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Abstract The effectiveness of classification and recog-

nition systems has improved in a great deal to help medical

experts in diagnosing diseases. Breast cancer is becoming a

leading cause of death among women in the whole world;

meanwhile, it is confirmed that the early detection and

accurate diagnosis of this disease can ensure a long sur-

vival of the patients. This paper presents a hybrid intelli-

gent system for recognition of breast cancer tumors. The

proposed system includes two main modules: the feature

extraction module and the predictor module. In the feature

extraction module, rough set theory is used to preprocess

the attributes on condition that the important information is

not lost, deletes redundant attributes and conflicting objects

from decision table. In the predictor module, a combined

classifier is proposed based on K-nearest neighbor classi-

fier. Experiments have been conducted on a widely used

Wisconsin breast cancer dataset taken from University of

California Irvine. Experimental results show that the pro-

posed hybrid system can improve the rate of correct

diagnosis of cases. The proposed combined classifier with

rough set-based feature selection achieves 99.41 % clas-

sification accuracy and uses only 4 features which is the

best shown to date. Different performance metrics are used

to show the effectiveness of the proposed hybrid system.

With these results, the proposed method is very promising

compared to the previously reported results and can be

used confidently for other breast cancer diagnosis

problems.

Keywords Breast cancer diagnosis � Hybrid intelligence

system � Ensemble classifier � Rough set � K-Nearest

neighbor � Feature selection

1 Introduction

Cancer is a group of diseases that causes cells in the body

to change and grow out of control. Most types of cancer

cells eventually form a lump or mass called a tumor and are

named after the part of the body where the tumor

originates.

Breast cancer begins in the breast tissue that is made up

of glands for milk production, called lobules, and the ducts

that connect the lobules to the nipple. The remainder of the

breast is made up of fatty, connective and lymphatic tissues

[1].

Breast cancer typically is detected either during a

screening examination, before symptoms have developed,

or after symptoms have developed, when a woman feels a

lump. Most masses seen on a mammogram and most breast

lumps turn out to be benign; that is, they are not cancerous,

do not grow uncontrollably or spread, and are not life-

threatening. When cancer is suspected based on clinical

breast exam or breast imaging, microscopic analysis of

breast tissue is necessary for a definitive diagnosis and to

determine the extent of spread (in situ or invasive) and

characterize the pattern of the disease. The tissue for

microscopic analysis can be obtained via a needle or sur-

gical biopsy. Selection of the type of biopsy is based on

individual patient clinical factors, availability of particular

biopsy devices, and resources (American Cancer Society,

2014) [1].

Most breast cancers are invasive or infiltrating. These

cancers have broken through the ductal or glandular walls
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where they originated and grow into surrounding breast

tissue. The prognosis (forecast or outcome) of invasive

breast cancer is strongly influenced by the stage of the

disease—that is, the extent or spread of the cancer when it

is first diagnosed.

Medical diagnostic decision support systems have

become an established component of medical technology.

The main concept of the medical technology is an induc-

tive engine that learns the decision characteristics of the

diseases and can then be used to diagnose future patients

with uncertain disease states.

In general, given a pattern recognition problem, the

traditional approach is to evaluate a set of different learn-

ing algorithms against a representative validation set and

select the best one. In order to achieve the best possible

classification performance, we need to design many algo-

rithms. It is now recognized that the key to recognition

problems does not lie wholly in any particular solution. No

single model exists for all pattern recognition problems and

no single technique is applicable to all problems. Further-

more, the sets of patterns misclassified by the different

algorithms would not necessarily overlap, which suggested

that different algorithms potentially offered complemen-

tary information [2]. This led to the emergence of ensemble

learning. Ensemble learning is a learning method where a

collection of a finite number of classifiers is trained for the

same classification task, and thus, it can gain better per-

formance at the cost of computation. In recent years,

ensemble learning has been employed to increase the

accuracy in classification beyond the level achieved by

individual classifiers [3, 4]. Typically, ensemble learning

involves either statistical parametric classifiers or neural

networks trained on the same data, and a method that

combines their outputs into a single one. If one could pick

the best classifier to use for every sample, the misclassified

samples in the output would be the ones that were wrongly

classified by all methods [5].

The main contribution of the paper is to build a hybrid

intelligent system which combine two methodologies:

rough set theory as a preprocessing step for selecting the

most discriminatory features and a combined classifier

using K-nearest neighbor (KNN) as base classifier so as to

automatically produce a diagnostic system. We find that

the proposed hybrid approach produces a system exhibiting

two prime characteristics: first, it attains high classification

performance which is the best shown to date; second, the

resulting systems involve a few set of discriminatory fea-

tures, only four features, and are therefore (human-)

interpretable.

The rest of the paper is organized as follows. Section 2

gives the background information including breast cancer

classification problem and previous research in corre-

sponding area. The proposed hybrid intelligent system is

explained in Sect. 3. In Sect. 4, different performance

measurements are introduced which are commonly used

for testing the effectiveness of automatic diagnosis system.

The results obtained are given in Sect. 5. This section also

includes the discussion of these results. Consequently in

Sect. 6, the conclusion is given with summarization of

results by emphasizing the importance of this study and

suggesting some future work.

2 Background

2.1 Breast cancer dataset

Cancer begins with uncontrolled division of one cell and

results in a visible mass named tumor, see Fig. 1. Tumor

can be benign or malignant. Malignant tumor grows rapidly

and invades its surrounding tissues through causing their

damage. Breast cancer is a malignant tissue beginning to

grow in the breast. The abnormalities like existence of a

breast mass, change in shape and dimension of breast,

differences in the color of breast skin, breast aches, etc. are

the symptoms of breast cancer. Cancer diagnosis is per-

formed based on the nonmolecular criterions like tissue

type, pathological properties and clinical location. As for

the other cancer types, early diagnosis in breast cancer can

be lifesaving. A more recent study gives the estimated new

female breast cancer cases and deaths by age, US, 2013 as

shown in Table 1.

In this study, the Wisconsin breast cancer database [6]

taken from fine needle aspirates from human breast tissue

was analyzed. They have been collected by Dr. William

H. Wolberg at the University of Wisconsin-Madison

Hospitals, USA. The data consist of 683 records of

Fig. 1 Breast cancer copyright � Cancer Research UK. http://www.

cancerresearchuk.org
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virtually assessed nuclear features of fine needle aspirates

taken from patients’ breasts. Each record in the database

has nine attributes. A brief description of this dataset is

presented in Table 2. The nine attributes detailed in

Table 3 are graded on an interval scale from a normal

state of 1–10, with 10 being the most abnormal state.

There are 239 malignant cases and 444 benign cases. A

malignant label is confirmed by performing a biopsy on

the breast tissue. Either a biopsy or a periodic examina-

tion is used to confirm a benign label.

In the Clump thickness, benign cells tend to be grouped

in monolayers, while cancerous cells are often grouped in

multilayer [6]. While in the Uniformity of cell size/shape,

the cancer cells tend to vary in size and shape. That is why

these parameters are valuable in determining whether the

cells are cancerous or not. In the case of Marginal adhe-

sion, the normal cells tend to stick together, where cancer

cells tend to lose this ability. So loss of adhesion is a sign

of malignancy. In the Single epithelial cell size, the size is

related to the uniformity mentioned above. Epithelial cells

that are significantly enlarged may be a malignant cell. The

Bare nuclei is a term used for nuclei that is not surrounded

by cytoplasm (the rest of the cell). Those are typically seen

in benign tumors. The Bland chromatin describes a uniform

‘‘texture’’ of the nucleus seen in benign cells. In cancer

cells, the chromatin tends to be coarser. The Normal

nucleoli are small structures seen in the nucleus. In normal

cells, the nucleolus is usually very small if visible. In

cancer cells, the nucleoli become more prominent, and

sometimes, there are more of them. Finally, Mitoses are

nuclear division plus cytokines and produce two identical

daughter cells during prophase. It is the process in which

the cell divides and replicates. Pathologists can determine

the grade of cancer by counting the number of mitoses.

2.2 Previous research in diagnosis of breast cancer

As for other clinical diagnosis problems, classification

systems have been used for breast cancer diagnosis prob-

lem, too. When the studies in the literature related with this

classification application are examined, it can be seen that a

great variety of methods were used which reached high

classification accuracies using the dataset WBCD taken

from UCI machine learning repository. Among these,

Quinlan [7] reached 94.74 % classification accuracy using

10-fold cross-validation with C4.5 decision tree method.

Hamilton et al. [8] obtained 96 % accuracy with RIAC

method while Ster and Dobnikar [9] obtained 96.8 % with

linear discreet analysis (LDA) method. The accuracy

obtained by Bennett and Blue [10] who used support vector

machine (SVM) (59 CV) method was 97.2 % while by

Nauck and Kruse [11] was 95.06 % with neuro-fuzzy

techniques and by Pena-Rayes and Sipper [12] was

97.36 % using fuzzy-GA method. Moreover, Setiono [13]

reached 98.1 % using neuro-rule method. Goodman et al.

[14] applied three different methods to the problem which

were resulted with the following accuracies: optimized-

LVQ method’s performance was 96.7 %, big-LVQ method

reached 96.8 % and the last method, AIRS, which he

proposed depending on the artificial immune system,

obtained 97.2 % classification accuracy. Nevertheless,

Abonyi and Szeifert [15] applied supervised fuzzy clus-

tering (SFC) technique and obtained 95.57 % accuracy. In

Table 1 Estimated new female breast cancer cases and deaths by

age, US, 2013a

Age (years) In situ cases Invasive cases Deaths

\40 1,900 10,980 1,020

\50 15,650 48,910 4,780

50–64 26,770 84,210 11,970

65? 22,220 99,220 22,870

All ages 64,640 232,340 39,620

Source: Total estimated cases are based on 1995–2009 incidence rates

from 49 states as reported by the North American Association for

Central Cancer Registries. Total estimated deaths are based on data

from US Mortality Data, 1995–2009, National Center for Health

Statistics, Centers for Disease Control and Prevention

American Cancer Society, Surveillance and Health Services

Research, 2013. http://www.cancer.org/research/cancerfactsstatistics/

index
a Rounded to the nearest 10

Table 2 Description of the breast cancer datasets

Databases No. of

attributes

No. of

instances

No. of

malignant

No. of

benign

No. of

classes

Wisconsin

breast cancer

(WBC)

9 683 239 444 2

Table 3 Wisconsin breast cancer dataset attributes

Attribute

number

Attribute Domain Mean Standard

deviation

1 Clump thickness 1–10 4.44 2.82

2 Uniformity of cell size 1–10 3.15 3.07

3 Uniformity of cell shape 1–10 3.22 2.99

4 Marginal adhesion 1–10 2.83 2.86

5 Single epithelial cell size 1–10 3.23 2.22

6 Bare nuclei 1–10 3.54 3.64

7 Bland chromatin 1–10 3.45 2.45

8 Normal nucleoli 1–10 2.87 3.05

9 Mitoses 1–10 1.60 1.73
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[16], Least Square SVM (LS-SVM) was used and 98.53 %

accuracy was obtained. A learning algorithm applying

linear least squares reaching a classification accuracy of

96.0 % over the entire WBCD is presented in [17]. In [18],

the combination of further division of partition space

(FDPS) and flexible neural tree (FNT) is proposed to

improve the neural network classification performance and

the obtained result is 98.25 %. A method based on gravi-

tational potential energy between particles [19] is applied

for the whole WBCD dataset, and the best result obtained

is 98.81 %. More recently in [20], a new resampling

method called SUNDO is proposed combining an over-

sampling and an undersampling technique. Four classifiers

based, respectively, on Support Vector Machine, Decision

Tree, labeled Self-Organizing Map and Bayesian Classifi-

ers have been developed and applied for WBCD. The best

results obtained for these four classifiers are 97.2, 94.3,

96.7 and 96.4 %, respectively.

3 Method

3.1 Proposed hybrid system

K-Nearest neighbor (KNN) algorithms are known espe-

cially with their simplicity in machine learning literature.

They are also advantageous in that the information in

training data is never lost. But, there are some problems

with them. First of all, for large datasets, these algorithms

are very time-consuming because each sample in training

set is processed while classifying a new data and this

requires longer classification times. This cannot be prob-

lem for some application areas but when it comes to a

field like medical diagnosis, time is very important as

well as classification accuracy. So, an attempt has been

made in this study to reduce the size of training data. This

data-reducing stage was realized by using rough set the-

ory. The most discriminatory set of features are obtained

using rough set technique. Then, these features are used

in classification phase as input to a combined classifiers

using KNN as base classifier. The final results are com-

bined using a majority voting (MV) technique. The block

diagram of the whole classification system can be seen in

Fig. 2.

3.1.1 Rough set-based feature selection

Rough set theory (RST) is a new intelligent mathematical

tool proposed by Pawlak in 1982 to deal with uncertainty

and incompleteness [21]. Over the past few years, RST has

become a topic of great interest to researchers and has been

applied to many domains. It is based on the concept of an

upper and a lower approximation of a set, the approxima-

tion space and models of sets. The main advantage of RST

is that it does not need any preliminary or additional

information about data: like probability in statistics or basic

probability assignment in Dempster–Shafer theory and

membership grade in fuzzy set theory [22]. One of the

major applications of RST is the attribute reduction that is

possible to find a minimal subset. The reduction of attri-

butes is achieved by comparing equivalence relations

generated by sets of attributes. Using the dependency

degree as a measure, attributes are removed and reduced

set provides the same dependency degree as the original.

This section recalls some essential definitions from RST

that are used for feature selection. Detailed description and

formal definitions of the theory can be found in [23, 24].

3.1.1.1 Information system Knowledge representation in

rough sets is done via information system [23], which is

denoted as 4-tuple S ¼ U; A; V ; fh i, where U is the closed

universe, a finite set of N objects {x1, x2, …, xn}, A is a

finite set of attributes {a1, a2, …, an}, which can be further

divided into two disjoint subsets of C and D, A ¼ fC [ Dg
where C is condition attributes and D is a set of decision

attributes. V ¼ Ua2AVa and Va is a domain of the attribute

a, and f : U � A! V is the total decision function called

the information function such that f ðx; aÞ 2 Va for every

a 2 A; x 2 U.

3.1.1.2 Indiscernibility relation One of the most signifi-

cant aspects of RS theory is its indiscernibility relation.

The R-indiscernibility relation is denoted by IND(R), is

defined as [23]:

INDðRÞ ¼ fðx; yÞ 2 U � Uj8a 2 R; aðxÞ ¼ aðyÞg

where a(x) denotes the value of attribute a of object x. If

ðx; yÞ 2 INDðRÞ, x and y are said to be indiscernible with

respect to R. The equivalence classes of the R-

final 
result

Rough set  based 
feature selection

four discriminatory 
features

input generated  pool of  
KNN different 

classifiers

input
data

combiner
(MV) 

Fig. 2 Block diagram of the proposed hybrid intelligent system
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indiscernibility relation are denoted by [x]R. The indis-

cernibility relation is the mathematical basis of RS theory.

3.1.1.3 Lower and upper approximation In RS theory,

the lower and upper approximations are two basic opera-

tions, for any concept X ( U and attribute set R ( A,

X could be approximated by the lower approximation and

upper approximation. The lower approximation of X is the

set of objects of U that are surely in X, defined as [23]:

RðXÞ ¼ fx 2 Uj½x�R � Xg

The upper approximation of X is the set of objects of

U that are possibly in X, defined as [23]:

�RðXÞ ¼ fx 2 Uj½x�R \ X 6¼£g

and the R-boundary region of X is defined as [23]:

BNDðXÞ ¼ �RðxÞ � RðxÞ

A set is said to be rough if its boundary region is non-

empty, otherwise the set is crisp.

3.1.1.4 Attribute reduction and core There often exist

some condition attributes that do not provide any additional

information about the objects in U in the information

system [25]. So, these redundant attributes can be elimi-

nated without losing essential classificatory information.

Reduct and core attribute sets are two fundamental con-

cepts of rough set theory. A reduct attribute set is a mini-

mal set of attributes from A (the whole attributes set) that

provided that the object classification is the same as with

the full set of attributes. Given C and D ( A, a reduct is a

minimal set of attributes such that IND(C) = IND(D). Let

RED(A) denote all reducts of A. The intersection of all

reducts of A is referred to as a core of A, i.e., COR-

E(A) = \ RED(A), the core is common to all reducts.

3.1.1.5 Dependency degree Various measures can be

defined to represent how much C, a set of decision attri-

butes, depends on D, a set of condition attributes. One of

the most common measure is the dependency [25] denoted

as cc(D), is defined as: cc(D) = |POSC(D)|/|U| where |U| is

the cardinality of set U, POSC(D) called positive region, is

defined by POSCðDÞ ¼ [x2U=DðXÞ. Note that

0� cCðDÞ� 1, If cc(D) = 1 we say that D depends totally

on C, if 0 \ cc(D) \ 1, we say that D depends partially on

C, and if cc(D) = 0 means that C and D are totally inde-

pendent of each other.

3.1.1.6 Reduction process for feature selection We

adapted Johnson’s heuristic [26] to compute reducts as

follows. It sequentially selects features by finding those

that are most discernible for a given decision feature (see

Fig. 3) [27]. It computes a discernibility matrix M, where

each cell mi,j of the matrix corresponding to cases ci and cj

includes the conditional features in which the two cases’

values differ. Formally, strict discernibility is defined as:

mij ¼ fff 2 Fp : f ðciÞ 6¼ f ðcjÞg
for fdðciÞ 6¼ fdðcjÞ; and £ otherwiseg

This is a greedy heuristic algorithm that is often applied

to discernibility functions to find a single reduct [27]. The

algorithm begins by setting the current reduct candidate, R,

to the empty set. Then, each conditional attribute appearing

in the discernibility function is evaluated according to the

heuristic measure. For the standard Johnson algorithm, this

is typically a count of the number of appearances an

attribute makes within clauses; attributes that appear more

frequently are considered to be more significant. The

attribute with the highest heuristic value is added to the

reduct candidate, and all clauses in the discernibility

function containing this attribute are removed. As soon as

all clauses have been removed, the algorithm terminates

and returns the reduct R. R is assured to be a reduct as all

clauses contained within the discernibility function have

been addressed. Variations of the algorithm involve alter-

native heuristic functions in an attempt to guide the search

down better path. For breast cancer data (WBCD), the

discriminatory set of features obtained by Johnson reduct is

{Clump thickness, Uniformity of cell size, Bare nuclei,

Bland chromatin}.

3.1.2 K-Nearest neighbor (KNN) algorithm

KNN algorithm is among the instance-based classifiers. In

instance-based methods, system parameters or classifying

system units simply consist of the samples that are pre-

sented to the system. This algorithm assumes that all

p i j d i d j{{f F : f(c ) f(c )} for f (c ) f (c ), and otherwise}ijm = ∈ ≠ ≠ ∅

JOHNSONS_REDUCT( pF , df , C)

Input pF : conditional features, df : decision feature, C: cases

Output R: Reduct R ⊆ pF
1. R ← ∅ , pF F′ ←
2. M ← computeDiscernibilityMatrix(C, F′ , df )

3. do
4. hf ← selectHighestScoringFeature(M)

5. hR R {f }← ∪
6. for ( i=0 to |C|, j=i to |C|)

7. mi,j ← ∅ if h ijf m∈
8. hF F {f }′ ′← −
9. until ijm i,j= ∅ ∀
10. Return R

Fig. 3 Pseudocode for Johnson’s heuristic algorithm
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instances correspond to points in the n-dimensional space

RN [28]. Nearest neighbors of a sample in this space are

determined by standard Euclidean distance.

Let x be a sample and it is defined by a feature vector of:

a1ðxÞ; a2ðxÞ; . . .; anðxÞh i

here arðxÞ is the rth feature of x sample. The dðxi; xjÞ is the

Euclidean distance between xi and xj samples is defined by

dðxi; xjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

r¼1

ðarðxiÞ � arðxjÞÞ2
s

KNN algorithm uses an f ð�Þ function. For classification

applications, this function is the class of presented sample.

If we denote this by f ðxiÞ, the procedure of KNN algorithm

can be summarized as follows [28]: KNN algorithm stores

all training data and corresponding classes of this training

data as system units. Let xi; f ðxiÞh i be a vector indicating

individual training sample and the corresponding class of

this sample. During the classification in the system,

k-nearest system units to presented xi sample are deter-

mined via dðxi; xjÞ. The class of presented sample is

approximated according to the number of these k-nearest

units. The class of nearest samples that have the highest

percentage in k-nearest units be this class estimation; f̂ ðxiÞ.
If we state this procedure in terms of algorithmic base:

1. Training phase: For each training example x; f ðxÞh i,
add the example to list training_examples.

2. Classification phase: Given a query instance xq to be

classified,

2.1

Let x1; x2; . . .; xk denote k instances from train-

ing_samples that are nearest to xq.

2.2

return f̂ ðxqÞ  arg max
m2 V

Pk
i¼1 dðm; f ðxiÞÞ where dða; bÞ

¼ 1 if a ¼ b

0 otherwise

�

3.1.3 Combining rules

Fixed combiners are heavily studied in the literature on

combining classifiers, e.g., see [29–31]. The new confi-

dence qj(x) for class j is computed by:

hjðxÞ ¼ ruleiðpijðxÞÞ ð1Þ

qjðxÞ ¼
hjðxÞ
P

j hjðxÞ
ð2Þ

The following combiners are used for rule in (1):

Maximum, Median, mEan, Minimum, Product. Note that

the final classification is made by

wðxÞ ¼ arg max
j

ðqjðxÞÞ ð3Þ

The Maximum rule selects the classifier producing the

highest estimated confidence, which seems to be noise

sensitive. In contrast, the Minimum rule selects by (3) the

classifier having the least objection. Median and Mean

average the posterior probability estimates thereby reduc-

ing estimation errors. This is good, of course, if the indi-

vidual classifiers are estimating the same quantity. This

probably will not hold for some of the classifiers.

In this study, a majority voting, which is a popular way

of combining classifiers, is used. Majority counts the votes

for each class over the input classifiers and select the

majority class. This fits in the above framework if this rule

is substituted in (1):

hjðxÞ ¼
X

i

I arg max
i

ðpijðxÞÞ ¼ i

� �

ð4Þ

in which I(�) is the indicator function defined as follow:

IðyÞ ¼
1; if y is true

0; otherwise

(

ð5Þ

4 System performance measurements

4.1 Sensitivity, precision, F-measure, accuracy

and specificity

There are different metrics to measure the performance

of the classification methods which are commonly and

widely used in automatic medical diagnosis systems.

These metrics are True positive (TP), true negative

(TN), false positive (FP) and false negative (FN). TP is

the number of correct predictions in which an instance

is positive; FN is the number of incorrect predictions in

which an instance is negative; FP is the number of

incorrect predictions in which an instance is positive;

and TN is the number of correct predictions in which an

instance is negative.

The dataset WBCD has two classes (positive and neg-

ative). Recall (sensitivity) is the percentage of real positive

cases that are correctly predicted positive [Eq. (6)]. In a

Medical context Recall is moreover regarded as primary, as

the aim is to identify all real positive cases. Conversely,

precision (confidence) indicates the percentage of predicted

positive cases that are correctly real positives [Eq. (7)]. A

measure (F-measure) that combines precision and recall is

the harmonic mean of precision and recall [Eq. (8)].

Accuracy is the proximity of measurement results to the

true value [Eq. (9)]. Specificity indicates the percentage of

samples that were classified as normal and which were

labeled as normal (Eq. (10). A measurement system can be

accurate but not precise, precise but not accurate, neither,

442 Neural Comput & Applic (2015) 26:437–446
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or both. A measurement system is considered valid if it is

both accurate and precise.

Recall ðsensitivityÞ ¼ TP

TPþ FN
ð6Þ

Precision ¼ TP

TPþ FP
ð7Þ

F-measure ¼ 2� recall� precision

recallþ precision
ð8Þ

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
ð9Þ

Specificity ¼ TN

TNþ FP
ð10Þ

4.2 Youden’s index, positive and negative likehood

and discriminant power

Sokolova et al. [32] have shown that the accuracy measure

does not distinguish between the number of correct labels

of different classes. Sensitivity and specificity separately

estimate a classifier’s performance on different classes. It

has been shown [32] that higher accuracy does not guar-

antee overall better performance of an algorithm and that a

combination of measures gives a balanced evaluation of the

algorithm’s performance. In this paper, the Youden’s

index, likelihoods and discriminant power (DP) given in

[32] are used to evaluate the performance of our system:

Youden’s index : c ¼ sensitivity� ð1� specificityÞ;
Positive likehood : qþ ¼ sensitivity=ð1� specificityÞ;

Negative likehood : q�
¼ ð1� sensitivityÞ=ð1� specificityÞ;

Discriminant power :

DP¼
ffiffiffi

3
p

=p log
sensitivity

1� sensitivity

� �

þ log
specificity

1� specificity

� �� �

Youden’s index evaluates the classifiers performance to a

finer degree with respect to both class. A higher positive value

of q? means a better performance on the positive (abnormal)

class. A higher negative value of q-means a better perfor-

mance on the negative (normal) class. The DP evaluates how

well a classifier discriminates between normal and abnormal

cases. The classifier performance is poor if DP \ 1, limited if

DP \ 2, fair if DP \ 3, good in other cases [32].

4.3 Confusion matrix

A confusion matrix [33] contains information about actual

and predicted classifications done by a classification sys-

tem. Performance of such a system is commonly evaluated

using the data in the matrix. Table 4 shows the confusion

matrix for a two class classifier.

4.4 Receiver operating characteristics (ROC)

Curves are used for analyzing the prediction performance

of predictor [34]. The information of ROC curves is helpful

in selection of appropriate classifier under certain decision

criteria. The improvement in ROC curves represents low

values of false-positive rate and high values of true-posi-

tive rate. These values help the points shifting toward

upper left corner of ROC and thus providing better deci-

sion. This kind of behavior is desirable in those applica-

tions where the cost of false-positive rate (FPR) is too

important. For example, a weak patient cannot afford high

FPR. Minor damage of healthy tissues may be a matter of

life and death. On the other hand, when attempts are made

to reduce FPR by simply adjusting decision threshold, the

risk of false negative cases might rise in a poor prediction

model. This kind of prediction model, specifically in

medical applications, might cause high misclassification

cost in various fatal diseases such as lungs, liver and breast/

colon cancer. The values of area under curve (AUC) and

area under convex hull (AUCH) are calculated for assess-

ing performance of the classifier on imbalanced/balanced

dataset and examination of classifier consistency.

5 Results and discussion

To evaluate the effectiveness of the proposed hybrid

intelligent system for diagnosis of breast cancer, experi-

ments are conducted on the WBCD database mentioned

above. First, rough set technique was used as a prepro-

cessing step for feature selection. The Johnson algorithm is

used to obtain the minimum reduct which it contains only

four features. The reduced set of features is {Clump

thickness, Uniformity of cell size, Bare nuclei and Bland

chromatin}. In the prediction phase, these four features are

used as input to a pool of KNN classifier. For the sake of

checking the effectiveness of the proposed hybrid intelli-

gent method, the whole dataset is divided into two disjoint

subsets, namely 50 % for training and 50 % for testing for

all the conducted experiments.

Table 4 Representation of confusion matrix

Actual Predicted

Negative Positive

Negative a b

Positive c d

a is the number of correct predictions that an instance is negative

b is the number of incorrect predictions that an instance is positive

c is the number of incorrect of predictions that an instance is negative

d is the number of correct predictions that an instance is positive
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Figure 4 gives the accuracies of the pool of KNN clas-

sifiers versus the number of neighbors. It is observed that,

in the case of using individual classifiers, there is an

oscillation in the obtained results and the best individual

classifier is obtained at k = 10 and its accuracy is 98.83 %.

A combined classifier is built using the majority voting

technique to combine the results obtained by the pool of the

individual classifiers. The accuracy of the ensemble clas-

sifier is 99.41 % which is superior over all the individual

classifiers.

Also, comparison of our results with the previous results

reported by earlier and state of the art methods indicates

that the proposed hybrid system obtains the highest clas-

sification test accuracy reported so far.

Moreover, different performance measures are used to

test the effectiveness of the proposed system. Figures 5 and

6 give the ROC curve for the best individual KNN clas-

sifier and the proposed hybrid classifier. The area under the

ROC curve is obtained which gives the accuracy of the

classifier.

The obtained classification accuracy and the values of

different performance measures such as sensitivity, preci-

sion, F-measure and specificity are given in Table 5 and

Fig. 7 for both the best individual KNN classifier and the

proposed hybrid system.

Also, classification results of the proposed hybrid sys-

tem are displayed by using a confusion matrix, see Table 6.

In a confusion matrix, each cell contains the raw number of

exemplars classified for the corresponding combination of

desired and actual outputs, as described above. It is clear

that, for the proposed system, all the malignant cases are

classified correctly and only two benign cases out of 300

cases are misclassified may be this is due to the overlap

between the two regions.

Beside, another well-known performance metrics

namely, Youden’s index, positive and negative likehood

and discriminant power are obtained see Table 7. The

Discriminant Power for both the best individual classifier

and the proposed hybrid intelligence system is greater than

3 which indicates that good performance for both of them.

The Discriminant Power of the proposed system is Infinity

which shows how well the proposed system discriminates

between malignant and benign cases.

From the obtained results, we conclude that the pro-

posed hybrid intelligence system obtains very promising

results in classifying the possible breast cancer patients.

We believe that the proposed system can be very helpful to

the physicians for their final decision on their patients. By
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Fig. 5 The ROC curve for the best individual KNN classifier
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Fig. 6 The ROC curve for the hybrid classifier
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using such an efficient tool, they can make accurate deci-

sions with only the four discrimination features obtained.

6 Conclusion

This study aims at diagnosing breast cancer with a hybrid

intelligent system. By hybridizing a rough set theory with a

combined classifier based on k-nearest neighbor algorithm

as base classifier, a method was obtained to solve this

diagnosis problem via classifying Wisconsin breast cancer

dataset (WBCD). This dataset is a very commonly used

dataset in the literature relating the use of classification

systems for breast cancer diagnosis, and it was used in this

study to compare the classification performance of our

proposed hybrid intelligent system with regard to other

studies. Using only four discriminatory features obtained

by rough set, a classification accuracy of 99.41 % is

obtained, which is the highest one reached so far. The

effectiveness of the proposed hybrid system is shown using

different performance measurements which are commonly

used in testing the performance of automatic medical sys-

tems. These results are for WBCD, but it states that this

proposed hybrid intelligent system can be used confidently

for other breast cancer diagnosis problems, too. Also,

besides of breast cancer problem, other medical diagnosis

applications can also be conducted by this system.
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