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Inmany important settings, subjects can show significant heterogeneity in response to a stimulus or “treatment.”
For instance, a treatment that works for the overall populationmight be highly ineffective, or even harmful, for a
subgroup of subjects with specific characteristics. Similarly, a new treatment may not be better than an existing
treatment in the overall population, but there is likely a subgroup of subjects who would benefit from it. The
notion that “one size may not fit all” is becoming increasingly recognized in a wide variety of fields, ranging
from economics to medicine. This has drawn significant attention to personalize the choice of treatment, so it
is optimal for each individual. An optimal personalized treatment is the one that maximizes the probability
of a desirable outcome. We call the task of learning the optimal personalized treatment personalized treatment
learning. From the statistical learning perspective, this problem imposes important challenges, primarily because
the optimal treatment is unknown on a given training set. A number of statistical methods have been proposed
recently to tackle this problem. However, considering the critical importance of these methods to decision sup-
port systems, personalized treatment learning models have received relatively little attention in the literature.
The purpose of this paper is to propose a novel method labeled causal conditional inference trees and its natural
extension to causal conditional inference forests. The performance of the new method is analyzed and compared
to alternative methods for personalized treatment learning. The results show that our new proposed method
often outperforms the alternatives on the numerical settings described in this article. We also illustrate an appli-
cation of the proposed method using data from a large Canadian insurer for the purpose of selecting the best
targets for cross-selling an insurance product.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

In the past two decades, rapid advances in data collection and stor-
age technology have created vast quantities of data. Thefield of statistics
has been revolutionized by the development of algorithmic and data
models [5] in response to challenging new problems coming from sci-
ence and industry, mostly resulting from an increasing size and com-
plexity in the data structures. In this context, the concept of learning
from data [1] has emerged as the task of extracting “implicit, previously
unknown, and potentially useful information from data” [12]. A distinc-
tion is usually made between supervised and unsupervised learning. In
the former, the objective is to predict the value of a response variable
based on a collection of observable covariates. In the latter, there is no
response variable to “supervise” the learning process, and the objective
is to find structures and patterns among the covariates.
1 905 286 4756.
, mguillen@ub.edu (M. Guillén),
In many important settings, the values of some covariates are not
only observable, but they can be chosen at the discretion of a decision
maker [53]. For instance, a doctor can choose the medical treatment
for a patient among a set of alternatives, a company can decide the
type of marketing intervention activity (direct mail, phone call, e-mail,
etc.) to make an offer to a client, and a bank can decide the credit
limit to offer a client on a credit card. In all these examples, the objective
is not necessarily to predict a response variable with high accuracy but
to select the optimal action or “treatment” for each subject based on his
or her individual characteristics.1 Optimal is understood here as the
treatment that maximizes the probability of a desirable outcome. We
call the task of learning the optimal personalized treatment personalized
treatment learning.

A key challenge in building decision support systems based on per-
sonalized treatment learning models is that the quantity we are trying
to predict (i.e., the optimal personalized treatment) is unknown on a
given training data set. As each subject can only be exposed to a single
1 Domain knowledge can also play an important role in selecting the optimal treatment
[42].
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treatment, the value of the subject's response under alternative treat-
ments is unobserved, a problem also known as the fundamental problem
of causal inference [18]. This aspect makes this problem unique within
the discipline of learning from data.

The underlying motivation for personalized treatment learning is
that subjects can show significant heterogeneity in response to treat-
ments, so making an accurate treatment decision for each subject
becomes essential. For instance, a new treatment may not be better
than an existing treatment in the overall population, but it might be
beneficial/harmful for a subgroup of subjects. The idea that “one size
may not fit all” has been increasingly recognized in a variety of disci-
plines, ranging from economics to medicine. Alemi et al. [2] argue that
improved statistical methods are needed for personalized treatments
and propose an adapted version of the K-nearest-neighbor (KNN) classi-
fier [8]. Imai andRatkovic [21] propose amethod that adapts the support
vector machine classifier [49] and then apply it to a widely known data
set pertaining to the National SupportedWork program [26,10] to iden-
tify the characteristics of workers who greatly benefit from (or are neg-
atively affected by) a job training program. Tian et al. [48] propose a
method designed to deal with high-dimensional covariates and use it
to identify breast cancer patients who may or may not benefit from a
specific treatment based on the individual patient's gene expression
profile. Liang et al. [28] describe a web-based intervention support sys-
tem toprovide tailored interventions to individual patientswith chronic
diseases. Xu et al. [51] propose a Bayesian networkmodel that integrates
with other components to better support personalized mobile advertis-
ing applications. In the context of insurance, Guelman et al. [14,15] pro-
pose amethod based on an adapted version of random forests to identify
policyholders who are positively/negatively impacted by a client reten-
tion program. Also, Guelman and Guillén [16] describe a framework to
determine the optimal rate change (playing the role of the treatment)
for each individual policyholder for thepurpose ofmaximizing the over-
all expected profitability of an insurance portfolio.

In addition to the methods discussed above, other methods have
been proposed in the literature, mostly in the context of clinical trials
and direct marketing [44,31,52,22,27,33,39,46]. However, considering
the critical importance of these methods to decision support systems,
personalized treatment learning models have received relatively little
attention in the literature. The purpose of this paper is to propose a
novel method labeled causal conditional inference trees and its natural
extension to causal conditional inference forests. The performance of the
new method is compared to the existing methods in an extensive
numerical study and analyzed on real-world data. We implement all
these methods in a package named uplift [13], which is now freely avail-
able from the CRAN (Comprehensive R Archive Network) repository
under the R statistical computing environment.

This paper is organized as follows. Section 2 defines the scope of the
personalized treatment learning problem. In Section 3, we discuss our
new proposedmethod. In Section 4, we report the finite sample perfor-
mance of all methods under an extensive numerical simulation. The
results show that our new proposed method often outperforms the
alternatives on the numerical settings described in this article. Finally,
in Section 5, we describe an empirical application of the proposed
method, using data from a major Canadian insurer, to determine
which auto insurance policyholders are more likely to be positively
stimulated to buy a home policy as a result of a marketing cross-sell in-
tervention activity.
2. Problem formulation

We frame the personalized treatment learning problem in the context
of Rubin's model of causality [35–38]. Under this model, we conceptu-
alize the learning problem in terms of the potential outcomes under
treatment alternatives, only one of which is observed for each subject.
The causal effect of a treatment on a subject is defined in terms of the
difference between an observed outcome and its counterfactual. The
notation introduced below will be used throughout the paper.

In the following, we use uppercase letters to denote random vari-
ables and lowercase letters to denote values of the random variables.
Assume that a sample of subjects is randomly assigned to two treatment
arms, denoted by A, A ∈ {0, 1}, also referred as control and treatment
states, respectively. Let Y(a)∈ {0, 1} denote a binary potential outcome
of a subject if assigned to treatment A= a, a={0, 1}. The observed out-
come is Y = AY(1) + (1 − A)Y(0). Throughout this paper, we assume
a value of Y=1 is more desirable than Y=0. Each subject is character-
ized by a p− dimensional vector of baseline covariatesX=(X1,…, Xp)Τ.
We assume the data consists of L independent and identically distrib-
uted realizations of (Y, A, X), {(Y‘, A‘, X‘), ‘ = 1, …, L}.

Under the assumption of randomization, treatment assignment A ig-
nores its possible impact on theoutcomes Y(0) and Y(1), and hence they
are independent—using the notation of Dawid [9], {Y‘(0), Y‘(1) ⊥ A‘}. In
this context, the average treatment effect (ATE) can be estimated by

τ ¼ E Y‘ 1ð Þ−Y‘ 0ð Þ½ �
¼ E Y‘jA‘ ¼ 1½ �−E Y‘jA‘ ¼ 0½ �:

ð1Þ

In observational studies, subjects assigned to different treatment
conditions are not exchangeable, and thus direct comparisons can be
misleading [34].

In many circumstances, subjects can show significant heterogeneity
in response to treatments, in which case the ATE is of limited value.
The problem addressed in this paper is the identification of sub-
groups of subjects for which the treatment is most beneficial (or
most harmful) within the context of experimental data. As discussed
by Holland and Rubin [19], the most granular level of causal inference
is the individual treatment effect (ITE), defined by Y‘(1) − Y‘(0) for
each subject ‘ = {1, …, L}. However, this is an unobserved quantity, as
a subject is never observed simultaneously in both treatment states.
The best approximation to the ITE that is possible to obtain in practice
is the subpopulation treatment effect (STE), which is defined for a subject
with individual covariate profile X‘ = x by

τ xð Þ ¼ E½Y‘ 1ð Þ−Y ‘ 0ð ÞjX‘ ¼ x�

¼ E Y‘jX‘ ¼ x;A‘ ¼ 1½ �−E Y‘jX‘ ¼ x;A‘ ¼ 0½ �:
ð2Þ

Understanding the precise nature of the STE variability can be ex-
tremely valuable in personalizing the choice of treatment, so that it is
most appropriate for each individual. Henceforth, in this paper, we use
the term personalized treatment effect (PTE) to refer to the subpopula-
tion treatment effect (2).

A personalized treatment rule H is a map from the space of baseline
covariatesX to the space of treatments A,H(X) :ℝp→ {0, 1}. An optimal
treatment rule is one that maximizes the expected outcome, E[Y(H(X))],
if the personalized treatment rule is implemented for the whole popu-
lation. Notice that since Y is binary, this expectation has a probabilistic
interpretation. That is, E[Y(H (X))] = P(Y(H (X)) = 1) and thus
τ(x) ∈ [−1, 1].

A straightforward calculation gives the optimal personalized
treatment rule H� ¼ argmaxH E½Y H Xð Þð Þ� for a subject with covariates
X‘ = x asH* = 1 if τ(x) N 0, andH* = 0 otherwise. In many situations,
the alternative treatments have unequal costs, in which case the
decision rule can simply be replaced by H* = 1 if τ(x) N c, and H* = 0
otherwise, for some constant threshold c ∈ [−1, 1].

3. Causal conditional inference trees

The most relevant methods discussed in the literature to estimate
personalized treatment effects include the so-called indirect estimation
methods, which are based on a systematic 2-stage procedure to esti-
mate the PTE. In the first stage, they attempt to achieve high accura-
cy in predicting the outcome Y conditional on the covariates X and

http://www.r-project.org/
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treatment A. In the second stage, they subtract the predicted value of Y
under each treatment to obtain a PTE estimate. Indirect estimation
methods include the difference score method discussed by Larsen [27],
the interaction approach proposed by Lo [29], and the L2− SVMmethod
proposed by Imai and Ratkovic [21].

Additionally, other methods have been proposed in the literature to
estimate personalized treatment effects, such as the modified covariate
method proposed by Tian et al. [48], themodified outcomemethod pro-
posed by Jaśkowski and Jaroszewicz [22], and the causal K-nearest-
neighbor (CKNN) discussed by Alemi et al. [2]. More recently, Guelman
et al. [15] proposed a tree-based method called uplift random forests
to estimate personalized treatment effects. Uplift random forests
directly predict the expected change in the outcome as a result of the
treatment, as opposed to predicting the outcome itself. Further details
about uplift random forests can be found in the work of Guelman et al.
[15].

We propose here an improved tree-based method to estimate per-
sonalized treatment effects. The key idea of thismethod is to recursively
partition the covariate space into meaningful subgroups with heteroge-
neous treatment effects. The standard decision tree methodology [4,32]
is inherited, but the individual trees are grown using amore appropriate
split criterion to the problem at hand. These concepts were already
implemented in uplift random forests, but there are two fundamental
aspects inwhich thismethod could be improved: overfitting and the se-
lection bias towards covariates with many possible splits. The develop-
ment of the framework introduced here to tackle these issues was
motivated by the unbiased recursive partitioning method proposed by
Hothorn et al. [20].

With regards to overfitting, we point out that the individual trees
in uplift random forests are grown to maximal depth. While this
helps to reduce bias, there is the usual tradeoff with variance.
Maximal-depth trees could be highly unstable and this may overem-
phasize learning patterns and noise in the data which may not recur
in future samples. This problem, known as overfitting, can be exacer-
bated in the context of personalized treatment learning models.
In these models, the variability in the response from the treatment
heterogeneity effects tends to be small relative to the variability in
the response from the main effects. If the fitted model is not able to
distinguish well between the relative strength of these two effects
and the levels of noise in the data are relatively high, this may easily
translate into overfitting problems. In conventional decision trees,
such as CART [4] and C4.5 [32], overfitting is solved by a pruning pro-
cedure. This consists in traversing the tree bottom up and testing for
each (non-terminal) node, whether collapsing the subtree rooted at
that node into a single leaf would improve the model's generalization
performance. Tree-basedmethods proposed in the literature to estimate
personalized treatment effects [40,45,33] use some sort of pruning.
However, the pruning procedures used by these methods are all ad
hoc and lack a theoretical foundation.

Besides the overfitting problem, the second concern is the bias
of variable selection towards covariates with many possible splits or
missing values. This problem is also present in conventional decision
trees and results from the maximization of the split criterion over all
possible splits simultaneously [4,25].

Following the framework proposed by Hothorn et al. [20], we have
considerably improved the generalization performance of uplift random
forests by solving both the overfitting and biased variable selection
problems. The key to the solution is separating the variable selection
and the splitting procedure, coupled with a statistically motivated and
computationally efficient stopping criteria based on the theory of per-
mutation tests developed by Strasser and Weber [43].

The pseudocode of the proposed causal conditional inference forest
algorithm is shown in Algorithm 1. Themost relevant aspects to discuss
are steps 7–12. Specifically, for each terminal node in the tree, we test
the global null hypothesis of no interaction effect between the treat-
ment A and any of the n covariates selected at random from the set of
p covariates. The global hypothesis of no interaction is formulated in
terms of n partial hypotheses H0

j : E[W|Xj] = E[W], j = {1, …, n}, with
the global null hypothesis H0 = ∩j = 1

n H0
j , where W is defined as in the

modified outcome method, namely,

W‘ ¼
1 if A‘ ¼ 1 and Y‘ ¼ 1
1 if A‘ ¼ 0 and Y‘ ¼ 0
0 otherwise:

8<
:

Thus, a conditional independence test ofW and Xj has a causal inter-
pretation for the treatment effect for subjects with baseline covariate Xj.
Multiplicity in testing can be handled via Bonferroni-adjusted P values
or alternative adjustment procedures [50,41,3]. When we are not able
to reject H0 at a prespecified significance level α, we stop the splitting
process at that node. Otherwise, we select the j*th covariate Xj⁎

with the smallest adjusted P value. The algorithm then induces a parti-
tion Ω* of the covariate Xj⁎ into two disjoint sets M ⊂ Xj⁎ and Xj⁎\M
based on the split criterion discussed below. This statistical ap-
proach prevents overfitting, without requiring any form of pruning or
cross-validation.

One approach to measuring the independence between W and Xj

would be to use a classical statistical test, such as a Pearson's chi-
squared. However, the assumed distribution in these tests is only a
valid approximation to the actual distribution in the large-sample
case, and this does not likely hold near the leaves of the decision tree.
Instead, wemeasure independence based on the theoretical framework
of permutation tests, which is admissible for arbitrary sample sizes.
Strasser and Weber [43] developed a comprehensive theory based on
a general functional form of multivariate linear statistics appropriate
for arbitrary independence problems. Specifically, to test the null hy-
pothesis of independence betweenW and Xj, j={1,…, n}, we use linear
statistics of the form

T j ¼ vec
XL
‘¼1

g X j‘

� �
h W‘; W1;…;WLð Þð ÞΤ

 !
∈ℝu jv�1 ð3Þ

where g : X j→ℝu j�1 is a transformation of the covariate Xj and
h :W→ℝv × 1 is called the influence function. The “vec” operator trans-
forms the uj × vmatrix into a ujv × 1 column vector. The distribution of
T j under the null hypothesis can be obtained by fixing Xj1, …, XjL

and conditioning on all possible permutations S of the responses
W1,…,WL. A univariate test statistic c is then obtained by standardizing

T j ∈ℝu jv�1 based on its conditional expectationsμ j ∈ℝu jv�1 and covari-

ance Σ j ∈ℝu jv�u jv , as derived by Strasser and Weber [43]. A common
choice is themaximumof the absolute values of the standardized linear
statistic

cmax T ; μ;Σð Þ ¼ max

����� T −μ
diag Σð Þ1=2

�����; ð4Þ

or a quadratic form

cquad T ; μ;Σð Þ ¼ T −μð ÞΣþ T −μð ÞΤ ; ð5Þ

where Σ+ is the Moore–Penrose inverse of Σ. Many well-known classi-
cal tests (e.g., Pearson's chi-squared, Cochran–Mantel–Haenszel,
Wilcoxon–Mann–Whitney) can be formulated from Eq. (3) by choosing
the appropriate transformation g, influence function h, and test statis-
tic c to map the linear statistic T into the real line. This sheds light
on the extension of the proposed method to response variables mea-
sured in arbitrary scales and multi-category or continuous treatment
settings.

In step 11 of Algorithm 1, we select the covariate Xj⁎ with smallest
adjusted P value. The P value Pj is given by the number of permutations
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s ∈ S of the data with corresponding test statistic exceeding the ob-
served test statistic t∈ℝu jv�1. That is,

P j ¼ ℙ c T j; μ j;Σ j

� �
≥c t j; μ j;Σ j

� ����S�:�

For moderate to large samples sizes, it might not be possible to ob-
tain the exact distribution (calculated exhaustively) of the test statistic.
However, we can approximate the exact distribution by computing the
test statistic from a random sample of the set of all permutations S. In
addition, Strasser andWeber [43] showed that the asymptotic distribu-
tion of the test statistic given by Eq. (4) tends to multivariate normal
with parameters μ and Σ as L → ∞. The test statistic Eq. (5) follows
an asymptotic chi-squared distribution with degrees of freedom given
by the rank of Σ. Therefore, asymptotic P values can be computed for
these test statistics.

Once we select the covariate Xj⁎ to split, we next use a split criterion
which explicitly attempts to find subgroups with heterogeneous treat-
ment effects. Specifically, we use the following measure proposed by
Su et al. [44], also implemented later by Radcliffe and Surry [33] for
assessing the personalized treatment effect from a split Ω:

G2 Ωð Þ ¼
L−4ð Þ

n
YnL

1ð Þ−YnL
0ð Þ

� �
−ðYnR

1ð Þ−YnR
0ð ÞÞ
o2

σ̂2 1=LnL
1ð Þ þ 1=LnL 0ð Þ þ 1=LnR 1ð Þ þ 1=LnR

0ð Þ
n o ð6Þ

where nL and nR denotes the left and right child nodes, respectively,
Li∈ nL ;nRf g Að Þdenotes the number of observations in child node i exposed
to treatment A ∈ {0, 1}, and

Yi∈ nL ;nRf g 1ð Þ ¼

X
∀‘∈ i

Y‘A‘X
∀‘∈ i

A‘;
ð7Þ

Yi∈ nL ;nRf g 0ð Þ ¼

X
∀‘∈ i

Y‘ 1−A‘ð ÞX
∀‘∈ i

1−A‘ð Þ;
ð8Þ

σ̂2 ¼
X

A∈ 0;1f g

X
i∈ nL ;nRf g

Li Að ÞYi Að Þ 1−Yi Að Þ
� �

: ð9Þ

The best split is given by G2(Ω*)=maxΩG2(Ω); that is, the split that
maximizes the criterion G2(Ω) among all permissible splits. It can
be seen [44] that the split criterion given in Eq. (6) is equivalent to a
chi-squared test of the interaction effect between the treatment and
the covariate Xj⁎ dichotomized at the value given by the split Ω.

Algorithm 1. Causal conditional inference forests
4. Simulation studies

In this section, we conduct a numerical study for the purpose
of assessing the finite sample performance of the new method intro-
duced in Section 3 and other alternative methods also mentioned in
the same section. Most of these methods require specialized software
for implementation. We have developed a software package in R
named uplift [13] that implements a variety of algorithms for building
and testing personalized treatment learning models. Currently, the fol-
lowing methods are implemented: uplift random forests (upliftRF),
causal conditional inference forests (ccif), causal K-nearest-neighbor
(cknn), modified covariate method (mcm), and modified outcome
method (mom). uplift is available from the Comprehensive R Archive
Network at: http://www.cran.r-project.org/package=uplift. We also
used the package FindIt, which implements the L2-SVM method
(l2svm) and was developed by the authors of the method [21]. Finally,
the difference score (dsm) and interaction (int) methods can be imple-
mented straightforwardly using readily available software.

Our simulation framework is based on the one described by Tian
et al. [48], but with a few modifications. We evaluate the performance
of the aforementioned methods in eight simulation settings, by varying
i) the relative strength of the main effects relative to the treatment het-
erogeneity effects, ii) the degree of correlation among the covariates,
and iii) the noise levels in the response.

We generated L independent binary samples from the regression
model

Y ¼ I
Xp
j¼1

η jX j þ
Xp
j¼1

δ jX jA
�
j þ ϵ

2
4

3
5≥0

0
@

1
A; ð10Þ

where the covariates (X1, …, Xp) follow a mean-zero multivariate
normal distribution with covariance matrix (1 − ρ)Ip + ρ1Τ1,
A‘
⁎ = 2A‘ − 1 ∈ {−1, 1} was generated with equal probability

at random, and ϵ ∼ N(0, σ0
2). We let L = 200, p = 20, and

(δ1, δ2, δ3, δ4, δ5, …, δp) = (1/2, − 1/2, 1/2, − 1/2, 0, …, 0).
Table 1 shows the simulation scenarios. The first four scenarios

model a situation in which the variability in the response from the
main effects is twice as big as that from the treatment heterogeneity ef-
fects, whereas in the last four scenarios, the variability in the response
from the main effects is four times as big as that from the treatment
heterogeneity effects. Each of these scenarios were tested under zero
and moderate correlation among the covariates (ρ = 0 and ρ = 0.5)
and two levels of noise (σ0 ¼

ffiffiffi
2

p
and σ0 ¼ 2

ffiffiffi
2

p
).

The key benefit of simulations in the context of personalized treat-
ment effects is that the “true” treatment effect is known for each subject,
a value which is not observed in empirical data. The performance of the
analytical methods was measured using the Spearman's rank correlation
Table 1
Simulation scenarios.

Scenario ηj ρ σ0

1 (−1)( j + 1)I(3 ≤ j ≤ 10)/2 0
ffiffiffi
2

p

2 (−1)( j + 1)I(3 ≤ j ≤ 10)/2 0 2
ffiffiffi
2

p

3 (−1)( j + 1)I(3 ≤ j ≤ 10)/2 0.5
ffiffiffi
2

p

4 (−1)( j + 1)I(3 ≤ j ≤ 10)/2 0.5 2
ffiffiffi
2

p

5 (−1)( j + 1)I(3 ≤ j ≤ 10) 0
ffiffiffi
2

p

6 (−1)( j + 1)I(3 ≤ j ≤ 10) 0 2
ffiffiffi
2

p

7 (−1)( j + 1)I(3 ≤ j ≤ 10) 0.5
ffiffiffi
2

p

8 (−1)( j + 1)I(3 ≤ j ≤ 10) 0.5 2
ffiffiffi
2

p

Note. This table displays the numerical settings considered in the simulations. Each sce-
nario is parameterized by the strength of the main effects, η j, the correlation among the
covariates, ρ, and the magnitude of the noise, σ0.

http://www.cran.r-project.org/package=uplift


Fig. 1. Box plots of the Spearman's rank correlation coefficient between the estimated treatment effect τ̂ Xð Þ and the “true” treatment effect τ(X) for all methods. The plots illustrate the
results for simulation scenarios 1–4, which model a situation with “stronger” treatment heterogeneity effects, under none and moderate correlation among the covariates (ρ = 0 and
ρ=0.5) and two levels of noise (σ0 ¼

ffiffiffi
2

p
andσ0 ¼ 2

ffiffiffi
2

p
). The box plots within each simulation scenario are shown in decreasing order of performance based on the average correlation.

The dots outside the box plots represent outliers.We used the “1.5 rule” for determining if a data point is an outlier: less than Q1− 1.5 × (Q3− Q1) or greater thanQ3+1.5 × (Q3− Q1),
where Q1 and Q3 represent the first and third quartiles, respectively.
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coefficient between the estimated treatment effect τ̂ Xð Þ derived from
each model, and the “true” treatment effect

τ Xð Þ ¼ E½Y 1ð Þ−Y 0ð ÞjX�

¼ P
Xp
j¼1

η j þ δ j

� �
X j≤ϵ

0
@

1
A−P

Xp
j¼1

η j−δ j

� �
X j≤ϵ

0
@

1
A

¼ F
Xp
j¼1

η j þ δ j

� �
X j

0
@

1
A−F

Xp
j¼1

η j−δ j

� �
X j

0
@

1
A;

ð11Þ

in an independently generated test set with a sample size of 10,000. In
Eq. (11), F denotes the cumulative distribution function of a normal ran-
dom variable with mean zero and variance σ0

2.
Variable selection for themcm,mom,dsm, and intmethodswasper-

formed using the LASSO logistic regression via a 10-fold cross-validation
procedure. Based on this selection method, we found cases where the
LASSO procedure could not select any non-zero covariate based on
cross-validation. Similar to Tian et al. [48], in these cases, we simply
forced the correlation coefficient to be zero in the test set since the
method did not find anything informative. For this reason, we alterna-
tively fitted these methods based on random forests [6] using their de-
fault settings.2We refer to thesemethods based on random forest fits as
2 Specifically, we fitted the models using B = 500 trees and n ¼ ffiffiffi
p

p
as the number of

variables randomly sampled as candidates at each split.
mcm-RF,mom-RF, dsm-RF, and int-RF. The optimal values for the LASSO
penalties for the l2svmmethod, and the number K of subjectswithin the
neighborhood of the target subject for the cknn method, were also se-
lected via 10-fold cross-validation. Lastly, the methods upliftRF and
ccif were fitted using their default settings.3

The results over 100 repetitions of the simulation for the first and
last four simulation scenarios are shown in Figs. 1 and 2, respectively.
These figures illustrate the box plots of the Spearman's rank correlation
coefficient between τ̂ Xð Þ and τ(X). The box plots within each simulation
scenario are shown in decreasing order of performance based on the
average correlation. The ccif method performed either the best or next
to the best in all eight scenarios.

5. An insurance cross-sell application

In this section, we apply the new proposed causal conditional infer-
ence forest method to an insurance marketing application. The data
used for this analysis are based on a direct mail campaign implemented
by a large Canadian insurer between June 2012 and May 2013. The ob-
jective of the campaign was to drive more business from the existing
portfolio of auto insurance clients by cross-selling them a home insur-
ance policy with the company. The standard savings via multiproduct
discount was prominently featured and positioned as the key element
3 In both cases, we used B=500 trees and n= p/3 as the number of variables randomly
sampled as candidates at each split. For ccif, we set the P value = 0.05.



Fig. 2. Box plots of the Spearman's rank correlation coefficient between the estimated treatment effect τ̂ Xð Þ and the “true” treatment effect τ(X) for all methods. The plots illustrate the
results for simulation scenarios 5–8, which model a situation with “weaker” treatment heterogeneity effects, under none and moderate correlation among the covariates (ρ = 0 and
ρ=0.5) and two levels of noise (σ0 ¼

ffiffiffi
2

p
andσ0 ¼ 2

ffiffiffi
2

p
). The box plots within each simulation scenario are shown in decreasing order of performance based on the average correlation.
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in the offer to the clients. In addition to the direct mail, the same clients
were also contacted over the phone to further motivate them to initiate
a homepolicy quote. A randomly selected control groupwas included as
part of the campaign design, consisting of clients who were not mailed
or called. The response variable is determined by whether the client
purchased the home policy between themail date and 3 months there-
after. In addition to the response, thedata set contains approximately 50
covariates related to the auto policy, including driver and vehicle char-
acteristics and general policy information.

Table 2 shows the cross-sell rates by group. The average treatment
effect (ATE) of 0.34% (2.55% − 2.21%) is not statistically significant,
with a P value of 0.23 based on a chi-squared test. However, as
discussed above, the average treatment effect would be of limited
value if policyholders show significant heterogeneity in response to the
marketing intervention activity. Our objective is to estimate the person-
alized treatment effect and use it to construct an optimal treatment rule
for the auto insurance portfolio, namely, the policyholder-treatment
assignment that maximizes the expected profits from the campaign.
Table 2
Cross-sell rates by group.

Treatment Control

Purchased home policy = N 30,184 3,322
Purchased home policy = Y 789 75
Cross-sell rate 2.55% 2.21%

Note. This table displays the cross-sell rate for the treatment and control groups. The
average treatment effect (ATE) is 0.34% (2.55%− 2.21%), which is not statistically signifi-
cant (P value = 0.23).
To objectively examine the performance of the proposed method,
we randomly split the data into training and validation sets in a 70/30
ratio. A preliminary analysis showed that model performance is not
highly sensitive to the values of its tuning parameters (i.e., number of
trees B and number of variables n randomly sampled as candidates at
each split), as long as they are specified within a reasonable range.
Thus, we fitted a causal conditional inference forest (ccif) to the training
data using its default parameter values. Specifically, in Algorithm 1, we
used B=500, n=16, and a P value of 0.05 as the level of significance α.
We next ranked policyholders in the validation data set based on
their estimated personalized treatment effect (from high to low), and
grouped them into deciles. We then computed the actual average treat-
ment effect within each decile (defined as the difference in cross-sell
rates between the treatment and control groups).

Fig. 3 shows the box plots of the actual average treatment effect for
each decile based on 100 random training/validation data partitions.
The results show that clients with higher estimated personalized treat-
ment effect were, on average, positively influenced to buy as a result
of the marketing intervention activity, with ATEs ranging from 1% to
2.5% for the first three deciles as compared with the ATE of 0.34% over
all deciles. Also, notice there is a subgroup of clients (deciles 8–10)
whose purchase behavior was negatively impacted by the campaign.
Negative reactions to sale attempts have been recognized in the litera-
ture [17,24,7] and may happen for a variety of reasons. For instance,
the marketing activity may trigger a decision to shop for better multi-
product rates among other insurers. Moreover, if the client currently
owns a home policy with another insurer, she may decide to switch
her auto policy to that insurer instead. We found evidence of higher



Fig. 4. Prototype causal conditional inference tree from applying Algorithm 1 to the insur-
ance cross-sell data set. Internal nodes are denoted by green circles, and terminal nodes by
orange circles. The splitting rule is given under each internal node. Observations satisfying
the rule go to the left child node and observations not satisfying it go to the right child
node. Within each node, we display the incremental cross-sell rates (i.e., the difference
in cross-sell rates between treatment and control groups). The tree provides marketers
with further insights in terms of the characteristics of clients with positive/negative per-
sonalized treatment effects.
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Fig. 3. Box plots of the actual average treatment effect (ATE) for each decile based on 100
random training/validation data splits. Thefirst (tenth) decile represents the 10% of clients
with highest (lowest) predicted personalized treatment effect. Clients with higher esti-
mated personalized treatment effect were, on average, positively influenced to buy as a
result of the marketing intervention activity.
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auto policy cancellation rates in the higher deciles. In addition, some
clients may perceive the call as intrusive and likely be annoyed by it,
generating a negative reaction.

In the context of insurance, it is important to consider not only the
personalized treatment effect from the cross-sell activity but also the
risk profile of the targeted clients [47,23,11]. To determine the expected
profitability from targeting each decile, we first calculated the product
between the ATE and the expected lifetime-value of a home policy,4

and then we subtracted the fixed and variable campaign expenses.
Based on these considerations, Fig. 3 shows that only clients in deciles
1–3 have positive expected profits from the marketing activity and
should be targeted. The incremental profits from clients in deciles 4–7
is outweighed by the incremental costs, and so the company should
avoid targeting these clients. Clients in deciles 8–10 have negative reac-
tions to the campaign and clearly should not be targeted either.

As discussed in Section 3, one of the key challenges in building
personalized treatment learning models is that the magnitude of the
variability in the response due to the treatment heterogeneity effects
is usually much smaller than the variability in the response due to the
main effects. For instance, the 2.5% average treatment effect in the top
decile (Fig. 3) is the result of a difference in cross-sell response rates
of 13% and 10.5% between treatment and control groups, respectively.
For most companies with a sizable portfolio of clients,5 relatively small
incremental response rates (as the ones evidenced in this application,
which range from 1% to 2.5%) translate into significant profits.

Conventional marketing models developed within a decision sup-
port framework are good in predicting which clients have higher
propensity to buy a product/service (the so-called propensity to buy
models), but not in predicting which clients are more likely to buy as a
result of the marketing intervention activity (given by the difference
between the expected responses under the alternative treatments).
Propensity to buy models do not attempt to directly maximize the ex-
pected profitability of the intervention, as some clients will buy even if
they are not targeted, while others might be negatively impacted by
4 The expected lifetime-value (LTV) of a home policy in decile i={1,…, 10} is given by

LTVi ¼ Premi−L̂Ci−Expi

h i
∑5

t¼1P Sitð Þrt, where Prem is the average policy premium, L̂C is

the predicted insurance loss per policy-year, Exp captures the fixed and variable expenses
for servicing the policy (excluding campaign expenses), P(Sit) is the probability that a pol-
icyholder in decile i = {1, …, 10} will continue with the home product beyond year
t = {1, …, 5}, and rt is the interest discount factor.

5 In the order of hundred thousands or more clients.
the intervention. Our proposedmethod for targeting clients offers a de-
cision support framework to determine the optimal policyholder-
treatment assignment that maximizes the expected profitability from
the campaign. Only profitable clients who are positively influenced
to buy the additional insurance product as a result of the marketing
cross-sell intervention activity are targeted.

To allowmarketers gain further insights in terms of the characteris-
tics of clients with positive/negative personalized treatment effects, we
illustrate in Fig. 4 a prototype causal conditional inference tree drawn
from Algorithm 1 when applied to the insurance cross-sell data set. In-
ternal nodes are denoted by green circles, and terminal nodes by orange
circles. The splitting rule is given under each internal node. Observa-
tions satisfying the rule go to the left child node and observations not
satisfying it go to the right child node. Within each node, we display
the incremental cross-sell rates (i.e., the difference in cross-sell rates
between treatment and control groups). Clients with highest positive
impact from the cross-sell activity are those currently holding more
than one product with the company (prodCnt), live near one of the
company's branch locations (adjBranch), and older than 45 years
(age). This is not surprising as clients already holding more than one
product are more engaged with the products offered by the company
and are likely to buy more. In addition, clients living near a branch are
more likely to personally walk into it and obtain a quote for the addi-
tional product. Clients with negative impact are those who only hold a
single product, namely, the auto policy, have this policy expiring within
the next two months (xdate), and who are relatively younger. For
clients with their auto policy expiring shortly, the campaign may be
acting as a trigger to shop for better insurance rates in the market.
As previously discussed, if the client already owns a home policy
with another insurer, she may decide to switch the auto policy to that
insurer instead, provided that the competitor offers lower multiproduct
rates.

6. Conclusions

The estimation of personalized treatment effects is becoming in-
creasingly important inmany scientific disciplines and decision support
systems. As subjects can show significant heterogeneity in response
to treatments, making an optimal treatment choice at the individual
subject level is essential. An optimal personalized treatment is the
one that maximizes the probability of a desirable outcome. We call
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the task of learning the optimal personalized treatment personalized
treatment learning.

From the statistical learning perspective, estimating personalized
treatment effects imposes some key challenges, primarily because the
optimal treatment is unknown on a given training set. In this paper,
we proposed a new approach called causal conditional inference trees
for personalized treatment learning and compared its performance
to seven alternative methods proposed in the literature to tackle
this problem. Our method recursively partitions the input space into
subgroups with heterogeneous treatment effects. Motivated by the
unbiased recursive partitioning method proposed by Hothorn et al. [20],
the key ingredient of our tree-based method is the separation between
the variable selection and the splitting procedure, coupled with a statis-
tically motivated and computationally efficient stopping criteria based
on the theory of permutation tests developed by Strasser and Weber
[43]. This statistical approach prevents overfitting, without requiring
any form of pruning or cross-validation. It also avoids selection bias
towards covariates with many possible splits. Performance results
measured on synthetic data show that our proposed method often out-
performs the alternatives on the numerical settings described in this
article.

We have also discussed an application of the proposed method in
the context of insurance marketing for the purpose of selecting the
best targets for cross-selling an insurance product. Our method was
able to identify the policyholders whowere positively/negatively moti-
vated to buy as a result of themarketing intervention activity. Based on
marketing costs and expected client lifetime-value considerations, we
next derived the policyholder-treatment assignment that maximizes
the expected profitability from the campaign.

Wewould also like to acknowledge the limitations of thiswork. First,
we have only considered the case of binary treatments. It would be
worthwhile to examine the extent to which the methods discussed in
this article can be extended to multi-category or continuous treatment
settings. Second, in many situations, the interest may be to estimate
the personalized treatment effect when the intervention is not applied
on a randomized basis, but we think there are major background
variables that influence which treatment is received. Thus, it would be
relevant to consider personalized treatment learningmodels in the con-
text of observational data. Finally, we have only consider the case of per-
sonalized treatments in a single-decision setup. In dynamic treatment
regimes, the treatment type is repeatedly adjusted according to an
ongoing individual response [30]. In this context, the goal is to optimize
a set of time-varying personalized treatments for the purpose of maxi-
mizing the probability of a long-term desirable outcome.
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