks〉 from any argument in SCCA to an argument in SCCB. Therefore, the value
of (at least) one argument in SCCB depends on the status of (at least) one argument in
SCCA. The processing of the strong connected components is performed in a recursive
way, where the results of one strong connected component affect the following ones.
This approach is remarkable for two reasons: a) it is powerful, as it is able to properly
process semantics on argumentation frameworks where other approaches do not show
proper behaviors b) it is versatile, on the definition of the approach, the base functions
used to process the strongly connected components is left open, allowing the definition
of a wide range of functions to capture different semantics.

According to some analysis of basic properties which can be expected from any
extension-based argumentation semantics [1], CF2 argumentation semantics is consid-
ered as the most accepted from the ones defined in terms of SCC-recursive semantics [2].

In this paper, following the recent results with respect to extension-based argu-
mentation semantics in terms of logic programming semantics with negation as fail-
ure [5, 10, 15, 16, 18], we will show that not only extension-based argumentation seman-
tics based on admissible sets can be characterised in terms of answer set models; but also
SCC-recursive semantics such as the CF2 can be characterized in terms of answer set
models. In particular, we will present a characterization of CF2 in terms of answer set
models. This characterization suggests an approach for characterizing other extension-
based argumentation semantics based on the SCC-recursive approach and an easy-to-use
form for inferring the CF2 extensions of an argumentation framework.

The rest of the paper is structured as follows: In §2, a short presentation of basic
concepts of answer set programming is presented. Also a short overview of extension-
based argumentation semantics is presented. In §3, an approach for characterizing SCC-
recursive semantics in terms of answer set models is presented. In particular, a charac-
terization of CF2 is formalized. This section includes a subsection for illustrating the use
of our results. In the last section, our conclusions are presented.

2. Background

In this section, we present a short presentation of basic concepts. Two main topics are
covered: a) the syntax of logic programs, along with the definition of Answer set seman-
tics; b) extension-based argumentation semantics, including an overview of Dung’s and
Baroni et al.’s approaches [2, 8].

2.1. Logic Programs

This subsection introduces the syntax of logic programs, along with a brief introduction
to Answer set semantics.

2.1.1. Syntax

A signatureL is a finite set of elements that we call atoms. A literal is an atom, a (positive
literal), or the negation of an atom not a (negative literal). A disjunctive clause is a clause
of the form: a1 ∨ . . . ∨ am ← am+1, . . . , aj, not aj+1, . . . , not an where ai is an atom,
1 ≤ i ≤ n. When n = m and m > 0, the disjunctive clause is an abbreviation of the
fact a1 ∨ . . . ∨ am ← > where > is an atom that always evaluate to true. When m = 0
and n > 0 the clause is an abbreviation of ⊥ ← a1, . . . , aj, not aj+1, . . . , not an where
⊥ is an atom that always evaluate to false. Clauses of this form are called constraints. A
disjunctive logic program is a finite set of disjunctive clauses. A given set of disjunctive
clauses {γ1, . . . , γn} is also represented as {γ1; . . . ; γn} to avoid ambiguities with the
use of comma in the body of the clauses.

We denote by LP the signature of P, i.e., the set of atoms that occur in P. Given a
signature L, we write ProgL to denote the set of all the programs defined over L.

2.1.2. Answer Set Semantics

The following definition of an answer set for disjunctive logic programs was presented
in [12]: Let P be any disjunctive logic program. For any set S ⊆ LP, let PS be the logic
program obtained from P by deleting: i) each clause that has a formula not a in its body
with a ∈ S ii) all formulæ of the form not a in the bodies of the remaining clauses.
Clearly PS does not contain not, hence S is called an answer set of P if and only if S is a
minimal model of PS.

2.2. Extension-based argumentation semantics

This subsection introduces extension-based argumentation semantics starting from
Dung’s approach.

2.2.1. Dung’s approach

In his work, Dung introduces the concept of argumentation framework which is defined
as follows (All the definitions used in this subsection where taken from [8]):

Definition 1 An argumentation framework is a pair AF = 〈AR, attacks〉, where AR is
a set of arguments, and attacks is a binary relation on AR, i.e. attacks ⊆ AR × AR. A
attacks B (or B is attacked by A) if attacks(A,B) holds.

Following Dung’s reading, A attacks B (or B is attacked by A) if attacks(A,B) holds.
A set S of arguments attacks B (or B is attacked by S) if B is attacked by an argument in
S.

Definition 2

• A set S of arguments is conflict-free if there are no arguments A, B in S such that
A attacks B.

• An argument A ∈ AR is acceptable with respect to a set S of arguments if and
only if for each argument B ∈ AR: If B attacks A then B is attacked by S.

• A conflict-free set of arguments S is admissible if and only if each argument in S
is acceptable w.r.t. S.

From the extension-based argumentation semantics introduced in [8], we can iden-
tify two reasoning approaches: 1.- The extension-based argumentation semantics which
follows a credulous reasoning approach; and 2.- The extension-based argumentation se-
mantics which follows a sceptical reasoning approach. From the credulous semantics,
one can mention, the stable, preferred and complete semantics and from the sceptical
semantics, the grounded semantics. For presenting the results of this paper only the
grounded extension is relevant. The grounded semantics is defined in terms of a charac-
teristic function.

Definition 3 Let the characteristic function, denoted by FAF, of an argumentation frame-
work AF = 〈AR, attacks〉 be defined as follows:

FAF : 2AR → 2AR

FAF(S) = {A| A is acceptable w.r.t. S }

The grounded extension of an argumentation framework AF, denoted by GEAF, is the
least fixed point of FAF

In his work [8], Dung suggests a general method for generating metainterpreters in
terms of logic programming for argumentation systems. This approach is based in the
following program:

Definition 4 Given an argumentation framework AF = 〈AR, attacks〉, PAF denotes the
logic program defined by PAF = APU + AGU where

APU = {acc(x)← not d(x)|x ∈ AR}∪{d(x)← attack(y, x), acc(y)|attack(y, x) ∈ attacks}

and

AGU = {attack(a, b)← >|(a, b) ∈ attacks , a ∈ AR, b ∈ AR}

For each extension E of AF, m(E) is defined as follows:

m(E) = AGU ∪ {acc(a)|a ∈ E} ∪ {d(b)|b is attacked by some a ∈ E}

Based on PAF, Dung was able to characterize the stable semantics and the grounded
semantics in terms of logic programming semantics with negation as failure.

Theorem 1 Let AF be an argumentation framework and E be an extension of AF. Then

1. E is a stable extension of AF if and only if m(E) is an answer set of PAF

2. E is a grounded extension of AF if and only if m(E) ∪ {not d(a)|a ∈ E} is the
well-founded model [11] of PAF

This theorem is of relevance as it: a) defines a general method for generating metain-
terpreters for argumentation systems, b) defines a general method for studying abstract
argumentation semantics’ properties in terms of logic programming semantics’ proper-
ties.

2.2.2. SCC-recursiveness approach

The SCC-recursiveness approach is based on the notions of path-equivalence between
nodes and strongly connected components (Please notice that, due to length restrictions,
definitions in this subsection are presented informally. Formal definitions can be found
in [2]).

Definition 5 Given an argumentation framework AF = 〈AR, attacks〉, the binary rela-
tion of path-equivalence between nodes, denoted as PEAF ⊆ (AR × AR), is defined as
follows:
— ∀a ∈ AR, (a, a) ∈ PEAF,
— given two distinct nodes a, b ∈ AR, (a, b) ∈ PEAF if and only if there is a path3 from
a to b and a path from b to a.

Given an argumentation framework AF = 〈AR, attacks〉, the strongly connected
components of AF are the equivalent classes of nodes which are defined according to
the path-equivalence relation. The set of the strongly connected components of AF is
denoted as SCCSAF.

Definition 6 Let AF = 〈AR, attacks〉 be an argumentation framework, and let S ⊆ AR
be a set of arguments. The restriction of AF to S is the argumentation framework AF ↓S=
〈S, attacks ∩ (S× S)〉.

Considering an argumentation framework, AF = 〈AR, attacks〉, a set E ⊆ AR and
a strongly connected component S ∈ SCCSAF the following sets can be defined: a)
DAF(S,E) consists of the nodes of S attacked by E from outside S, b) UAF(S,E) con-
sists of the nodes of S that are not attacked by E from outside S and are defended
by E (i.e., their defeaters from outside S are all attacked by E), c) PAF(S,E) con-
sists of the nodes of S that are not attacked by E from outside S and are not de-
fended by E (i.e., at least one of their defeaters from outside S is not attacked by E), d)
UPAF(S,E) = (S \ DAF(S,E)) = (UAF(S,E) ∪ PAF(S,E)).

Here, we define GF(AF,C) for an argumentation framework AF = 〈AR, attacks〉
and a set C ⊆ AR, representing the defended nodes of AF: two cases have to be consid-
ered in this respect.

If AF consists of exactly one strongly connected component, it does not admit a
decomposition. On the other hand, if AF can be decomposed into several strongly con-
nected components, then, GF(AF,C) is obtained by applying recursively GF to each
strongly connected component of AF, deprived of the nodes in DAF(S,E). Formally, this

3Given an argumentation framework AF = 〈AR, attacks〉 and a, b ∈ AR there is a path between a and b if
there is a sequence 〈x0, x1, . . . , xn〉 such that 〈xi, xi+1〉 ∈ attacks for 0 ≤ i ≤ n and x0 = a and xn = b

means that for any S ∈ SCCSAF, (E ∩ S) ∈ GF(AF ↓UPAF(S,E),C′), where C′ represents
the set of defended nodes of the restricted argumentation framework AF ↓UPAF(S,E). The
set C′ can be determined by taking into account both the attacks coming from outside
AF and those coming from other strongly connected components of AF.

Definition 7 A given argumentation semantics S is SCC-recursive if and only if for any
argumentation framework AF = 〈AR, attacks〉, ES(AF) = GF(AF,AR), where for any
AF = 〈AR, attacks〉 and for any set C ⊆ AR, the function GF(AF,C) ⊆ 2AR is defined
as follows: for any E ⊆ AR, E ∈ GF(AF,C) if and only if

• in case |SCCSAF| = 1, E ∈ BFS(AF,C),
• otherwise,∀S ∈ SCCSAF(E ∩ S) ∈ GF(AF ↓UPAF(S,E) , UAF(S,E) ∩ C).

where BFS(AF,C) is a function, called base function, that, given an argumentation
framework AF = 〈AR, attacks〉 such that |SCCSAF| = 1 and a set C ⊆ AR, gives a subset
of 2AR.

Remark 1 In the particular case where BFS(AF,C) is the function that returns the set
of all maximal conflict-free sets of arguments CF2 is obtained.

3. SCC-recursive semantics via Answer Sets

In this section, we are going to present our approach for characterizing SCC-recursive
semantics in terms of answer set semantics. In particular, our approach is suitable for
the class of SCC-recursive semantics defined by a conflict-free base function. This class
of SCC-recursive semantics is of special interest since in [2] it was proved that any
extension of these SCC-recursive semantics includes the grounded extension.

Like SCC-recursive semantics definition, our declarative approach for inferring
SCC-recursive semantics is constructive and is based in three general steps: 1.-Inferring
the grounded extension. 2.- Reducing the given argumentation framework by considering
the inferred grounded extension. In this case, reduction is performed based on a labeling
approach, labeling each argument as: accepted, defeated or undefined. 3.- If the reduced
argumentation framework has undefined arguments, the base function is applied and the
process follows in Step 1.

Observe that this approach infers the grounded semantics more than once. In order
to manage the suggested approach, we define two general counters: one for inferring the
grounded extension and another for controlling the general iterations suggested by Step
3.

We start by presenting a specification which characterizes the grounded seman-
tics in terms of answer sets. In order to regard an argumentation framework as a
logic program, we define the following programs: Given an argumentation framework
AF = 〈AR, attacks〉,

Πarg = {arg(a, 0)← >|a ∈ AR}.
Πat = {at(a, b)← >|(a, b) ∈ attacks}.
Πint = { time(0)← >; . . . ; time(n + 1)← >;

int(0)← >; . . . ; int(n)← >; size(n)← >|n is the cardinality of AR}
Observe that essentially Πarg and Πat are mapping AF into predicates and Πint is defining
two counters and the number of arguments. The union of these three programs is denoted

by Πini. We want to clarify to the reader that in the following programs any instantiation
of a variable N in int(N) will manage an iteration for inferring the grounded extension
and any instantiation of a variable T in time(T) will manage an iteration in the general
process of inferring the SCC-recursive semantics.

Now let us introduce the following program:

ΠGE = a_gr(X, 0, T1)← arg(X, T), T1 = T + 1, not not_a_gr(X, T)·
not_a_gr(X, T)← arg(X, T), at(Y,X), not d(Y, T), time(T)·
a_gr(X,N, T)← int(N),N > 0, arg(X, T), not not_a_gr_d(X,N, T), time(T)·
not_a_gr_d(X,N, T)← at(Y,X),N = M + 1, not attacked(Y,M, T), arg(X, T),

arg(Y, T), time(T)·
attacked(Y,M, T)← arg(Y, T), arg(Z, T), at(Z, Y), a_gr(Z,M, T), time(T)·

This program is defining a characterization of the grounded semantics in terms of
answer set models, as formalized in the following proposition:

Proposition 1 Let AF = 〈AR, attacks〉 be an argumentation framework and E ⊆ AR. E
is the grounded extension of AF if and only if M is an answer set of Πini ∪ΠGE such that
E = {x|a_gr(x,N,T) ∈ M}.

Proof: (sketch) Let M be an answer set of Πini ∪ΠGE, n = |AR|, S0 = {x|a_gr(x, 0, _) ∈
M} and Si = {x|a_gr(x, i, _) ∈ M, 1 ≤ i ≤ n}. Hence, the proof follows by induction
and the following observations:

1. Si−1 ⊆ Si(1 ≤ i ≤ n) and Si is an admissible set.
2. Si(1 ≤ i ≤ n) characterizes the characteristic function FAF.
3. Since Si(1 ≤ i ≤ n) is monotonic, it reaches a fix-point.

Given a grounded extension, one can define different states of an argument: 1.- an ar-
gument which belongs to the grounded extension can be considered as accepted (ac_gr),
2.- an argument which is attacked by an accepted argument can be considered as defeated
(d_gr), and 3.- an argument which is neither accepted nor defeated can be considered
undefined (i_gr). These states of the argument are captured by the following program:

Πgr_states = ac_gr(X, T)← a_gr(X, fixp, T), time(T), size(fixp)·
d_gr(X, T)← at(Y,X), ac_gr(Y, T), arg(Y, T), arg(X, T), time(T)·
i_gr(X, T)← arg(X, T), not ac_gr(X, T), not d_gr(X, T), time(T)·
at_d(X, Y, T)← arg(X, T), arg(Y, T), at(X, Y),

not not_at_d(X, Y, T), time(T)·
not_at_d(X, Y, T)← arg(X, T), arg(Y, T), at(X, Y), d_gr(X, T), time(T)·

Observe that the predicate at_d(X,Y,T) captures the arguments which are attacked
by defeated arguments. Also observe that the predicate ac_gr(X,T) defines a subset of
an extension of SCC-recursive semantics.

Proposition 2 Let AF = 〈AR, attacks〉 be an argumentation framework and S be a SCC-
recursive semantics such that each extension in S contains the grounded extension. If E ∈
S(AF), then an answer set M of Πini ∪ΠGE ∪Πgr_states exists, such that {x|ac_gr(x,T) ∈
M} ⊆ E and {x|d_gr(x,T) ∈ M} * E

Proof: (sketch) Let M be an answer set of Πini ∪ ΠGE ∪ Πgr_states, Sac_gr(M) =
{x|ac_gr(x, _) ∈ M} and Sd_gr(M) = {x|d_gr(x, _) ∈ M}. Let us denote by ASP(P),
the answer set models of a given logic program P.

Observations:

1. By Proposition 1, if M ∈ ASP(Πini ∪ ΠGE ∪ Πgr_states), then Sac_gr(M) is the
grounded extension of AF.

2. Sac_gr(M) ∩ Sd_gr(M) = ∅.

If S is a SCC-recursive semantics such that each extension in S contains the grounded
extension, then GEAF ∈

⋂
E∈S(AF) E. By Observation 1, GEAF = Sac_gr(M). Then ∀E ∈

S(AF), Sac_gr(M) ∈ E. Therefore, by Observation 2, ∀E ∈ S(AF), Sd_gr(M) /∈ E.

This proposition suggests that in the construction of an extension of a SCC-recursive
semantics one can consider an argumentation framework restricted to undefined argu-
ments, i.e., {a|i_gr(a,T) ∈ M}. This idea of recursion follows Definition 7 where the
recursive step is restricted to AF ↓UPAF(S,E) . Observe that in order to define this restricted
(w.r.t. undefined arguments) argumentation framework, one has to identify the strongly
connected components that exist in the argumentation framework and follow the direc-
tionality principle4.

ΠAF↓i_gr = base(X, T) ∨ other_base(X, T)← i_gr(X, T), time(T)·
← base(X, T), base(Y, T),X! = Y, not cycle(X, Y, T), time(T)·
← base(X, T), ar(Y),X! = Y, other_base(Y, T), cycle(X, Y, T)·
← not_base(T), time(T)·
← incomplete(T), time(T)·
incomplete(T)← i_gr(X, T), not not_empty(T), time(T)·
not_empty(T)← base(X, T), time(T)·
not_base(T)← base(X, T), arg(Y, T), other_base(Y, T), at(Y,X), time(T)·
cycle(X, Y, T)← path(X, Y, T), path(Y,X, T), time(T)·
path(X, Y, T)← at(X, Y), arg(X, T), arg(Y, T), time(T)·
path(X, Y, T)← arg(X, T), arg(Y, T), arg(Z, T), at(X, Z),

path(Z, Y, T), time(T)·

Observe that in this program we are using predefined predicates such as ! = which
are common in answer set solvers such as the DLV solver [7]. Once we have identified
our restricted argumentation framework, the status of the arguments (identified as ac-
cepted or defeated) have to be preserved.

Πinertial = ac(X, T1)← T1 = T + 1, ac(X, T), time(T1)·
d(X, T1)← T1 = T + 1, d(X, T), time(T1)·
ac(X, T)← ac_gr(X, T), time(T)·
d(X, T)← d_gr(X, T), time(T)·
arg(X, T1)← arg(X), T1 = T + 1, not ac(X, T), notd(X, T), time(T), time(T1)·

Observe that the last clause of this program is defining the set of arguments that have
to be considered in the next iteration of the process.

In order to characterize the CF2 argumentation semantics which is a SCC-recursive
semantics, we define a base function which infers maximal conflict free sets of argu-
ments by taking into account the directionality principle.

4Directionality principle: Nodes defeated by an extension E play no role in the selection of nodes to be
includes in E.

Πbase_function = d(X, T)← ac(Y, T), at(Y,X), time(T)·
ac(X, T)← base(X, T), not d(X, T), time(T)·
d(X, T)← at(Y,X), base(X, T), base(Y, T), ac(Y, T), time(T)·
d(X, T) ∨ d(Y, T)← at(Y,X), path_d(X, Y, T), base(X, T),

base(Y, T), time(T)·
path_d(X, Y, T)← at(X, Y), base(X, T), base(Y, T), time(T)·
path_d(X, Y, T)← at(X, Z), base(X, T), base(Y, T), base(Z, T),

path_d(Z, Y, T), time(T)·
accepted(X)← ac(X, fixp), size(fixp)·

For connecting ΠGE with Πbase_function, we define the program ΠGE′ as the program
ΠGE plus the following rule:

a_gr(X, 0, T1)← T1 = T + 1, ac(X, T)

Consider the program PCF2 which is defined as follows: Given an argumentation
framework AF

PCF2(AF) = Πini ∪ΠGE′ ∪Πgr_states ∪ΠAF↓i_gr ∪Πinertial ∪Πbase_function

The following theorem shows a characterization of CF2 argumentation semantics in
terms of answer set models of the PCF2 program.

Theorem 2 Let AF = 〈AR, attacks〉 be an argumentation framework. E ∈ CF2(AF) if
and only if there exists an answer set M of PCF2(AF) such that E = {a|accepted(a) ∈
M}.

Proof: (sketch) The proof follows by Propositions 1, 2 and the following observations:

1. The programs Πini and Πbase_function characterize the maximal conflict-free sets of
a given argumentation framework.

2. The program Πinertial characterizes the strongly connected components of a given
argumentation framework.

3. The programs Πinertial and ΠAF↓i_gr induce the directionality principle.

We want to point out at least two implications of this characterization of CF2:

1. By changing the behavior of Πbase_function one can characterize different SCC-
recursive semantics.

2. This characterization of CF2 suggests an easy-to-use form for inferring exten-
sions of SCC-recursive semantics such as CF2 extensions.

3.1. Applications of Theorem 2

We can find different strategies for computing extension-based argumentation semantics
[3, 6, 9, 14]; however, a common point among these approaches is to address some of
the following questions5 w.r.t. a given extension-based argumentation semantics S, an
argumentation framework AF = 〈AR, attacks〉 and A ∈ AR:

5Notice, questions 2,3 and 6 answer ’credulous acceptance problem w.r.t. S’, ’skeptical acceptance problem
w.r.t. S’ and ’skeptical refusal problem w.r.t. S’ respectively

Figure 1. Graph representation of the argumentation framework
AF = 〈{1, 2, 3, 4, 5, 6, 7}, {(1, 4), (1, 3), (2, 1), (2, 5), (3, 2), (4, 6), (6, 7), (7, 5), (5, 4)}〉

1. Which are the extensions in S(AF)?
2. Is A contained in an extension of S(AF)?
3. Is A contained in all the extension of S(AF)?
4. Which are all the extensions containing A?
5. Which are the extensions that attacks A?
6. Is A attacked by all the extensions of S(AF)?

One of the main applications of Theorem 2 is that one can take advantage of efficient
answer set solvers, e.g., [7], for answering the given questions w.r.t. SCC-recursive se-
mantics such as CF2. For instance, the DLV system allows the use of different front-ends
for performing different kinds of queries w.r.t. the answer set models of a given logic
programs; this means that by using these front-ends one can answer the given questions
w.r.t. S, AF and A. In order to illustrate these applications of Theorem 2, let AF be the
argumentation framework of Figure 1 and pcf2.dlv be the program which contains
PCF2(AF). Now we are going to answer each of the given questions.

Which are the extensions in CF2(AF)? For answering this question, let us call DLV
with the filter accepted:
$ dlv pcf2.dlv -filter=accepted

{accepted(2), accepted(4), accepted(7)} {accepted(1), accepted(5),

accepted(6)} {accepted(3), accepted(4), accepted(7)} {accepted(3),

accepted(5), accepted(6)}

This means that the provided set of sets of arguments are all the possible CF2 extensions
of the framework.

Is 5 contained in an extension of CF2(AF)? For answering this question, let query1
be the file: accepted(5)? Now let us call DLV with the filter accepted, the
brave/credulous reasoning front-end and query1:
$ dlv pcf2.dlv -brave -filter=accepted query1

accepted(5) is bravely true, evidenced by {accepted(3), accepted(5),

accepted(6)}

This means that it is true that the argument 5 belongs to a CF2 extension and even more
we have a CF2 extension which contains the argument 5.

Is 5 contained in all the extension of CF2(AF)? For answering this question, let
query2 be the file: accepted(5)? Now let us call DLV with the filter accepted, the

cautious/skeptical reasoning front-end and query2:
$ dlv pcf2.dlv -cautious -filter=accepted query2

accepted(5) is cautiously false, evidenced by {accepted(2), accepted(4),

accepted(7)}

This means that it is false that the argument 5 belongs to all CF2 extensions and even
more, DLV provides a CF2 extension that serves as counterexample

Which are all the extensions containing 3? For answering this question, let query3
be the file: accepted(3)? Now let us call DLV with the filter accepted and query3:
$ dlv pcf2.dlv -filter=accepted query3s

{accepted(3), accepted(5), accepted(6)} {accepted(3), accepted(4),

accepted(7)}

This means that the provided set of sets of arguments are all the possible CF2 extensions
on the framework containing 3.

In order to manage the questions w.r.t. attacks, let pcf2-at.dlv be the program
which contains PCF2(AF) ∪ {attacked(X)← at(Y,X), accepted(Y)}.
Which are the extensions that attack 3? For answering this question, let query4 be
the file: attacked(3)? Now let us call DLV with the filter accepted and query4:
$ dlv pcf2-at.dlv -filter=accepted query4

{accepted(1), accepted(5), accepted(6)}

This means that the provided set of arguments is all the possible CF2 extensions on the
framework containing arguments attacking 3.

Is 5 attacked by all the extensions of CF2(AF)? For answering this question, let
query5 be the file: attacked(5)? Now let us call DLV with the filter accepted,the
cautious/skeptical reasoning front-end and query5:
$ dlv pcf2-at.dlv -cautious -filter=accepted query5

attacked(3) is cautiously false, evidenced by {accepted(3), accepted(5),

accepted(6)}

This means that it is false that the argument 5 is attacked by all CF2 extensions and even
more, DLV provides a CF2 extension that serves as counterexample

4. Conclusions

The study and understanding of extension-based argumentation semantics have shown to
be a crucial point in argumentation theory [1, 2, 8, 17]. This is mainly because they cap-
ture several approaches for performing argumentation reasoning. To find relationships
between them and well-acceptable approaches such as answer set semantics helps in the
exploration and implementation of prominent non-monotonic reasoning approaches.

So far we have already shown that extension-based argumentation semantics based
on admissible sets are able to be characterized in terms of answer set models [5,8,10,15,
16, 18]; however, it is well-known that they have unexpected behaviors [2, 17]. Hence,
the consideration of emerging approaches seems to be crucial. The emerging approaches
for defining new extension-based argumentation semantics is really diverse; however, ap-

proaches such as the ones based on SCC-recursive semantics looks sound. One can find
SCC-recursive semantics such as CF2 which converges with extension-based argumen-
tation semantics based on logic programming semantics with negation as failure [16].

Now in this paper, we have shown that not only extension-based argumentation se-
mantics based on admissible sets can be characterized in terms of answer set models; but
also extension-based argumentations semantics based on strongly connected components
can be characterized in terms of answer set models. This result opens the possibility of
exploring new SCC-recursive semantics which can be interpreted in a straightforward
form in terms of answer set models. And of course, the possibility of implementing fast
prototypes of them using answer set programming platforms [13].

References

[1] P. Baroni and M. Giacomin. On principle-based evaluation of extension-based argumentation semantics.
Artificial Intelligence., 171(10-15):675–700, 2007.

[2] P. Baroni, M. Giacomin, and G. Guida. SCC-recursiveness: a general schema for argumentation seman-
tics. Artificial Intelligence, 168:162–210, October 2005.

[3] P. Besnard and S. Doutre. Checking the acceptability of a set of arguments. In Tenth International
Workshop on Non-Monotonic Reasoning (NMR 2004),, pages 59–64, June 2004.

[4] M. Caminada. Semi-Stable semantics. In P. E. Dunne and T. J. Bench-Capon, editors, Proceedings of
COMMA, volume 144, pages 121–130. IOS Press, 2006.

[5] J. L. Carballido, J. C. Nieves, and M. Osorio. Inferring Preferred Extensions by Pstable Semantics.
Iberoamerican Journal of Artificial Intelligence (Inteligencia Artificial) ISSN: 1137-3601, 13(41):38–
53, (doi: 10.4114/ia.v13i41.1029), 2009.

[6] C. Cayrol, S. Doutre, and J. Mengin. On Decision Problems related to the preferred semantics for
argumentation frameworks. Journal of Logic and Computation, 13(3):377–403, 2003.

[7] S. DLV. Vienna University of Technology. http://www.dbai.tuwien.ac.at/proj/dlv/, 1996.
[8] P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,

logic programming and n-person games. Artificial Intelligence, 77(2):321–358, 1995.
[9] P. M. Dung, P. Mancarella, and F. Toni. Computing ideal sceptical argumentation. Artificial Intelligence,

171(issues 10-15):642–674, 2007.
[10] U. Egly, S. A. Gaggl, and S. Woltran. Aspartix: Implementing argumentation frameworks using answer-

set programmin. In M. G. de la Banda and E. Pontelli, editors, International Conference of Logic
Programming (ICLP), volume 5366 of Lecture Notes of Computer Science, pages 734–738. Springer,
2008.

[11] A. V. Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general logic programs.
Journal of the ACM, 38(3):620–650, 1991.

[12] M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive Databases. New
Generation Computing, 9:365–385, 1991.

[13] I. Gómez-Sebastià and J. C. Nieves. WizArg: Visual Argumentation Framework Solving Wizard. In In
Proceedings of CCIA’2010. Frontiers in Artificial Intelligence and Applications, IOS Press, accepted.

[14] S. Modgil and M. Caminada. Argumentation in Artificial Intelligence, chapter Proof Theories and Al-
gorithms for Abstract Argumentation Frameworks, pages 105–129. Springer, 2009.

[15] J. C. Nieves, M. Osorio, and U. Cortés. Preferred Extensions as Stable Models. Theory and Practice of
Logic Programming, 8(4):527–543, July 2008.

[16] J. C. Nieves, M. Osorio, and C. Zepeda. A Schema for Generating Relevant Logic Programming Se-
mantics and its Applications in Argumentation Theory. Fundamenta Informaticae, accepted.

[17] H. Prakken and G. A. W. Vreeswijk. Logics for defeasible argumentation. In D. Gabbay and F. Günthner,
editors, Handbook of Philosophical Logic, volume 4, pages 219–318. Kluwer Academic Publishers,
Dordrecht/Boston/London, second edition, 2002.

[18] K. N. Toshiko Wakaki. Computing Argumentation Semantics in Answer Set Programming, volume
5447/2009 of Lecture Notes in Computer Science, pages 254–269. 2009.

