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ABSTRACT

Background and objectives: In home-based context-aware monitoring patient’s real-time data
of multiple vital signs (e.g. heart rate, blood pressure) are continuously generated from wear-
able sensors. The changes in such vital parameters are highly correlated. They are also patient-
centric and can be either recurrent or can fluctuate. The objective of this study is to develop
an intelligent method for personalized monitoring and clinical decision support through
early estimation of patient-specific vital sign values, and prediction of anomalies using the
interrelation among multiple vital signs.
Methods: In this paper, multi-label classification algorithms are applied in classifier design
to forecast these values and related abnormalities. We proposed a completely new ap-
proach of patient-specific vital sign prediction system using their correlations. The developed
technique can guide healthcare professionals to make accurate clinical decisions. More-
over, our model can support many patients with various clinical conditions concurrently
by utilizing the power of cloud computing technology. The developed method also reduces
the rate of false predictions in remote monitoring centres.
Results: In the experimental settings, the statistical features and correlations of six vital signs
are formulated as multi-label classification problem. Eight multi-label classification algo-
rithms along with three fundamental machine learning algorithms are used and tested on
a public dataset of 85 patients. Different multi-label classification evaluation measures such
as Hamming score, F1-micro average, and accuracy are used for interpreting the predic-
tion performance of patient-specific situation classifications. We achieved 90-95% Hamming
score values across 24 classifier combinations for 85 different patients used in our experi-
ment. The results are compared with single-label classifiers and without considering the
correlations among the vitals. The comparisons show that multi-label method is the best
technique for this problem domain.
Conclusions: The evaluation results reveal that multi-label classification techniques using
the correlations among multiple vitals are effective ways for early estimation of future values
of those vitals. In context-aware remote monitoring this process can greatly help the doctors
in quick diagnostic decision making.
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1. Introduction

A decision support system (DSS) [1] in remote patient moni-
toring [2] is designed to assist healthcare professionals with
decision making tasks such as disease prevention and diag-
nosis [3]. Context-awareness [4] is an essential part of clinical
decision analysis [5] in patient’s healthcare [6]. In a real-time
monitoring, various health-related data of a patient are col-
lected at a fixed sampling interval and analysed continuously
to discover the current health situation of the patient. Using
the ongoing context information of a patient the application
can send proper alerts or messages to the doctors in remote
monitoring centres. Some clinical decision support systems
(CDSSs) [5] are capable of sensing clinically abnormal conse-
quences in advance based on the intelligent analysis over
recently observed medical data of a patient and before they
are presented to the clinicians. The traditional CDSSs primar-
ily advise medical abnormalities by assessing data of a single
vital sign [7] such as heart rate (HR), blood pressure (BP), re-
spiratory rate (RR), oxygen saturation (SPO,), electrocardiogram
(ECG) [8] and body temperature. However, they suffer from high
false alerts. Most of the serious clinical anomalies occur as a
result of irregularities in multiple vital signs [9] at the same
time. Therefore, an important part of a context-aware remote
monitoring application is the accurate and early prediction of
abnormalities [10] that occur due to the changes in multiple
vital signs.

The trends in different vital signs are patient-specific. For
example, the mean blood pressure (MBP) value is always high
for a hypertensive patient (i.e. patient with high blood pres-
sure). The MBP value does not contain any anomaly for this
patient as single vital sign unless it raises above a specific
threshold. For a normal patient, the threshold of abnormality
is different, i.e. the same MBP value can be abnormal for a
normal patient but deemed as normal for a hypertensive
patient. Hence for many health parameters, normal is actu-
ally a relative value for the patient. This can differ subject to
age, disease history, user activity, gender etc. Each vital sign
and related interactions must be interpreted in the context of

a patient. This necessitates the need of a personalized model
for clinical decision support that can discover patient-specific
anomalies independently by employing a common learning
technique.

For many clinical abnormalities, a single vital sign does not
contain enough information for the doctors. The symptom-
atic patients are likely to have several abnormal vital signs [11].
For example hypotension (low blood pressure), tachycardia (el-
evated heart rate) and hypothermia (decrease in body
temperature) can cause sepsis. Hypoventilation can occur when
low respiratory rate is accompanied by low oxygen satura-
tion (SPO,) [12]. Therefore, strong positive or negative correlations
in multiple vital signs contain useful information for predict-
ing disease symptoms or anomalies. Some examples of such
correlations are shown in Fig. 1. These correlations can be re-
petitive in some patients and vary over time in some other
patients. The remote monitoring doctors must be aware of these
anomalies and must incorporate them explicitly into a deci-
sion to avoid any potentially dangerous clinical situation
associated with the changes in multiple vital signs. Unfortu-
nately, no good learning model exists that can perceive such
patient-specific changes early enough to assist the physi-
cians in real-time to make proper clinical decisions. Therefore,
an enhanced CDSS is required with a fast, well-trained and
adaptive learning model which is less likely to make false pre-
dictions and so the doctors can take proper diagnostic actions.

In a context-aware assisted living system [13] a patient is
generally equipped with different body sensors (e.g. ECG sensor,
pulse oximeter, BP sensor). These sensors have capability to
collect health-related vital parameters data of the patient in
a continuous manner. The wireless communication ability
(bluetooth, wifi, zigbee) of these sensors simplifies the data
transmission process to the cloud repositories via a mobile
device (e.g. smart phone or tablet) having a high speed Inter-
net connection. The cloud has large distributed storage and high
processing capability. Thus, by applying data mining tech-
niques inside the cloud environment over continuous batches
of collected data of multiple vital signs, it is possible to induce
logical models which can infer the future values of those pa-
rameters. The predicted values of these vital signs and their
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Fig. 1 - Strong correlations between a pair of vital signs. (a)-(e) examples of positive correlation, (f) example of negative
correlation. Here SBP, DBP and MBP refer to Systolic, Diastolic and Mean blood pressures respectively.
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Fig. 2 - The workflow of real-time vital sign monitoring, classification, predictions and clinical decision support.

interactions are used to advise patient about the medical con-
sequences or to recommend patient’s doctors for subsequent
clinical decisions. This is also known as context-aware actions
by the system. This scenario is presented in Fig. 2.

This paper shows how multi-label classification (MLC) tech-
niques [14-16] can be utilized to identify the changes in multiple
vital signs quickly and efficiently. Considering the short-term
summary statistics and correlations of all vital signs in par-
allel, a suitable feature vector for multi-label classifier is
generated. Those features are then used to build machine learn-
ing models to make short-term predictions of vital sign
threshold values. The overall system will reduce false alerts
in the monitoring stations and will also help the early detec-
tion of clinical dangers. We formulate our model to a MLC
problem because we want to achieve multiple targets (the range
of all vital sign values) using the same information and at the
same time.

1.1. Motivations

Chronic diseases caused by abnormalities in vital signs are
major reasons of deaths in Australia and throughout the world.
The long-term effects of the irregularities in multiple vitals can
result in serious chronic illness. A clinical decision support
system (CDSS) with early prediction capability can mitigate such
problems. In our previous works we developed learning tech-
niques for personalized knowledge discovery [17], future
abnormalities prediction, and behavioural change detection [10]
using various contexts of a patient in an assisted living envi-
ronment. We have also shown the advantage of utilizing cloud
platforms for such learning tasks and the process of context
modelling and reasoning [13,17]. From the motivations of these
works, in this study we mainly focus on vital sign correla-
tions and utilize these contexts to produce a useful tool for
the healthcare professionals by estimating patient-specific
future trends of various vitals in advance. Our developed meth-
odology will assist the doctors to make better decisions,
diagnosis and treatment, resulting in improved healthcare
service quality and less chronic disease-related deaths.

1.2 Contributions

The developed methods make several contributions to the bio-
medicine and healthcare related research. They are as follows.

1. We developed an intelligent clinical decision support system
(CDSS) by adopting MLC techniques that can detect the up-

coming trends in multiple vital signs at the same time using
their correlated features. To make an accurate clinical de-
cision a doctor should not only consider the occurrence of
abnormality in each vital sign separately, but also take into
account the effect of their correlations. In our approach,
multi-label classifiers are extensively applied to detect such
correlations in advance [18]. According to the literature
review, this is the first attempt of employing MLC in vital
sign predictions using their correlations. There are no
previous studies which provide such an experimental com-
parison of state-of-the-art MLC algorithms on vital signs
data.

. We utilized the high resourceful cloud technologies for clas-
sifier training and decision support so that the system can
work simultaneously for many patients. As a result, our in-
novative technique provides clinical decision support to a
big community containing versatile patients by utilizing a
common platform. At present no such system exists that
can serve such a large number of patients. The proposed
approach also reduces hospital load, because many pa-
tients can be monitored from home continuously. Ultimately,
the adoption of our techniques can reduce the high cost of
treatment.

. The developed approach provides personalized and real-
time clinical decision support by detecting patient-specific
anomalies, disease symptoms and emergencies in advance.
In addition, this can assist healthcare experts in diagnos-
tic decision making with greater knowledge [19]. The
accuracy of vital signs prediction is greatly improved by con-
sidering the patient-specific correlations of those vitals. Thus,
this individualized system reduces the amount of false pre-
dictions in remote monitoring centres.

1.3.  Rest of the paper

The outline of the paper is as follows. Section 2 presents a lit-
erature review. Section 3 describes the overall system design
and concepts. Section 4 explains the theoretical methods and
related implementations. Section 5 shows the experimental
results and comparisons. Finally, the conclusion and future
works are described in Section 6.

2. Related work

There are several studies related to discovering correlation pat-
terns in multiple vitals such as heart rate, blood pressure,
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respiration, O, saturation, and ECG. They mainly focus on finding
future abnormalities in a specific vital sign [20-22]. However,
very few attempts have been made to find future abnormali-
ties in multiple vital signs. In biomedical area, multi-label
classification techniques are mainly used in clinical text mining
[23] and finding adverse effects of a patient in response to
different drug events [24]. Some recent works show the
advantage of multi-label classifier in clinical data analysis
[25-27].

Furthermore, machine learning techniques are widely
adopted in biomedical data analysis, healthcare and clinical
abnormality predictions [28]. There are quite a number of CDSSs
being proposed in the literature for different purposes. Various
classifiers are developed using data mining methods for these
CDSSs to aid healthcare providers in clinical decision-making
process [29]. Classical data mining techniques such as support
vector machine [30], artificial neural network [31], and naive
Bayes [32] are used to detect clinical abnormalities and predict
future behaviours in vital signs such as ECG [33], blood pres-
sure [34], respiration etc. In summary, it is clear from the
literature that the researchers have emphasized towards the
direction of analysing a collection of continuous physiologi-
cal data in real-time to extract the best knowledge of a patient
situation and to find future behaviours. Most of these predic-
tive systems are based on single goal prediction. But in this

Continuous data from Patient

Multi-label classification and evaluation

work, we intend to find values of multiple vitals at the same
time.

3. The framework for clinical decision
support system (CDSS)

The objective is to develop a CDSS that helps doctors to make
decisions by estimating the future values and abnormalities
in multiple vital signs. The framework for the proposed CDSS
is presented in Fig. 3 and described as follows.

3.1. Patient data collection

We consider an assisted living system where a patient lives
alone in his/her home. Several body sensors are attached to
a patient’s body that collect data of various vital signs con-
tinuously (i.e. per minute). The measured data are sent to a
mobile device using wireless connection (e.g. wifi, blue-
tooth, zigbee). The mobile device then transmits these vital signs
data to the cloud in small batches (e.g. every 1 hour) for pro-
cessing. The cloud has vast storage and high processing
capability. Therefore, it can store a large amount of incoming
data from many patients [13,17]. The pre-processing and
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Fig. 3 - A framework of a clinical decision support system (CDSS) based on multi-label classification (MLC) using the

correlations of multiple vital signs.
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Table 1 - The six vital signs and their acronyms used in
this study.

Bio-signal Acronym Unit

Heart rate HR Beats per minute (bpm)
Systolic blood pressure SBP mmHg

Diastolic blood pressure ~ DBP mmHg

Mean blood pressure MBP mmHg

Respiratory rate RR
Blood O, saturation SPO,

Breaths per minute (bpm)
Percentage (%)

machine learning steps are performed inside the cloud envi-
ronment for parallel and fast processing.

3.2.  Correlations of vital signs for clinical inference

In this study we considered six vital signs collected as nu-
merical trend data from six different bio-signals listed in Table 1.
These vital signs measure different physiological functions of
human body and are used to monitor patient’s clinical status
during patient-care. The changes in vital signs indicate the po-
tential growth of different disease symptoms or physiological
response to some treatment. Therefore, vital sign values contain
useful information for clinicians to make decisions in a remote
monitoring system.

Vital signs can be abnormal in virtually any disease process.
Patients who are actually ill are likely to have several abnor-
mal vital signs. Certain patterns of abnormalities develop
through a strong correlation between multiple vitals. For
example, a strong correlation between Hypertension (el-
evated SBP and DBP) and Bradycardia (low HR) can create serious
clinical emergency known as Cushing reflex. Fever (increasing
body temperature) is accompanied by tachycardia (increas-
ing heart rate) with the general rule of thumb that the heart
rate will increase by 10 beats per minute for every 1 °C in-
crease in body temperature. The progression of such diseases
can be inferred prior to emergency situation using the pro-
posed learning model.

3.3. Data preprocessing and feature generation

In the pre-processing stage, noisy data are cleaned and then
segmented into fixed-sized sliding window for calculating sta-

tistical and correlated features and corresponding class labels.
The feature extraction process from raw data is described below.

Given the continuous value of p vital signs sampled per
minute as time series V(t) =[Vi(t), Va(t)... V, (t)]. V(Ts - T.) is
a batch (e.g. 24 hours) of continuous data that starts at time
Ts and ends at T.. Data between time T, and T. are divided into
three time slices: observation time t,, lead or forecast time t
and prediction time t,. To generate o number of samples from
this batch t, is divided into o windows of size w. That is, t,= 0 x w.
A feature vector, fj is generated from each of o windows where
1<j<o. The corresponding multi-label class vector ¢ of size
p is obtained from the mean values of each p vital from the
prediction window of same size w located at the time after |
times of w from the point where the j-th observation window
t,; ends. This formulation is shown in Fig. 4.

We have numerical trend data of p vitals between time t — t,
and t, the goal is to estimate future values of those p vitals at
time t. That is, we want to predict an estimated average value
of each vital sign between time t + t;and t + t; + t,. The predic-
tion is not a continuous value, but instead is a vector of size
p where each value is defined in one of 15 different ordinal
classes. Table 2 summarizes what vital sign value for each class
label stands for.

As an example, if w is 10 minutes and 1 is 6 then t; is
(6 x 10 = 60 minutes) 1 hour. t, = w, that is 10 minutes. If a batch
size (T, — Ts) is 24 hours (1440 in minutes) then the size of t,
can be at most (t, = 1440-60-10) 1370 minutes. Thus, here the
number of observations o is 137 (as o = t, + w). Therefore, using
w =10 and =6 we can extract a total of 137 examples from
24 hour data. If we use two-thirds data for model training then
we will have 92 samples for training and 45 samples for model
validation.

3.4.  Multi-label classification (MLC) and evaluation
When an adequate number of instances are available for train-
ing, they are sent to the classification engine where different
MLC algorithms are applied in parallel using cloud plat-
forms. Finally, all results are compared using various evaluation
measures to evaluate their performance and the best model
is determined. The model is then used to classify new unknown
instances of future batches. Thus, the model can predict the
normalized class value (as described in Table 2) of all vitals in
advance.

Monitoring Observation Lead Pr?dlct|on
start windows windows Window
£ f i'p
Past Data Future Data
wo wl 1
t'to t+tl t+tl+tp

(0——>Windowsize in number of time steps ( i.e. minutes )
(O —> Number of observations used for making prediction

l ————> Number of window gaps or lead units

Fig. 4 - Observation, lead and prediction window times.
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Table 2 - Normalized class value for different ranges of six vital signs.

Class value HR SBP DBP MBP RR SPO,
-7 <30 <50 <30 <40 <5 <83
-6 >30 and <40 >50 and <60 >30 and <35 >40 and <50 >5 and <6 >83 and <85
-5 >40 and <45 >60 and <70 >35 and <40 >50 and <55 >6 and <7 >85 and <87
-4 >45 and <50 >70 and <80 >40 and <45 >55 and <60 >7 and <8 >87 and <89
-3 >50 and <55 >80 and <90 >45 and <50 >60 and <65 >8 and <9 >89 and <91
-2 >55 and <60 >90 and <100 >50 and <55 >65 and <70 >9 and <10 >91 and <93
-1 >60 and <70 >100 and <110 >55 and <60 >70 and <80 >10 and <12 >93 and <95
0 >70 and <90 >110 and <120 >60 and <80 >80 and <100 >12 and <15 >95 and <100
1 >90 and <100 >120 and <130 >80 and <90 >100 and <105 >15 and <17 N/A
2 >100 and <120 >130 and <140 >90 and <100 >105 and <110 >17 and <19 N/A
3 >120 and <140 >140 and <150 >100 and <105 >110 and <115 >19 and <21 N/A
4 >140 and <160 >150 and <170 >105 and <110 >115 and <120 >21 and <23 N/A
5 >160 and <180 >170 and <190 >110 and <115 >120 and <130 >23 and <24 N/A
6 >180 and <200 >190 and <210 >115 and <120 >130 and <140 >24 and <25 N/A
7 >200 >210 >120 >140 >25 N/A

3.5. Knowledge adaptation and decision support of the data are sampled per minute, but some are sampled per

In our design, the learned model for a specific patient is also
continuously adapted for new batch of data to ensure that the
model is up-to-date to detect future behaviours using most
recent information. The learned personalized knowledge is
stored and utilized along with different clinical rules and cor-
relations to detect anomalous situation.

3.6. Clinical decision support

The abnormal mean values in one or multiple vitals indicate
different types of abnormalities, disease symptoms or clini-
cal emergencies. The healthcare professionals are notified on
occurrence of such anomalies. They can then further investi-
gate the data and make diagnostic decisions. An appropriate
clinical alert is sent to the patient based on the decision so
that the patient gets notified before any potential danger.

4. Methodology and implementation

The process of model development and implementation is de-
scribed as follows.

4.1. Data sources

We have used vital signs data from MIMIC [35] and MIMIC-II
[36] numerical datasets of MIT Physiobank archive [37]. Data
in the MIMIC/MIMIC-II database contain multi-parameter re-
cordings, which are obtained from both bedside monitor and
the medical records of the patients who stayed in ICUs. We pre-
ferred to use this dataset because it fulfilled the criteria to
evaluate our implementations. Moreover, there is no public
dataset available which contains multiple vital signs data of
various home-monitoring patients with different correla-
tions for a long period of time. Here we considered that home-
monitoring data have similar nature when they are collected
in a controlled environment and in supervision of a nurse.
MIMIC and MIMIC-II (version 2) datasets contain records of
various physiological signals of about 4000 adult patients. Most

second and they are converted to per minute sampling by taking
the mean value in a minute. The data containing clean values
of the six vital signs for more than 24 hours are used. Finally,
30 from MIMIC and 55 from MIMIC-I], in total 85 patient records,
are used for evaluations. Patients involved in this study have
a wide range of clinical problems such as sepsis, respiratory
failure, congestive heart failure, pulmonary edema, myocar-
dial infarction, cardiogenic shock and acute hypotension. Most
of these clinical cases occur due to abnormalities in multiple
vital signs at the same time.

4.2. Data cleaning and preprocessing

A few pre-processing steps are required to improve the data
quality before computing the features. This is practical for real-
world data. Even for a monitored patient at home, data can
contain noise and outliers. The noisy or missing data occur due
to sensor errors, disconnections, equipment changes, network
connection interruptions and many other reasons. If all vital
signs data are missing for a long period, they are considered
as non-recoverable due to network interruptions or sensor errors
and thus deleted. The case where one or more vital signs data
are missing while clean values of others are available is con-
sidered as recoverable and imputed using median-pass [38] and
k-nearest neighbour filter [39].

4.3. Segmentation

For each patient the model starts learning using the batch of
first 24 hour data. The first batch is used as bootstrap learn-
ing for building the initial model. The incoming data are
classified using this model and after every 2 hours the model
is refreshed using the most recent 24-hour batch data to ensure
adaptability. This process considers that the upcoming future
values are vastly dependent on most recent past values (in our
case 24 hours) which is also true for real life data. Thus, this
incremental batch based segmentation and learning process
is able to handle potentially infinite amount of data.

Here each vital sign signal is sampled per minute. There-
fore, a batch of 24-hour data contains 1440 minute samples
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of six vital signs. As described previously, T, — T; = 1440 minutes.
According to Fig. 4 these 1440 minute data are divided into 3
time slices (to, t; and t,). The values of | and w are varied and
corresponding feature vector and class labels are generated.
For training we have used 66%-split, that is, the first two-
thirds data are used for model training and the last one-third
data are used for model validation.

4.4.  Feature extractions and class labelling

The filtered numerical trend data of each vital sign (as in
Table 1) are used to calculate the features. For an observation
window size w statistical features of each of the six signals such
as mean, median, minimum, maximum, standard deviation,
skewness, kurtosis, percentiles and inter-percentile ranges are
calculated [40]. Minimum and maximum contain the infor-
mation about extreme values, mean and median represent the
magnitude of each vital sign, standard deviation describes the
variability and skewness is the third moment of amplitude dis-
tribution. Moreover, different percentiles (5th, 10th, 50th, 90th
and 95th), IPR (inter-percentile range, which is the difference
between 2 percentile values such as 95th and 5th), and kur-
tosis are other important statistical measures that provide a
snapshot of the relation between vital parameters that vary
over time.

We also calculated the sequential trend of each vital which
is the number of increasing and decreasing values within a
sliding window w [41]. Another feature is the regression slope
which is calculated by fitting a linear least square regression
line to the small curve of w-sized window. The slope deter-
mines sharp changes in a vital sign which can indicate a
dangerous situation. Moreover, we have measured the pairwise
correlation coefficients of six signals that contain the infor-
mation about actual correlation between a pair of vitals. All
these measures are simple and very easy to implement. Overall,
a total of 123 features are computed from six vital signs.

To find the corresponding multi-label classes of each feature
set, we measured the mean values of w-sized window located
after [ x w minutes from the observation window. After-
wards, the measured mean values of each of the six vital signs
are labelled to the normalized value from -7 to 7 (for SPO; it
is from -7 to 0) as described in Table 2. Therefore, each in-
stance of a classifier is a set of 123 features and corresponding
set of 6 classes.

The overall training examples are generated as a batch of
24 hour data. Therefore, the system generates an incremen-
tal batch of 24-hour training samples and they are fed to
different multi-label classifiers.

4.5.  Multi-label classification

Multi-label classification problem corresponds to searching for
a function h that assigns to each instance. The goal is to mini-
mize the expected prediction loss with respect to a specific loss
function. An instance is represented by a vector of m fea-
tures or attributes X = (X, X5, X3, ..., Xin) and a vector of d output
labels Y =(Y3,Y,, Y3, ..., Yz). The h function should assign to each
instance X that finds the most likely combination of class labels,
thatis, argmaXxy,v, v, P(y1 = Y4, Y,, ..., Y4/X). The m-dimensional
input space is represented by Qyx =[1; Qx,. In our case all the

features are numeric. So, Qx, c R. A multi-label dataset with
N training samples is represented by D ={(x®, y®),...x™, y™)}
where x9 e Qy and y¥ cY forall ie{1,...,N}. As stated above,
in our formulation, m is 123 and d is 6. The learning task of
obtaining h is represented by h:Qyx, xQy, X...xQx, >y Y.

Multi-label classification problem can be categorized in two
steps, (1) Problem transformation method and (2) Algorithm
adaptation method [14]. The first one transforms the learn-
ing task into one or more single label classification tasks. They
are algorithm independent. The second method extends ex-
isting machine learning algorithms (e.g. decision tree, support
vector machine [42], neural network, k-nearest neighbour [43])
to handle multi-label data directly. There are various problem
transformation methods such as binary relevance (BR)-based
methods, label combination (LC)-based methods, pairwise
methods, ranking methods via single label learning and en-
semble methods.

Many variants of these problem transformation methods
are described in the literature [14]. We evaluated our data with
most of these methods and picked the best eight methods based
on the evaluation measures and training time to interpret our
results. The eight methods are binary relevance (BR), classi-
fier chain (CC), Bayesian CC (BCC), Monte Carlo optimization
of CC (MCC), Classifier Trellis (CT), Fourclass Pairwise (FW),
Pruned Sets (PS) and Ranking + Threshold (RT). The classifica-
tion algorithms are performed in MEKA software [44] which
is a Multi-label extension of popular data mining software
WEKA [45]. A short description of these algorithms is pre-
sented below.

4.5.1. Binary relevance (BR)

The BR method transforms the original dataset into c datasets
(where c is total number of classes in a dataset), one for each
class label, where each dataset includes all the instances of
the original dataset and learns one binary classifier for each
label independent of the rest of labels. To classify a new in-
stance, BR outputs the union of the labels that are predicted
by the c classifiers. It does not consider label relationship [46].
In our case, we have 6 classes with 15 different labels. Thus,
the class labels of our problem are easily transferable to BR
method.

4.5.2. Classifier chain (CC)

The CC method contains classifiers which are linked along a chain,
where each classifier handles the binary relevance problem as-
sociated with each label. It creates a chain of classifiers
Cy, Cy, ..., Cp, where L is the total number of labels. To classify a
new instance, CC starts from C; and runs down along the chain.
Each classifier determines the probability of being classified
into Ly, Ly, ..., L. The chain method passes label information
between classifiers to take into account label correlation. It com-
bines the advantages of binary relevance and label dependency.
The CC method is based on the decomposition of the condi-
tional probability of the class vector Y using the product rule of
probability. p(Y|X)=p(Y:|X)ITL, (Yi|Ys,..., Y, X) [46].

A variant of CC is Bayesian Classifier chain (BCC). The ob-
jective of BCC is to find a joint distribution of the classes
Y=Y,Y,...,Y; for a given feature set X=(Xy, X, Xs,..., Xm),
such that p(Y|X)=IIL (Yi|pa(Y:)|X), where pa(Y;) represents
the parents of class Y. A Bayesian Network (BN) is induced to
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represent the joint distribution. In this setting, a classifier chain
can be constructed by inducing first the classifiers that do not
depend on any other class and then proceed with their pre-
decessors. Another variant of CC is Monte Carlo classifier
chain (MCC) that uses Monte Carlo search method for esti-
mating joint probability. Another classifier chain method that
approximates the probability p(YIX) by maintaining a lattice
structure graph is known as Classifier Trellis (CT) [47]. As the
class labels of our formulated feature vector have high corre-
lations most of the variants of classifier chains produced better
predictions.

4.5.3.  Pruned sets (PS)

Pruned Sets (PS) is a variant of Label Power Set or Label Com-
bination (LC) method. LC takes into account label dependency.
Label power set considers each unique occurrence of a set of
labels as one class [48]. In LC each different set of labels becomes
a different class in a new single-label classification task. Un-
fortunately, basic LC must discard any new training examples
that have a labelset combination that is not one of the class
labels. So, this does not suit incremental learning. Pruned sets
(PS) uses pruning to focus on core combinations. It is much
better suited to this incremental learning context. PS drasti-
cally reduces the number of class-labels in the transformation
by pruning all examples with infrequent labelsets. It then ad-
ditionally subsamples the infrequent labelsets for frequent ones
so it can reintroduce examples into the data without reintro-
ducing new labelset combinations. PS thus retains (and often
improves upon) the predictive power of LC, while being up to
an order of magnitude faster.

4.5.4. Fourclass pairwise (FW) and ranking + threshold (RT)

These are ranking-based methods. It learns ffl binary models,
one for each pair of labels. Each model is trained based on ex-
amples that are annotated by at least one of the labels but not
both. The FW model compares each class pair Yj, Yi to one of
the four classes 00,01,10,11 with threshold. The RT method du-
plicates multi-label examples into examples with one label each,
trains a multi-class classifier, and uses a threshold to recon-
stitute a multi-label classification.

4.5.5. Algorithm adaptation method

In our evaluations we used three popular machine learning al-
gorithms for result analysis. They are J48 Decision Tree (J48),
Random Tree (RT) and Sequential Minimal Optimization (SMO,
a simplified version of support vector machine). We have also
tested some other algorithms such as Naive Bayes (NB) and
Multi Layer perception (MLP) but the outcomes of those ad-
aptation methods were not satisfactory and so not included
in this study for result interpretation.

4.5.6. Evaluation measure

The evaluation methods for multi-label classifications are dif-
ferent from those used for single-label classifications. The
evaluation methods can be divided into example-based mea-
sures, label-based measures, and ranking-based measures [46].
Here we have used four measures for the performance evalu-
ations of our experiments. These are described below.

1. Hamming score: is the accuracy for each label (class) to cor-
rectly be predicted, averaged across all labels. This is the
opposite of Hamming Loss which reports how many times
on average the relevance of an example to a class label is
incorrectly predicted. Hamming loss takes into account the
prediction error (an incorrect label is predicted) and the
missing error (a relevant label is not predicted), normal-
ized over total number of classes and total number of
examples.

2. Accuracy: is the ratio between the correct labels to the total
number of labels for each instance, averaged across all
instances.

3. F1 micro average: is the harmonic mean between preci-
sion and recall, where the recall refers to the percentage
of relevant labels that are predicted, and precision refers
to the percentage of predicted labels that are relevant.

4. Exact match: is the accuracy of each example where all label
relevance must match exactly for an example to be correct.

4.6. Abnormality prediction

The classifier model we developed can detect the output label
of multiple vitals at same time. In our formulation the normal
ranges (according to general medical rule) of all vital signs have
class label 0. We can consider that values near 0 (that is 1 or
—1) are nearly normal. Other than this, high or low values in
class labels are considered as abnormal, and high or low values
in multiple vitals and very high or low value in one or more
vitals can be treated as dangerous situation. Thus, our system
has the mechanism for early prediction of such abnormal con-
ditions well ahead of time and sends proper alert to the doctors.

4.7. Incremental and patient-specific learning

The best classifier is picked in terms of Hamming score, F1
measure and model building time. Once a classifier model is
selected for a patient using the bootstrap batch, the new in-
coming instances are classified using only this classifier. If the
performance of classification for new instances falls below an
expected threshold value (in our case Hamming score <90%)
before the model is refreshed, the classifier is re-trained using
most recent batch (past 24-hour data from current) to main-
tain the desired performance level. Otherwise, the model is
refreshed every 2 hours. It is expected that the nature of cor-
relations of vitals will not be the same for a long duration for
a specific patient. Thus, this incremental learning process is
adaptive and keeps the knowledge of the model up to date with
new instances. Therefore, our model can be easily used in
patient-specific abnormality prediction as it maintains patient-
specific knowledge.

5. Experimental evaluations and results

To evaluate the performance of the proposed approach differ-
ent MLC algorithms are applied over our experimental data.
We have performed the testing for multiple patients individu-
ally and concurrently inside cloud environment. We have used
multiple m3.2xlarge Elastic Compute Cloud (EC2) instances
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Tree. Window size 10 achieved the best Hamming score, accuracy and F1 value compared to other window sizes.

provided by Amazon Web Service (AWS) for data mining process
using MEKA software tool. We have also used Amazon Simple
Storage Service (S3) for storing patient data as incremental
batch. All the results are presented below.

5.1. Selection of window size

As described in the implementation we have used fixed-
length sliding window for calculating the feature vectors of all
vital signs. Thus, the selection of optimal window size w is im-
portant in our analysis. A short window size (e.g. 4 minutes)
does not contain enough information for calculating statis-
tics and correlations. On the other hand, a long window size
(e.g. 30 minutes) is also not suitable as there is high possibil-
ity that physiological signals can fluctuate in this long duration.

We have evaluated window size w as 8, 10, 12, 16, 20 minutes
for multiple patients using BR classifier. The values are se-
lected in such a way that they can be divided by 60 minutes
(1 hour). The evaluations of window size for patient a40493n
are shown in Fig. 5.

For selecting the window size we performed a statistical sig-
nificance test using 8 problem transformation methods and 3
algorithm adaptation methods (in total 24 combinations) across
85 patients with different window sizes. We performed a paired
t-test for each window combination and at 5% significance level
using Hamming score. The obtained average p-values across
24 algorithms are presented in Table 3. The results show that
using Hamming score of different classifiers window 10 is sig-

Table 3 - Statistical tests results (paired t-test at 5
percent significance level) for different window sizes.

Here only mean p-values are presented across 24
algorithms and 85 patients.

Window size 10 12 16 20

8 0.02 0.36 0.24 0.43
10 0.005 0.02 0.03
12 0.04 0.05
16 0.25

nificantly better than the others. Therefore, we used window
size 10 for further evaluations.

5.2.  Selection of forecast period

If 1is unit for lead time and w is the window size then the fore-
cast period (or lead period) t;=1x w. For example, for w =10
and 1 =6 lead period is 60 minutes or 1 hour. That is, the pre-
diction window is located after 1 hour and our system will
predict the mean value of 10 minute prediction window 1 hour
before.

We varied the I value from 1 to 7 (i.e., forecast window from
10 to 70 minutes). The shorter forecast window has better pre-
diction accuracy. Normally accuracy will degrade when lead
time becomes longer. 1 hour preceding prediction window
is considered fair enough for a doctor to make clinical
decisions. Therefore, we have used | value up to 7 for our ex-
periment. Once again, this evaluation was performed for all
85 patients with different classifiers. The evaluation for patient
a40493n using lead time 1-7 is presented in Fig. 6. For all cases
the achieved Hamming score was satisfactory (>85%).

5.3. Classifier performance evaluation

As stated above, to evaluate the performance of all classifier
combinations we have tested it with 8 problem transforma-
tion methods and 3 algorithm adaptation methods (in total 24
combinations) for 85 patients.

5.3.1. Performance for a single patient

Table 4 shows the observed result for a single patient on random
24 hour data where first two-thirds data are used for training
and the rest one-third for validation. Different classifier com-
binations perform well in different patients. As in Table 4, we
can see for all combinations that we have Hamming >86% (at
least), accuracy >60%, exact match >31% and F1 score >70%.
For this particular patient SMO has better accuracy
than J48 and Random Tree for most of the problem transfor-
mation methods. Here, we found that FW and Random Tree
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Table 4 - Performance of different multi-label classifiers using the features of random 24 hour data of patient a40215n.

Herew=10and 1=7.

Hamming score (%) Accuracy (%)

Exact match (%) F1 micro average (%)

J48 RT SMO J48 RT SMO J48 RT SMO J48 RT SMO
BR 92.4 92.9 934 71 734 72 34.7 55.1 26.5 79.3 80.5 81.4
BCC 92.3 92.6 934 70.8 723 724 38.8 55.1 32.7 79.1 79.4 81.1
CcC 91.8 92.4 93.6 68.4 734 74.9 30.6 55.1 46.9 77.4 79.5 82.3
MCC 89.7 924 93.6 63.5 734 749 224 55.1 46.9 73.7 79.5 82.3
FW 93.1 94.1 93.8 74.3 77.7 74.8 53.1 57.1 36.7 81.1 84 82.8
CT 92.9 93.3 93.5 72.7 74.4 71.9 44.9 55.1 26.5 80.3 81.2 81.3
PS 89.1 91.3 93.7 60.5 70.5 77 34.7 57.1 61.2 70.1 76.2 82.7
RT 86.3 92 93.8 68.3 71.8 75.6 31.2 57.1 46.9 72.8 77.9 83

combination produces the best result which has Hamming score
of 94.1% and accuracy of 77.7% (shown in bold face).
According to our problem formulation the class labels are
mean values of vital sign within small ranges. Therefore, it is
very common for a classifier to predict something that is not
exactly accurate but near the class label (e.g. HR class pre-
dicted as 2 where original class label is 1). As the metric
Hamming loss actually represents the average distance from
the correct class labels, a smaller class deviation that is a small
value of Hamming loss (or in reverse large value of Hamming
score) indicates a better classifier performance. Fig. 7 shows

the boxplot of the Hamming score values across all 24 classi-
fier combinations for 85 different patients used in our
experiment. We can see that most of the mean values are in
the range of 90-95%.

Moreover, our class distribution is uneven. Thus, the accu-
racy metric does not indicate the true performance of the
classifiers. That’s why we also measure F1 score because it rep-
resents a classifier performance in case of an uneven class
distribution in terms of precision and recall performance
metrics. However, we also kept the accuracy and exact match
measure for our evaluations to interpret the performance of
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Fig. 7 - Hamming scores of 85 patients separated using the statistics from 24 classifier combinations.
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the classifier with Hamming score and F1 score. But here we
mostly decide depending on Hamming score as this is the best
accuracy measure to describe our problem.

Fig. 8 shows graphical interpretation of the classification per-
formance of another patient in terms of 4 measures we
considered. Once again, we find that for most of the combi-
nations we have Hamming score >90%. For this patient also
FW and Random Tree combination achieved the best Hamming
score but SMO performs well as base learner in most trans-
formation methods. In the analysis, other than FW we can see
that PS and CT also have better performance.

5.3.2. Performance for multiple patients

To understand the overall average performance of all classi-
fiers for all patients we measured the average Hamming score
of 85 patients for different classifier combinations using random
24 hour data. The results are presented in Fig. 9. We found that
the mean Hamming score is still over 90%. The best average
mean is obtained for FW and Random Tree combination. To vali-
date the statistical significance of this statement we performed

a paired t-test that compares the performance score (e.g.
Hamming scores) of each pair of algorithms across 85 pa-
tients at 5% significance level [49]. The statistical test compared
the best results with the results of the other learning methods,
in a two-by-two basis. Due to the space limit of the paper, we
only present the test based on the Hamming score which has
a normal distribution across 85 patients.

The null hypothesis is that the algorithms being com-
pared are equally good and the alternative hypothesis is that
FW and Random Tree (RT) combination is better than others.
The combination of algorithm number is shown in Table 5 and
the p-values of 24 combinations are presented in Table 6.

Note that in Table 6 small values for the p-values indicate
that a method is significantly better than the other and high
p-value (>5%) indicates there are no statistically significant dif-
ferences in the results accomplished by a pair. We can observe
that for algorithm (14) (FW and Random Tree) all p-values
are 0 that is significantly small. This justifies our previous
statement that the best results are obtained from this com-
bination. Moreover, we can see that for many cases there are
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Fig. 9 - Average performance of different combinations of multi-label classifiers and learning algorithms in terms of
Hamming score. These average values are calculated from random 24 hour data of each of the 85 patients using w = 10 and
1=7. Here, for most cases Hamming score is above 90%. The performance of Random Tree and SMO is better than J48.
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Table 5 - The numbering map of 24 combinations of 8

problem transformations and 3 algorithm adaptation
methods.

748 RT SMO
BR 1 2 3
BCC 4 5 6
@ 7 8 9
MCC 10 11 12
FwW 13 14 15
CT 16 17 18
PS 19 20 21
RT 22 23 24

no statistically significant (p value >5%) differences between
a pair of algorithms.

The above analysis proves the efficiency of prediction for
our model. That is, it can still perform well if class output label
varies across multiple patients. Fig. 10 shows another average
performance chart using boxplot. Here the results of Hamming
score of 85 patients are summarized in terms of Hamming score
of 24 classifier combinations. As we also see here most of the
values are between 90 and 95%.

5.3.3.  Performance in terms of model building time

In a clinical decision support system it is also important to take
a quick decision. Therefore, we need to measure the effi-
ciency of our model in terms of learning time. Fig. 11 graphically
shows the average model training time for 85 patients. We can
see that for most cases the average model building time is less
than a second using 24-hour data. The FW method is a slow
learner. SMO is slow learner than Random Tree and J48. However
CT, PS and RT can learn fast using our data. PS and Random
Tree combination has the minimum building time. There-
fore, when we consider both Hamming score and building time
we can say that CT, PS and RT problem transformation methods
along with Random Tree adaptation method are the best clas-
sifiers for our techniques.

5.4. Performance for using correlations

To understand the importance of correlation coefficients in MLC
performance we have tested the same dataset that was used
for MLC. Here we used our 3 adaptation methods (j48, Random
Tree and SMO) as single-label classifier. That is, the objective
is to classify the output label of each vital individually with
the following three settings.

1. Considering all 123 features generated from 6 vitals to predict
the output label of each vital individually.

2. Excluding correlation coefficients as features for all and con-
sidering only the statistical features of corresponding vital
sign.

3. Using selected features by a feature selection algorithm. As
feature selection algorithm we have used correlation-
based feature selection algorithm that evaluates the worth
of a subset of attributes by considering the individual pre-
dictive ability of each feature along with the degree of
redundancy between them. As search function we have used
best first search that searches the space of attribute subsets

by greedy hillclimbing augmented with a backtracking
facility [50].

The results of this comparison for a single patient are pre-
sented in Table 7. The results are generated using WEKA
software. We can see that the prediction accuracy is higher
when we consider all the correlated features for all types of
classifier. In few cases (e.g. HR and RR) the prediction accu-
racy with selected attributes performed better than using all
classifiers, but for most other cases it is not as correlation
feature selection process is biased by picking the attributes
related to the desired vital sign (e.g. HR) only. Thus, in indi-
vidualized classification we can get the prediction performance
of some vital signs better than others but when they are com-
bined with correlations we have a stable prediction model. This
proves the importance of using correlation in MLC. The cor-
related features have high impact on predicting other vitals.

5.5. Discussions

From the above observations, we can conclude the MLC is a
better option than single-label classifiers for the developed
CDSS. Because for estimating values of 6 vitals we need to build
6 learning models using the same set of features. We can see
from Table 7 that the vitals such as SPO, which have low varia-
tions have higher accuracy than the vitals with high variations
and this makes the prediction inconsistent. In case of multi-
label classifier we can estimate the values of all vitals using
just one training model which have high Hamming score. That
is, using MLC we can achieve high prediction rate and low model
training time which are essential for real-time patient
monitoring.

Moreover, this technique can easily be used for patient-
specific vital sign predictions. The learning models for each
patient are obtained by training different models using boot-
strap data (first 24 hours). The best learning for w=10and 1=7
is obtained using the highest Hamming score and lowest model
building time while being trained in m3.2xlarge Amazon EC2
instance using MEKA classifier. The best model for each patient
is stored in Amazon S3. Then, the future values are predicted
for subsequent data. The abnormality alarm is when mul-
tiple vitals have high or low values, or one vital has very high/
low value. The prediction is verified using Hamming score and
the same model is re-trained when Hamming score goes below
90%.

6. Conclusion and future work

In this work, we propose a model for a CDSS to predict mul-
tiple vital sign values of a home-monitoring patient using their
correlations. This also helps to find patient-specific anoma-
lies in advance. The proposed technique takes the advantage
of multi-label classification. Numerical trend dataset of mul-
tiple vital signs is prepared for multi-label classification engine.
Different multi-label classification methods are performed over
data of many patients using MEKA software and their perfor-
mance was evaluated in order to extract patient-specific
knowledge and predict future abnormality.
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Fig. 10 - Hamming scores of 24 different classifier combinations using the statistics of 85 patients.
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Fig. 11 - Average building time for different classifier using random 24 hour data of 85 patients. PS-Random Tree is the
fastest process. SMO takes more time than Random Tree and J48. FW has very high building time.

Using the experimental evaluations we showed that multi- patient-specific clinical decision can be made using the pre-
label classification outperformed single label classification for dicted outcome produced by the multi-label classifier in short
this type of decision support system. Based on Hamming score time.
and model building time we obtained the best classifier for each The major contribution of this research is the investiga-
patient individually. The model is also made adaptive and tion of multi-label classification methods to forecast the future
situation-aware using incremental learning process. Thus, value of multiple vital signs and at the same time using their

Table 7 - A comparison of prediction accuracies for 6 vital signs as individual using 3 classification algorithms. This is
using the same dataset and settings as in . Here, WCF means with all correlated features of all vitals, OF means

using only features of corresponding vital and SF using subset of features selected by a feature selection algorithm from
all features.

J48 Decision tree Random tree SVM polynomial kernel
WCF OF SF WCF OF SF ‘WCF OF SF
HR 89.36 72.34 85.1 85.1 80.85 89.36 82.98 80.85 87.23
SBP 72.08 60.28 70.21 69.57 57.44 68.08 72.34 51.06 64.68
DBP 70.21 61.7 68.08 74.46 61.7 70.21 70.21 55.31 68.08
MBP 72.34 63.82 63.82 74.46 65.18 68.08 70.21 59.57 55.31
RR 69.7 65.95 72.34 74.46 70.21 76.59 67.44 59.57 64.68

SPO, 95.74 93.61 95.74 95.74 95.74 97.87 97.87 93.61 93.61
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correlated features. Therefore, the outcome of multi-label clas-
sification can assist the healthcare professionals in decision
making through the CDSS and thus help to detect instances
when patient would be in serious clinical danger. Our model
is extendible for other vital signs (e.g. body temperature) and
in future, we want to include more bio-signals and clinical data
and their correlation in our investigations.
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