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A Decision Support System for Vine Growers
Based on a Bayesian Network

Philippe Abbal, Jean-Marie Sablayrolles, Éric Matzner- Lober,
Jean-Michel Boursiquot, Cedric Baudrit, and Alain Carbonneau

We propose here a decision support system for vine growers to assess the quality of a
vineyard to be planted. The quality of a vineyard is defined by the probability of possible
profitability of the wine sales he is able to produce. The model, based on a Bayesian
network (BN), takes into account environment and the parameters defining vineyard sta-
tus with their associated interactions. BN are widely used for knowledge representation
and reasoning under uncertainty in natural resource management. There is a rising inter-
est in BN as tools for ecological and agronomic modelling. Data were collected from
knowledge of vine-growing experts. We developed a C# computer program predicting
the likely quality of a vineyard. The model has been validated on existing vineyards
with prediction ability around 75%. This system should ease assessments of the likely
impact of the choices and decisions of vine growers on the quality of new vineyards to
be planted in any part of the world. No such model has been developed before for vine
growers.

Supplementary materials accompanying this paper appear on-line.

Key Words: Bayesian network; Complex systems; Climate change; Expert data;
Vineyard quality.

1. INTRODUCTION

Aconvenient feature of Bayesian networks (BNs) is the ability to learn about the structure
and parameters of a system based on observed data (Kragt 2009). Knowledge of the structure
of a system can reveal the dependence and independence of variables and suggest a direction
of causation. It evaluates the ‘optimal’ BN structure, based on the highest probability score
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for possible candidate structures, given the data provided and perhaps penalised for the
level of complexity (Norsys 2005). Different score metrics can be used to evaluate the BN
structure, varying from entropy methods to genetic algorithms.

But, BN are a useful way to model expert knowledge, like we did in our study. We
used expert knowledge to create the network and the conditional probability tables. Experts
were members of the International Organisation of Vine and Wine. Performing this step,
we noticed that sometimes it may be difficult to get experts to agree on the structure of the
model and on the nodes that are important to be included. Experts must be challenged to
express their knowledge in the form of probability distributions (Uusitalo 2007). Elicitation
of expert knowledge requires an iterative process, to ensure that experts are comfortable
with the nodes, their states and interrelationship in the BN, before making statements about
distributions and confidence intervals of variables (Pollino 2008). Bayesian networks have
been used in various fields, including molecular biology (Friedman et al. 2000), computer
vision and pattern recognition (Rehg et al. 1997), and have recently been applied to space and
aeronautics by NASA (Homayoon et al. 2009). Other methodology could have been used
instead of BN, such as fuzzy set theory (Ragin 2000). Fuzzy set method is more appropriate
for problems with only a small number of parameters. Neural networks need a big quantity
of measurements or observed data we do not have in this study. Neural networks cannot be
interpreted directly and generally speaking, the intermediate nodes of most neural networks
are discovered features rather than being associated with predicate variables in their own
right.

The quality of a vineyard can be defined as its capacity to produce satisfactory numbers of
grapeswith particular qualitative chemical and physical properties to insure high profitability
of wine sales. Wine quality depends directly on the quality of the grapes used to make it
(Peynaud 1971). Soil properties, particularly as concerns soil pH and mineral composition
(Galet 2000), have been shown to affect grape quality and grapevines clearly grow better
in some areas than in others. It has also been known for many decades that climate and
meteorological factors are important in viticulture and that regional climate variability affects
annual grape yield (Agosta et al. 2012).

All these effects have been studied separately. Our aim in this study was to identify the
most relevant vineyard variables, to quantify the interactions between them and to include
them in a global networkwith an engine for the calculation of a probabilistic value predicting
the quality of a future vineyard. Climatic indices (CI, HI, DI) defined by Tonietto and Car-
bonneau are included in the model. Significant progress has already been made towards the
representation of climates and terrestrial processes through systematic evaluations against
observations and against more comprehensive models (Randall et al. 2007).

2. MATERIALS AND METHODS

2.1. THE VINEYARD MODEL

A vineyard is a complex system comprising the geographic area, the chemical and physi-
cal properties of the soil and the cultivation system (Abbal 2014). Experts chose to consider
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Figure 1. The “vineyard network” created by experts.

variables belonging to these four groups (Fig. 1) because each of these groups includes
factors that limit vine cultivation (Carbonneau et al. 2007).

The four yellow nodes are intermediary nodes, useful to better understand the network.
Each group of variables has a specific colour. An arrowmeans a dependency between a node
and a variable or between two variables. The sense of the arrow is designed according to
retro causality. The geographic area node comprises altitude, latitude, cool night index (CI),
dryness index (DI), heliothermal index (HI) and climate type. The node relating to chemical
aspects of the soil includes the cholorosis power index, soil pH and mineral content. The
third node relates to the physical properties of the soil, including water reserves, soil particle
size grading, and useful soil depth. Node four, relating to the cultivation system, concerns
irrigation, protection against major climatic events, soil preparation, grape variety, clone,
root stock and training systems. Experts added to the network a few interactions between
variables (Fig. 1): the choice of the variety depends on HI, the choice of the training system
depends both on water reserves, on drought index (DI) and on the irrigation system. Of
course, the choice of the root stock depends on the chlorotic power index of the soil.

2.2. GEOGRAPHIC AREA

Altitude and latitude must be considered, together with the type of climate (Galet 1976,
Reynier 1991). Nobody with any sense would try to plant vines at the North Pole or in
the hotter parts of the Sahara Desert, for example. The following outcomes were used to
investigate the role of climate: polar, subarctic, desert, subdesert, equatorial, continental,
Mediterranean, oceanic and tropical, as inspired by the classification of Peguy (1970). Cli-
mate generally has a major effect, but it would be wrong to claim that it is the most important
factor in vine and grape growing, and this view has already been supported by several pub-
lications (Carbonneau et al. 2007).
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Latitude (L) and altitude (A), when considered together, provide precise information
about potential vineyard quality simply because air temperature depends on these two factors
(Galet 2000). We included in the model five outcomes for altitude, from 0 to more than
3000 m, and four outcomes for latitude, from 0 to more than 55◦.

For climate, Tonietto and Carbonneau (2004) proposed a multicriterion classification
method involving multivariate measurements of climate on the basis of three indices: HI, CI
and DI. These indices were selected from a long list because they together account for the
largest proportion of total climatic variation (90 %) during the growing cycle of the vine.

CI is a night coolness variable that takes into account the mean minimum night tempera-
ture during the month in which ripening usually occurs and beyond the ripening period. This
index improves the assessment of the quality potentials for wine of vine-growing regions,
based on secondary metabolites (polyphenols, aromas) in grapes. CI is the minimum air
temperature in the month of September or March (depending on the hemisphere) in ◦C. We
included four temperature levels in our model (Table 1—supplementary data).

We also used HI, the classical HI of Huglin (Huglin and Schneider 1998), in this study.
This index provides information about heliothermal potential and approximates the possible
sugar content of different varieties as a function of classical cumulative temperatures, thereby
providing information about quality. In combinationwithCI, theHI characterises the climate
of a region well, in terms of global heliothermal conditions during the vegetative cycle of
the grapes and cool night conditions during the ripening period (Table 2—supplementary
data).

DI, the DI, is based on the potential soil water balance index of Riou (Riou et al. 1994),
which was developed specifically for vineyard use and makes it possible to characterise the
water component of the climate in vine-growing regions. It takes into account the climatic
demands of a standard vineyard, evaporation from bare soil and rainfall, with no deductions
for surface runoff and drainage. It indicates the potential availability of water in the soil,
reflecting the dryness of the region (Table 3—supplementary data).

This climatic factor is particularly important in terms of its effects on grape ripening and
wine quality (Jackson and Cherry 1988; Seguin 1983; Mérouge et al. 1998; Carbonneau
1998). DI is a very important factor to be taken into account when choosing the most appro-
priate vine and rootstock. For this reason, we linked it to the cultivation system node (Fig. 1).

2.3. THE SOIL AND CULTIVATION SYSTEMS

2.3.1. Chemical Aspects of the Soil

The chemical properties of vineyard soilswere describedbyChampagnol (1980). In 2000,
Galet studied the effects of the chemical properties of the soil on the quantity and quality of
the grapes produced. These properties can be modelled by three variables: chlorosis poten-
tial index (CPI), pH and mineral availability. The presence of limestone in the underlying
substratum may have a major effect on the iron metabolism of the plant, potentially leading
to chlorosis. This index can be defined as follows:

CPI = active limestone (g/100 g) × 10, 000)/available iron (mg/kg) (Juste and Pouget 1972).
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Higher CPI values are associated with a higher risk of chlorosis in the vineyard. CPI values
determine the choice of rootstock (Table 4—supplementary data).

Mineral levels in the soil must all be taken into account. Nitrogen, potash, phosphoric
acid and calcium are very important minerals, deficiencies of which in the soil can decrease
vineyard quality (Galet 2000). The availability of these nutrients to the plants depends on
soil pH. Extreme pH values decrease the quality of vineyard soils, which should ideally
have a pH between 5 and 8 (Tonietto and Carbonneau 2004).

2.3.2. Physical Aspects of Soil and Water Availability

According to Galet (2000), the physical properties of a vineyard soil can be characterised
by two parameters: soil gradient and available soil depth. Soil gradient plays a major role in
determining water availability and water reserves. Indeed, knowledge of the percentages of
silt and clay in the soil makes it possible to calculate the water reserves of the soil (Jamagne
et al. 1977). Water is a key component of photosynthesis and is an essential solvent for the
transport of minerals from the soil into the plant (Riou 2000). For this reason, the physical
aspects of the soil must be linked to DI. Vine roots are more likely to grow well if the soil
is appropriate and of adequate depth. Shallow soils are incompatible with high quality in
vineyards (Reynier 1991).

2.3.3. Cultivation Systems

Acultivation system integrates a large number of variables: chemical and physical aspects
of the soil (described above), clone, variety, rootstock, irrigation, protection against climatic
events (frost, hail, etc.), soil preparation and training systems.

For each grapevine variety, there are several types of clones available and the choice
depends on the amount and quality of wine desired.

Nurseries can provide grapevine growers with details of the characteristics of the clones
they supply and can help growers to select the most appropriate rootstock on the basis of
CPI value (Table 4—supplementary data). Soil preparation is an important variable of this
node. Trenching or ploughing the soil allows the root system of the vine to develop. A lack
of soil preparation greatly compromises the future development of the plants and invariably
results in heterogeneous, low-quality vineyards (Carbonneau et al. 2007). Irrigation and
protection against climatic events, such as frost or hail, may have an impact on grape yields
(Bonnet 1910). Finally, the training system should be selected according to the available
water reserves.We included a representative set of training systems in our network, including
vase, vertical shoot positioning and lyre systems.

2.4. BAYES’ THEOREM

Humans can define problems, list possible decision options, identify relevant factors and
quantify uncertainty and preferences. However, they are inefficient at combining all the
available information and interactions to come to a rational decision. The probability of
a particular event occurring in relation to the occurrence of another event was studied by
Thomas Bayes in 1765 and this work was extended by the mathematician Laplace in 1774.
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Bayesian inference (Bayes 1763/1958) provides ameans of determining the probability of an
event based on the probabilities of other events that have already been evaluated. In decision
analysis theory, Bayesian inference is closely related to discussions of subjective probability.
Bayesian inference is defined as the process of deriving logical conclusions on the basis
of premises known or assumed to be true. Bayesian networks deal with inferences and the
probabilities of variables within the system. It represents a set of random variables and their
conditional dependences on a directed acyclic graph (Stanley 1973; Howard and Matheson
1984; Thulasiraman and Swamy 1992). This approach, including inference, is useful in
many contexts, including reverse engineering and weather forecasting. We used GeNIe
software to create our vineyard network. GeNIe is a development tool for the construction
of graphical decision theorymodels. It was developed by theDecision SystemsLaboratory at
the University of Pittsburgh and has beenmade available to the community to promote in the
use of decision theorymethods in decision support systems (http://genie.sis.pitt.edu). GeNIe
has been tested extensively and iswidely used for both teaching and research. It is also used in
commercial applications.GeNIe stands forGraphicalNetwork Interface. It can be associated
with the SMILE interface, a library of functions for graphical probabilistic and decision
theorymodels (http://genie.sis.pitt.edu). SMILE is implemented inVisualC# (Petzold 2002)
and draws heavily on MFCs (Microsoft Foundation Classes). As a consequence, it is not
always easily transferable, despite running on the Windows operating system, one of the
most widely used computer platforms worldwide. GeNIe can be used to build models of
any size or complexity, and is limited only by the capacity of the operating memory of the
computer used. Models developed with GeNIe can be embedded into any application and
run on any computing platform through SMILE, which is fully transferable.

2.5. MODEL CALCULATIONS

Let us consider two non-independent events, A and B, with their associated probabilities,
P(A) and P(B), respectively. The model is based on Bayes’ theorem, as follows in generic
Eq. (1):

P(A|B) = P(B|A) P(A)

P(B)
(1)

This theorem (1) has already been demonstrated (Bayes 1763) and the reader must remain a
developed version of the theorem (2) for an easier understanding of the process of inference
and probability tables.

P(A|B) = P(B|A) P(A)

P(B|A) P(A) + P(B|AC )P(AC )
(2)

Applying Eq. (2), a Bayesian network B can be mathematically defined as a graph G and a
set of probabilities θ for each node of the graph conditional on the status of their parents in
this graph.

Associating each element of the graph to a random variable, B = (G, θ) is defined by:

– G = (X, E) directed acyclic graph whose nodes are associated with a set of random
variables X = {X1, . . . , Xn}.

http://genie.sis.pitt.edu
http://genie.sis.pitt.edu
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– θ = {P(Xi |P a(Xi))}, all the probabilities of each node Xi conditioned by the state
of its parent Pa (Xi) in G.

These two characteristics have been the source of the first names of Bayesian networks,
“probabilistic expert systems” where the graph was compared to the set of rules of a classic
expert system and the conditional probabilities presented as a quantification of uncertainty
about these rules.

Pearl et al. (1991) showed that Bayesian networks allow to represent compactly the joint
probability distribution on the set of variables n:

P(X1, X2, . . . , Xn) = � P(Xi |P a(Xi))

i = 1 to n

Modeling with Bayesian networks requires the assumption of theMarkov property i.e. there
are no direct dependencies in the system being modelled which are not already explicitly
shown via arcs in the graph.

This decomposition of a global function into a product of local terms dependent only on
the node concerned and on his parents in the graph, is a fundamental property of Bayesian
networks. It is the basis of the early work on the development of inference algorithms, which
calculate the probability of any variable of the model from the same partial observation of
other variables. Belief updating in Bayesian networks is computationally complex. In the
worst case, belief updating algorithms are NP-hard (Cooper 1990).The graph belief propa-
gation algorithm solves the following marginalisation problem (Weiss and Freeman 2001):

P(xi ) = 1

Z

∫
j �=i

exp(−1/2xT Ax + bT x)dx j ,

where Z is a normalisation constant, A is a symmetric positive definite matrix (inverse
covariance precision matrix) and b is the shift vector. For example, it can be shown that
using a Gaussian model, the solution of the marginalisation problem is equivalent to the
maximum a posteriori probability assignment problem:

argmax
x

P(x) = 1

Z
exp(−1/2xT Ax + bT x)

This problem is also equivalent to the followingminimization problemof the quadratic form:

min
x

1/2xT Ax − bT x .

Which is also equivalent to the linear system of equations Ax = b (Shental et al. 2008)
Pearl (1986) developed a message-passing scheme that updates the probability distrib-

utions for each node in a Bayesian networks in response to observations of one or more
variables. Lauritzen and Spiegelhalter (1988), Jensen et al. (1990), and Dawid (1992) pro-
posed an efficient algorithm that first transforms a Bayesian network into a tree where each
node in the tree corresponds to a subset of variables in the original graph. The algorithm
then exploits several mathematical properties of this tree to perform probabilistic inference.
Few algorithms are detailed further in the text. Of these, best known are probabilistic logic
sampling (Henrion 1988), likelihood sampling (Shachter and Peot 1990; Fung and Kuo-Chu
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1990), backward sampling (Fung and del Favero 1994), Adaptive Importance Sampling AIS
BN (Cheng and Druzdzel 2000), and Approximate Posterior Importance Sampling APIS
BN (Yuan and Druzdzel 2003). Approximate belief updating in Bayesian networks has been
also shown to be worst-case NP-hard (Dagum and Luby 1993).

Clustering algorithm is the fastest known exact algorithm for belief updating in Bayesian
networks. It was originally proposed by Lauritzen and Spiegelhalter (1988) and improved
by several researchers, e.g. Jensen et al. (1990) or Dawid (1992).

The clustering algorithm works in two phases: (1) compilation of a directed graph into
a junction tree, and (2) probability updating in the junction tree. It has been a common
practice to compile a network, and then perform all operations in the compiled version.
Research in relevance reasoning (Lin and Druzdzel 1997) has challenged this practice and
has shown that it may be advantageous to preprocess the network before transferring it into
a junction tree. The clustering algorithm should be sufficient for most applications. Only
when networks become very large and complex, the clustering algorithm may not be fast
enough. In that case, it is suggested to choose an approximate algorithm, such as one of the
stochastic sampling algorithms

The belief updating algorithm for singly connected networks (polytrees) was proposed
by Pearl (1986). It is the only belief updating algorithm that is of polynomial complexity,
but unfortunately this result and the algorithm works only in singly connected networks (i.e.
networks in which any two nodes are connected by at most one undirected path).

The Adaptive Importance Sampling for Bayesian Networks (AIS-BN) algorithm is
described in Cheng and Druzdzel (2000). This is one of the best sampling algorithm avail-
able, surpassed only by theAPIS-BN algorithm (Yuan andDruzdzel 2003). In really difficult
cases, such as reasoning under very unlikely evidence in very large networks, it will pro-
duce two orders of magnitude smaller error in posterior probability distributions than other
sampling algorithms. Improvement in speed given a desired precision is even more dra-
matic. The AIS-BN algorithm is based on importance sampling. According to the theory of
importance sampling, the closer the sampling distribution is to the (unknown) posterior dis-
tribution, the better the results will be. The AIS-BN algorithm successfully approximate its
sampling distribution to the posterior distribution by using two cleverly designed heuristic
methods in its first stage, which leads to the big improvement in performance stated above.
This algorithm is described in Fung and Kuo-Chu (1990) and in Shachter and Peot (1990).

Relevance-based algorithms are described in Lin and Druzdzel (1997). Relevance algo-
rithms are very fast and usually lead to substantial savings in computation time.

The Estimated Posterior Importance Sampling algorithm for Bayesian Networks (EPIS-
BN) algorithm is described in Yuan and Druzdzel (2003). This is quite likely the best
sampling algorithm available. It produces results that are even more precise than those
produced by the AIS-BN algorithm and in case of some networks produces results that are
an order of magnitude more precise. The EPIS-BN algorithm uses loopy belief propagation
to compute an estimate of the posterior probability over all nodes of the network, and then
uses importance sampling to refine this estimate.

The likelihood sampling algorithm makes an attempt at improving the efficiency of
the probabilistic logic sampling algorithm by instantiating only non-evidence nodes. Each
sample is weighted by the likelihood of evidence given the partial sample generated. It is a
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simple algorithm with little overhead that generally performs well and certainly better than
probabilistic logic sampling in cases with observed evidence.

The probabilistic logic sampling algorithm is described inHenrion (1988). This algorithm
should be credited as the first algorithm applying stochastic sampling to belief updating in
Bayesian networks. Essentially, the algorithm is based on forward (i.e. according to the
weak ordering implied by the directed graph) generation of instantiations of nodes guided
by their probability. If a generated instantiation of an evidence node is different from its
observed value, then the entire sample is discarded. Thismakes the algorithmvery inefficient
if the prior probability of evidence is low. The algorithm is very efficient in cases when no
evidence has been observed or the evidence is very likely.

In our Bayesian network, each node is described by a probability distribution dependent
on its direct predecessors. Nodeswith no predecessors are described by prior probability dis-
tributions. The vineyard quality node is described by the prior probability distribution for its
three outcomes: very high quality (P2), moderately high quality (P1) or unsuitable (P0). This
limited number of outcomes is justified to ensure a reliable analysis of all the different effects
on vineyard and wine quality. Both the structure and numerical parameters of our network
were obtained from experts, but they could have been learned from data, as the structure
of a Bayesian network is simply a representation of data dependence relationships. Finally,
for implementation of the model, the special SMILE library of C# classes with graphical
decision theory methods was used. This library works well with intelligent systems, such as
Bayesian networks and influence diagrams.Weused it to developC# software for the input of
all decision node values and for processing of the entire network to obtain a final probabilis-
tic value for vineyard quality (Fig. 2). Themodel was adjusted on the basis of the probability
table values.Model adjustment can be a time-consuming process. The adjustment was based
on the variability of data within the probability tables. In some cases, the weighting of a
variable was increased by using more extreme values from the probability table for the
variable concerned (closer to 0 or closer to 1, depending on the desired effect). The system
generates an output file containing values and results that can easily be imported into Excel.

2.6. SENSIBILITY ANALYSIS

Good modelling practice requires modellers to provide an evaluation of confidence in
their models and thus to evaluate the contribution of each input to output uncertainty. Quan-
titative model evaluation should include sensitivity analyses and assessments of predictive
accuracy. Predictive accuracy refers to a quantitative evaluation of the model, by comparing
model predictions with observed data (Pollino et al. 2007). Sensitivity analysis tests the
sensitivity of model outcomes to variations in model parameters. Sensitivity analysis in
BNs can measure the sensitivity of outcome probabilities to changes in input nodes or other
model parameters, such as changes in node’s type of states and their coarseness. It can be
performed using two types of measures; entropy and Shannon’s measure of mutual infor-
mation (Pearl 1988). The entropy measure is based on the assumption that the uncertainty
or randomness of a variable X, characterised by probability distribution P(x), can be repre-
sented by the entropy function H(X) : H(x) = �Pi(x).log(Pi(x)). Reducing H(X) by
collecting information in addition to the current knowledge about variable X is interpreted
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as reducing the uncertainty about the true state of X (Barton and de Vladar 2009). The
entropy measure therefore enables an assessment of the additional information required to
specify a particular alternative. Shannon’s measure of mutual information is used to assess
the effect of collecting information about one variable (Y ) in reducing the total uncertainty
about variable X using: I (Y, X) = H(Y ) − H(Y |X)

where I (Y, X) = the mutual information between variables. This measure reports the
expected degree to which the joint probability of X and Y diverges from what it would be if
X were independent of Y. If I (Y, X) = 0, X and Y are independent (Pearl 1988). Another
way to use themutual informationmeasure is to compare the impact of gathering information
on variables Y and Z on reducing the uncertainty in X. For example, if I (Y, X) > I (Z , X),
then the uncertainty in variable X would be reduced more by increased observations about
Y then by increased information about Z (Barton and de Vladar 2009). Coupé and Van Der
Gaag (2002) and Pollino et al. (2007) propose an additional empirical approach to sensitivity
analysis, based on changing each of the parameters and observing the related changes in
the posterior probabilities. This approach can be used to identify the most ‘sensitive set’
of variables in the BN; those that are most influential in affecting change and those that
are most affected by variations in parameters. Note that assessing the influence of every
single parameter can be a time-consuming process, especially in large networks. Sensitivity
analysis is used to address this issue, ordering inputs in terms of their strength and relevance
for determining output variation (Saltelli et al. 2008). Local methods involve determining
the partial derivative of the output Y with respect to an input factor Xi :

∣∣∣∣ ∂Y

∂ Xi

∣∣∣∣
X0,

where the subscript X0 indicates that the derivative is taken at some fixed point in the
space of the input (hence the ’local’ in the name of the class). In our model, calculations
are made through Tornado diagrams, useful to perform sensitivity analysis. For each vari-
able/uncertainty considered, Tornado diagram estimates for what the low, base and high
outcomes would be. The sensitive variable is modelled as uncertain value while all other
variables are held at baseline values (stable).

2.7. THE EXPERTS

Our network was created by completing probability tables with expert data. The chosen
international experts were Professor Alain Carbonneau and Professor Jean-Michel Bour-
siquot, both members of the International Organisation of Vine and Wine. We defined
different possible outcomes for each decision node, as explained below. The experts were
asked to fill in the probability tables. The questions put to the experts were as follows:
for each path leading to a random node, taking into account all the possible outcomes of
every decision node, what are the probabilities of attaining a good quality vineyard (P2), a
medium quality vineyard (P1) a poor quality vineyard or a vineyard in which vines cannot

grow (P0). The hypothesis
j=2∑
j=0

P j = 1 had to be confirmed.
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Table 1. Probability table for the variable pH.

pH Good_soil_chemical_aspects Medium_soil_chemical_aspects Bad_soil_chemical_aspects

Less_than_5 0.0001 0.495 0.4995
From 5 to 8 0.9998 0.01 0.001
More_than_8 0.0001 0.495 0.4995

3. RESULTS AND DISCUSSION

3.1. INFERENCE AND EXPERT DATA

After experts concluded data input phase, the data were analysed statistically in order
to assess the consistency between experts (Yamada et al. 2003). For example, considering
the “variety” variable, the ranking predicted quality (low, medium and high) for each expert
was examined to measure the agreement amongst experts. The inter-expert pair-wise com-
parison using Spearman’s rho revealed that approximately more than 90 % of the values of
rho in the analyses of the study domain very correlated using the interpretation of Fowler
et al. (1999). So, using the method described in Sect. 2.7 with regard to the methodology of
eliciting expert knowledge (Uusitalo 2007; Pollino 2008), we filled the probability tables.
For example, the table below shows the scores given by the experts for the pH variable of
the chemical aspects node (Table 1).

Below, we discuss and substantiate only the major results we got by eliciting expert
knowledge.

For node 1, a latitude >55◦ corresponds to a situation in which it is impossible to
establish a productive vineyard. Furthermore, the latitude limits for vineyards decrease with
increasing altitude. Thus, grapes can grow at 3000 m, but high P2 values are obtained only
at low latitudes. Thus, regardless of the other decision nodes, desert climates give high P0
values, close to 1. The only exception to this concerns altitudes of between 1200 and 3000
m, with a CI <12 and a HI between 2400 and 3000◦C. In such conditions, P2 may reach
0.5. Furthermore, an equatorial climate, which is not appropriate for vineyards, gives a high
P0 value of 0.95. A subdesert climate is suitable for vines and may yield high P2 values,
depending on the other decision nodes of the model. Equatorial climates are too warm and
wet for grapevines. Tropical climates are also not optimal for vines, yielding P2 values of
0.75 if DI is low (below 100 mm), with a HI between 2400 and 3000◦C and a positive
CI. Oceanic climates are ideal for vines if conditions are not too wet (DI ≤ 150mm) and
altitude is below 600 m. Continental climates are appropriate for vines only if the DI is
below 150 mm and the HI is greater than 1500◦C. Mediterranean climates are generally
optimal for vine growing, particularly if the CI is no greater than 14◦C. Regardless of the
other decision nodes, a CI greater than 18 is not appropriate for grapevine growth, resulting
in a high P0 value. For lower values of CI, the Bayesian network takes all the other variables
into account. Similarly, extreme HI values, below 1500 or above 3000◦C, are not suitable
for grapevine growth and result in high P0 values. HI is a determinant variable for the choice
of vine variety. A DI value of −100 mm or below, with no possibility of irrigation, results
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in high P0 values (desert areas). By contrast, DI values greater than 150 mm indicate an
environment that is too wet for a high-quality vineyard.

For node 2, CPI depends on pH and water availability. A high CPI, of more than 90, is
associated with high P0 values unless adapted root stocks, such as Fercal (Carbonneau et al.
2007), are used. A pH value below 4.5 or above 8 is also associated with high P0 values,
regardless of the other decision node outcomes. Nitrogen, phosphoric acid and potassium
hydroxide are important minerals for vines and, according to the experts, unbalanced soils
never yield high P2 values.

For node 3, soil gradient and useful soil depth play a major role in determining water
availability and water reserves (Carbonneau et al. 2007). The percentages of clay, silt and
sand in the soil must be known for the determination of water reserves, as a ration in mm
of water per cm of thin soil. This value can be obtained with the software we developed,
by inputting the percentages of silt and clay. Water availability can be determined by multi-
plying the value for water reserves by that for useful soil depth. For good P2 values, water
availability must be sufficiently high to avoid severe water stress. However, the presence of
excess water may lead to rot, resulting in high P0 values.

For node 4, a probabilistic evaluation of the quality of each variety was necessary. We
therefore asked international experts about the quality of more than 660 varieties of wine
grapes (Lacombe et al. 2011). Some very old varieties, such as Storgoziya, from Central
Europe and the Caucasus area, have high P0 values. Other rarely used varieties, such as
Pozsonyi and Portan, had high P1 values. The remaining, better known varieties, such as
Pinot Noir, Cabernet Sauvignon, Merlot and Chardonnay, had high P2 values (Table 5—
supplementary data). However, some clones are not of high quality and experts have always
considered the clone-varietymatch to be important. The choice of a specific rootstock should
take the CPI value into account. For high CPI values, in limestone soil, special rootstocks
such as Fercal, 140 R or 41B, must be used. The use of other rootstocks in such soils invari-
ably leads to high P0 values. Vines require water, so an absence of irrigation in desert or
subdesert climates invariably leads to high P0 values. By contrast, protection against frost
or hail may be required in some areas, and this also affected the probability values given by
the experts. Similarly, a lack of soil preparation may have a negative effect on wine quality
throughout the life of the vineyard and invariably results in high P0 values. Finally, the use
of a vertical shoot positioning system may lead to high P0 values if water reserves are not
sufficiently high.

3.2. MONITORING SOFTWARE

Using the method described in 2.5, specific software was developed to integrate user
choices, probability tables and monitoring of the Bayesian engine GeNIe (Fig. 3). The
program supplies the engine with the occurrence of each variable of the situation studied
by the user. The engine requires water reserve values, so the software calculates them from
the percentages of silt and clay, as described by Jamagne et al. (1977). Once the user has
made all the choices required, the software triggers the Bayesian engine to generate the
results. The decision system is based on the control variables of the network: clone, variety,
rootstock, irrigation system, protection against climatic events, soil preparation and training
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Figure 2. Software with a Bayesian calculation engine.

system. The CPI value is used to select the rootstock, as explained above, and the HI value
is used to select the variety, on the basis of earliness. The C# rules were defined to guide
the user in the choice of control variable values for the future vineyard as a function of final
quality (Fig. 2).

The average sensitivity values of the different variables of our model, provided by GeNIe
software, have been ranked in increasing order of impact on vineyard quality (Table 2).

These indices indicate that climate has a huge effect on quality in our model. It is due
to the fact that extreme climatic situations such as Polar climate are addressed by the BN
. Altitude / latitude, DI, variety, rootstock andtraining system also have a high sensitivity.
The least sensitive variable is protection against climatic events.

3.3. VALIDATION

After developing the model’s structure and estimating the conditional probabilities, we
evaluated our BN. Usual expert model evaluation tools include qualitative feedback from
experts and stakeholders, or by comparing model predictions with literature data or with
results from similar models (Kragt 2009). Inter-experts comparisons has been made in order
to assess the consistency between experts (see Sect. 3.1). To measure the similarity among
the experts, correlation coefficients called Spearman’s rho (Fowler et al. 1999) were derived
from the ranking data. Appendix A shows results with the P0, P1 and P2 probability values.
High P0 values were obtained for situations previously identified as difficult or impossible
for grapevine growth, as described in the materials and methods. These situations corre-
spond to extreme choices for the most sensitive variables: climate, altitude, latitude and DI.
High P1 values were also obtained if poor choices were deliberately made for several con-
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Table 2. Sensitivity analysis indices.

Variable Average sensitivity

Protection against climatic events 6,00915E-24
Irrigation 2,52293E-23
Clone 6,72016E-23
Minerals 6,88071E-22
Water reserves 1,42201E-21
Useful depth 1,78898E-21
HI 2,66054E-21
Soil preparation 9,7018E-19
Chlorotic power index 1,12844E-18
pH 1,83256E-17
CI 1,58944E-14
Rootstock 5,48163E-11
Training system 1,65825E-10
Variety 2,40825E-10
DI 4,1743E-10
Altitude / latitude 3,94494E-06
Climate 0,999996054

Figure 3. Model validation.

trol variables: variety, rootstock, soil preparation, contrary to the guidance of the decision
system. In other cases, high P2 values were obtained. A real validation of such a model is
impossible to achieve. We validated our model by testing it with existing vineyards con-
sidering the wine quality obtained using the same oenological processes for each of them.
So, we obtained data relating to the climate, to the soil, to the cultivation system and the
corresponding quality of the wines produced for each vineyard by different juries. These
results were approved by the experts.
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Appendices B shows the results obtained for the existing situations studied, with Pi prob-
ability values considered as a function of the corresponding vineyard quality, determined
either by the press (Wine Spectator, Wine Advocate) or through tasting sessions.

We determined the correlation between P2 value and vineyard quality, scored from 0 to
100 (Fig. 3). A correlation coefficient of 0.75 indicated that higher P2 values were associated
with higher scores for wine quality. The predictive value of the model may therefore be
considered good. This model is now used in experimental conditions by scientists of INRA
(Pech Rouge, France) and few winegrowers in south of France in order to test it in more
various conditions.

Wepromote it in international congresses such asGIESCO (International group of experts
in wine systems for cooperation) to develop its use. By this way, we will get more results
coming from various areas and conditions and will get more feedback to improve the model
if necessary.

4. CONCLUSIONS

Bayes’ theorem is widely applied in many fields, including science, engineering, medi-
cine and law. Its use in conjunction with prior knowledge and a system able to compute
inference data can be very effective. In the system suggested here environment and all the
components of a vineyard were linked together in a new model, making it possible to quan-
tify the likely quality of a future vineyard to optimise possible choices through the control
values of the network. This study is of potential interest to all winemakers wishing to grow
their own grapes and to maximise their chances of establishing a high-quality vineyard.
The predictive performance of the proposed BN is around 75 %. Thanks to the software
developed in this study, the model will be soon available on line either through INRA web
site or through GIESCO international experts web site. It will allow us to get feedback to
improve it or to adapt it to more specific situations.
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