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Abstract

Researchers who design intelligent systems for medical decision support, are aware of the need for
response to real clinical issues, in particular the need to address the specific ethical problems that the
medical domain has in using black boxes. This means such intelligent systems have to be thoroughly
evaluated, for acceptability. Attempts at compliance, however, are hampered by lack of guidelines.
This paper addresses the issue of inherent performance evaluation, which researchers have addressed
in part, but a Medline search, using neural networks as an example of intelligent systems, indicated
that only about 12.5% evaluated inherent performance adequately. This paper aims to address this
issue by concentrating on the possible evaluation methodology, giving a framework and specific
suggestions for each type of classification problem. This should allow the developers of intelligent
systems to produce evidence of a sufficiency of output performance evaluation.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Intelligent ““decision support system’” (DSS) is a generic term used to cover many types
of intelligent system that can be applied in the medical field. Clinicians see them as being
black boxes and the safety critical nature of the domain requires that they be thoroughly
evaluated, before they are acceptable to them; however, the weakness is that there is little in
the way of laid down evaluation criteria. We focus on neural networks (NNs) as an example
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in this paper, since these are one of the most prevalent in the domain. Also, Hart and Wyatt
[44] have suggested that overcoming the issue of evaluating the outputs from NNs holds the
key to evaluating other intelligent systems.

Most papers on intelligent system applications report on a single decision aid rather than
comparing their system with others. Hilden and Habbema [46] argue that evaluation should
be comparative and they are of the opinion that “there is less prestige in developing
evaluation tools as opposed to design tools”’. This would possibly partially explain the lack
of formal guidelines. The use of intelligent systems such as NNs, along with other
methodologies, is not yet widespread in the domain, but it is growing rapidly as a means
of handling situations that other approaches, such as rule-based systems, cannot handle.
Some successful systems, e.g. PAPNET [65] for cytology screening, have been reported.
Jefferson et al. [52] have pinpointed a lack of generaliseability as a problem with DSSs, but
this may be dealt with in some proposed future protocols [19]. Hart and Wyatt [44] describe
such systems as black boxes that have almost all the understanding, for the end-user,
coming from the input data and the outputs. They state that the medico-legal responsibility
may be potentially higher in intelligent techniques because of the perception that there is
little input from clinicians.

The word evaluation is used inconsistently in assessing DSSs designed for clinical
application. Shortliffe and Davis [94] state that generally there are three evaluation stages
in the development process of any DSS; the evaluation of the output performance, the
evaluation of efficacy and field evaluation, all three involving elements of subjectivist and
objectivist evaluations. Subjectivist evaluation, as identified by Dowie [33], Heathfield
et al. [45] and Kaplan [53], is concerned with mostly qualitative measures of organisational
and human interface issues, whereas objectivist evaluation centres on the use of more
quantitative measurement techniques to assess a system’s effectiveness. Wyatt [111]
details such an approach as utilising all the identifiable stages of the development from
needs assessment through to cost-effectiveness analysis, in order to try to identify the
“truth” at each stage. Evaluation has also been regarded by Engelrecht et al. [37] as an
umbrella term with elements of verification (system functioning accurately), validation
(domain knowledge accurately represented), and assessment (end-user and clinical impact)
embedded in it. These definitions, however, are not generally agreed or utilised and
sometimes evaluation is interpreted solely as the output performance of the system, without
reference to any other aspect of the system.

The structure of this paper is as follows: we aim to define inherent performance and
illustrate the need for it as a central part of evaluation of any medical system and discover
how other researchers have dealt with this. To give evidence as to whether this evaluation is
generally being addressed sufficiently, we carried out a structured Medline search. These
aspects are preliminary to the main component of the current work, which is to suggest
possible ways for inherent performance evaluation. (This is of course, within any broader
framework of evaluation.) These suggestions are in response to a stated need at conferences
and meetings, from colleagues engaged in the development of intelligent systems for
medical application, who find it difficult to discover the details necessary to carry out a
sufficiency of this inherent performance evaluation process. They cannot be expected to be
expert statisticians or have direct access to this expertise, yet recognise that their systems
have to meet the requirements of the domain, in order to be acceptable to clinicians.
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2. Definition of inherent performance

Researchers vary in their interpretation of performance; for example, some such as
Reggia [86] regard it as how efficacious the system is in the clinical setting. Others may
regard it as its user friendliness, or many other functions at different stages in its
development, as outlined by Rossi-Mori et al. [90] and O’Moore and Englebrecht [80],
as well as overall decision accuracy. Wyatt [111] identifies two types of performance, that
of in vitro and in vivo, or system performance on new test cases and the usability in field
tests. Issues, such as the Hawthorne, or checklist effect, described by Campbell et al. [18],
have to be taken into consideration in such a broad interpretation. We intend inherent
performance here to mean all the measures which are carried out to examine how well the
direct output from the system meets the “gold standard™ (the correctly measured and
agreed result, as recognised in the relevant domain). If no gold standard can be identified,
then measurement against another system, analysing the same sample data is necessary.
These measures include accuracy, precision and assessment of errors.

Performance measures as defined here can be seen as being at the core of objectivist
evaluation, with all the subjectivist approaches as a shell around this. These performance
measures are essentially statistical in nature. A diagram representing the objectivist
evaluation of DSSs and the main elements of this with the performance core is presented
in Fig. 1. Such evaluation of intelligent systems has to deal with specific issues particularly
relating to: (a) the interpretation and understandability of the processes involved and
whether these can be conceptualised to relate to the problem being addressed; (b) the
ability of the system to deal with dynamic refinements of the knowledge based on feedback
and as the environment changes; (c) the demonstration of generaliseability, that is, being
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Fig. 1. Aspects of formal objectivist evaluation of decision support systems, with the core of inherent
performance.
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capable of being transferable to other similar environments. All this is underpinned by the
core or primary requirement of the inherent performance component, which this paper
deals with.

3. The criticality of inherent performance evaluation

Performance measures have been described in many papers, but these are usually related
to only one type of data output. We intend here to give an overview as a basis for examining
performance evaluation issues as required by the researcher for the problem in hand.
Inherent performance measures, give a level of confidence that the system (or model) A is
more accurate and precise than system (or model) B. Specifically, for the medical domain
the advantages are that these evaluations can be shown as:

(1) Giving evidence that a real scientific approach has been applied, at least to the
outputs, by overcoming the possible lack of transparency, or understandability, in the
processes of intelligent systems, thus enabling clinical acceptability.

(2) More likely to offset medico-legal claims or any product liability—a growing
concern for system designers, even though clinical decisions based on these should be
the responsibility of the clinician.

(3) Meeting the requirements of the CE mark of the European Community.

The EU Medical Devices Directive [49,72] state that the efficacy of a medical device,
including software, now has to be demonstrated, documented and clinically evaluated, and
the risk to benefit ratio assessed, before a CE mark is awarded. This should include
benchmarking by comparing the system with the nearest ‘“‘substantially equivalent”
approach. For many intelligent methods the use of a statistical methodology has been
employed, for example, Lette et al. [63] have shown NNs to be comparable with multiple
logistic regression (MLR) techniques in terms of classification accuracy.

The gold standard used as a reference for systems can be in the form of agreed
measurements by experts. Any other validated and agreed objective reference, compatible
with the study, can be used if appropriate. It is occasionally not possible to identify a gold
standard so then direct comparisons with another approach are necessary, for example,
sometimes laboratory tests give continuous output without an identified threshold indicat-
ing normal or abnormal. Gold standard sufficiency is often not achievable, but this issue is
outside the scope of the paper. Suffice to say that if it is not valid, then the accuracy of
classification is in doubt.

Self-testing methods for the system are not generally sufficient as this can give rise to
unexpected results; for example, testing the same system on another data set can lead to
unexpected problems. Also, different data gathering techniques could give dissimilar
performance measures and indicate lack of transferability, a feature that Campbell et al.
[19] state is a generic issue for all data mining approaches.

Researchers and developers in (a) academic institutions or (b) commercial organisations
have different priorities from those in the target domain in that issues of publication and
education dominate in the first case and marketing of their products dominate in the second
case. The emphasis on technological methods is often incompatible with the requirements
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of the end-users, that is, meeting a clearly prescribed clinical need, while researchers see
critical evaluation as ““hampering their creativity”. Generally, papers in the literature on
evaluation tend to deal with the broader issues of evaluation and stop short of giving
specific advice on the necessary statistics to assess the outputs. Statistical and classification
texts tend to be written by academics who cover the theory very well, but these texts are
presented in such formal and complex mathematical language that it is difficult for non-
mathematicians to understand. Statistics, however, is part of scientific methodology and
can offer unassailable evidence of the superiority or at least equality of a system, so the aim
is to make those accessible to the ordinary, non-mathematical researcher.

4. The overall approach

A few websites exist with the aim of giving performance evaluation guidance, such as
the Statlog Project [74], where one of the aims was comparison studies of different
machine learning, neural, or statistical classification algorithms. This includes the devel-
opment of a software tool, “Evaluation Assistant”’. The tool is a self-testing approach,
however, which only examines the one system rather than making valid comparisons,
especially of measurements against the outputs of other methodologies. Other sources of
information are limited in that they do not cover a full range of possibilities or are not
appropriate for the medical domain.

A sufficiency of inherent performance evaluation is required and so some sort of
structured framework is required to test this. Fig. 2 is the start of such an approach for the
comparison of two models, showing the part evaluation of direct comparison with a gold
standard, or two systems where there is no obvious gold standard, through to the full
evaluation against another system via the gold standard [97]. The necessary comparisons
with the gold standard, or another methodology, are almost exclusively statistical.

Confusion reigns over classification terminology, with nomenclature varying widely.
Unsupervised methods, regarding the apportionment of cases by clustering, usually have
no ‘“‘truth state”, i.e. no gold standard. Such a technique utilises the characteristics of
features to predict a probability of a case belonging to a group. This is not likely to be
presented as a medical DSS, but although no performance evaluation is possible,
comparison with statistical clustering is in theory, a possibility, but this is not a true
form of classification. Basically there are three types of classification. Binary classification
is by far the most commonly encountered in the medical domain, where an example is the
classification of patients into with/without the disease, based on multiple attributes,
considered to be risk factors. Multiple category classification is the goal when there
are several categories, such as several conditions, or multiple disease categories of mild,
moderate and severe disease. Continuous classification may not always be considered to be
classification but it can be regarded as classifying into many categories, for example,
rounding up to single digits, or months estimated for survival.

Although most binary and multiple category outputs can be reduced to a percentage of
classification accuracy, this causes loss of information and quoting correct classification
percentages on training data only, as many papers have done, is presenting only apparent
error rates. Most approaches for handling smaller data sets, which are familiar to system
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Fig. 2. A framework for evaluating the performance of a system.

developers, such as train and test, random sampling, cross-validation, and the various
bootstrapping techniques, are attempts at estimating a true error rate. The accuracy of
continuous classification outputs is measured in the form of mean absolute errors or the
difference between predicted and actual values. Used in isolation as self-testing methods,
these are best to be regarded as preliminaries to carrying out further tests on the
classification performance. Score functions applied to algorithms to minimise errors or
maximise their utility are not at issue here, since we are dealing with the empirical analysis
of the classifier and choosing between them, rather than choosing algorithms.

This overall approach, presented in Fig. 2, indicates that the new system should be
compared with other validated systems, each of which have been classified, on the same
data, according to the same gold standard. Then the outputs from this classification exercise
should undergo inherent empirical performance evaluation.

5. What has been utilised by other researchers?

We obtained many examples of papers on NN applications, which had been acquired
because they had been referred to by other papers as having some evaluation carried out,
plus many papers previously collected in the subject area. These were then reviewed for
their methodological approach to evaluation.

The binary classification goal was prevalent in these papers, as is expected from the
domain since simple disease classification is by far the most common type in medical
applications. Comparisons between the outputs of NNs and many other intelligent
techniques have been carried out, as well as comparisons with statistical techniques for
this classification goal. Risk of disease as yes/no comparisons of logistic regression and
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NNs are now fairly common. Indeed binary logistic regression is now the main corre-
sponding statistical method of choice for comparison with NNs, in predicting those cases
likely to develop a condition, given multiple risk attributes. This approach has been utilised
by Deligdisch et al. [28], Biagiotti et al. [12] and Jefferson et al. [S1]. Also, Lette et al. [63]
have used this comparison approach to predict risk of complications after disease has
occurred.

A large body of work has addressed the prediction of prognosis for mortality. Ebell
[35] has compared the predictive value of NNs with a progress after resuscitation (PAR)
score for assessing possible cardiac arrest patients (modified from pre-arrest morbidity
(PAM) score). TRISS, a trauma survival logistic regression model has been used by
Hunter et al. [48], for the prediction of prognosis for accident patients. Other prognostic
models for comparison are acute physiological and chronic health evaluation (APACHE)
models I-IIT and simplified acute physiology scores (SAPS) and mortality probability
models (MPM 1I), as suggested by Lemeshow et al. [61]. Most of these are incorporated
in logistic regression models for application in the specific domain. Backward stepwise
logistic regression approaches have been used frequently, e.g. by Dybowski et al. [34],
for comparison with NNs for outcomes of critically ill patients with a spectrum of
diseases.

Linear discriminant analysis has been applied by Anderer et al. [5] to compare
performance of NNs with respect to diagnosing demented patients on the basis of EEG
activity. This has also been used by Cohen et al. [23] to compare classification of autism by
NNs. Another example of a binary classification problem, utilising NNs and statistics has
been that of survival analysis. Outputs from NNs have been compared with that from Cox’s
regression by Mariani et al. [70] who took a model of risk factors and used Cox’s regression
to predict single hazard ratios for survival, for each case. Factor analysis has also been used
for discrimination comparisons with NNs with respect to identifying those at risk of
diabetes or not, such as that carried out by Tafeit et al. [101].

For evaluation of the performances of binary classification comparisons, some of these
researchers have used statistical tests on top of self-testing model development. Many of
these have been evaluated with a quoted percentage of correct classification, whilst many
have summarised results into 2 x 2 contingency tables or confusion matrices, and often
presented a y*-statistic for the differences in proportions correctly/incorrectly diagnosed.
Measures of specificity and sensitivity have had widespread use amongst researchers, e.g.
Lette et al. [63] and Marble and Healy [68], and some, such as Ronco [89] have used
positive predictive value (PPV) and negative predictive value (NPV). Fuller ROCs are
increasingly being applied by researchers such as Anderer et al. [5], whilst Mariani et al.
[70] and Doig et al. [32] have used area under the curve (AUC) measures for direct
comparisons. Tafeit et al. [101] have employed a two independent samples #-test to
compare NNs with factor analysis output. Multiple classification output comparisons have
been carried out to compare multiple category goals, and hence the outputs from several
nodes in NNs, with statistical techniques. There are less comparisons in this type of
classification, but Deligdisch et al. [28] have compared NNs with a Kruskall-Wallis test
and Dunn procedure for the multiple classification of ovarian dysplasia. Ohno-Machado
[81] has compared the result of NNs with Cox’s regression to predict the hazard ratios for
individual cases, for four times categories of output, in the risk assessment for coronary
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disease. Arana et al. [7] have used binary logistic regression and NN comparisons in the
classification of multiple types of malignancy in bone lesions, treating each category as a
binary outcome.

Evaluations of these have included y*-tests for k groups and proportions of successes
in each group, as utilised by Ohno-Machado [81], Wright and Gough [110] and also de
Laurentis and Ravdin [27]. Others such as Lapuerta et al. [60] have employed Z-
statistics for two paired proportions and McNemar’s test for correlated proportions.
Many researchers have treated each category as an individual binary node and thus
sensitivity and specificity for each group has been utilised by Azuaje et al. [9]. Fuller
ROCs have also been utilised and some, such as Arana et al. [7], have given AUCs, plus
standard deviations.

Continuous classification for non-parametric continuous output has been considered by
Meting and Coenegracht [73] in which they compared NNs with quadratic regression
techniques—a multiple non-linear (polynomial) approach to modelling chromatography
optimisation. Rehman et al. [87] also compared NNs and non-linear regression modelling
with a goal of non-parametric outputs that predict depth of anaesthesia and produced
graphical output on this. Most continuous classifications have been in survival or time-to-
event analysis. For example, Anand et al. [4] compared several NN approaches with Cox’s
regression, where there were censored cases in a colorectal cancer cohort of patients.
Kaplan—Meier graphs and NNs were the subject of Biganzoli et al. [13], who produced
graphs for both techniques for survival, again with censored data.

These continuous classifications have been evaluated with Wilcoxon’s sum rank test by
Anand et al. [4] and also Nugent et al. [78]. Most others have not carried out specific
empirical tests, e.g. Biganzoli et al. [13] apart from giving graphical output and mean
squared errors.

6. To what extent is inherent performance evaluation being carried out?

We decided to get an unbiased assessment of the degree of evaluation being carried out
in the literature. To this end we utilised PUBMED to access Medline to carry out a
structured search of the literature published on NNs in the medical domain.

6.1. The Medline search

The criteria used for searching for papers were—MESH term ‘“‘neural network™, title
word: limitations—English language; human; publication dates 1 January 1990 to 31
December 2000. This produced a total of 1140 papers and a systematic random sampling of
these resulted in 56 apparently suitable papers, which were retrieved in full from libraries
or electronic sources. Eight of these were found to be not artificial intelligence papers, so
the overall result was 48 papers extracted [6,8,10,12,14-17,21-23,28,31,39,40,42,50,
51,55,57-59,62,64,66,67,69,71,76,82-84,88,91-93,95,99-104,107-110,112]. We would
point out that these articles do not include preliminary reports or conference papers,
but only these that are now in the general literature and have been peer reviewed for
publication.
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6.2. The proforma

The papers were examined, the reference details (a) and (b) noted, and the answers
recorded in a proforma (Appendix A), which we designed with the view of answering the
following questions.

(c) What was the intention of the authors? Was it intended that this reported research could
go on to be applied in the medical domain or not, or is it purely of academic interest?
Statements such as “ultimate aim of introducing it into routine use” or ‘“‘powerful
methodology for aiding the expert” or a clear application as a model for analysing
medical data were interpreted as having an intention to promote the application of the
method. The intention to give details of methodology that could be developed further
was interpreted by certain statements in the paper. These included ‘“‘a possible future
application”, a ‘“‘prototype system”, “should be developed further” or that “no
evaluation is necessary”’, since the approach is purely theoretical at the current stage.

(d) Was there an identifiable gold standard? Gold standards raise the issue of sufficiency
(cf. comments in Section 4). Clustering, of course, does not usually have a gold
standard, unless a supervised comparison has been made.

(e) What broad type of evaluation was carried out? (All the comments in Section 4 are
relevant here.) Comparison with a gold standard or with another methodology?
Comparison with another methodology via the gold standard? The validity of all these
comparisons? For example, sometimes the comparisons with another system were invalid
such as comparing non-linear methods (NNs) with linear methods. Were the
methodologies of the comparisons sufficient? (Comparison methods themselves range
from simple correlation coefficients through to full appropriate analysis giving a direct
quantitative and valid comparison of the inherent performance between the two systems.)
An attempt at scoring is presented from: (0) No evaluation. (1) Self-testing—train and
test, cross-validation techniques; comparison with gold standard that was thought to be
insufficient, e.g. percentage classification error or root mean square only; or invalid
comparison with a dissimilar methodology, such as comparing linear with non-linear
methods. (2) Against a validated gold standard, with some rigour and statistical analysis.
(3) Comparison with another system, but either not quite the same data or scenario or
population or gold standard. (4) Against another methodology via a validated gold
standard, but insufficient, e.g. MAEs quoted. (5) As (4), but specificity and sensitivity
quoted. (6) Fuller evaluation, e.g. areas under ROC curves, full pairwise analysis.

(f) Finally, were any of the above related to the type of classification problem, i.e. no
classification (clustering) or the three categories defined in Section 4?

Results of applying the proforma to the 48 papers are presented in Tables 1-3. Table 1
presents the frequency of each category of evaluation as defined above. This indicates that
12.5% of papers gave what might be a sufficiency of evaluation ((5) or (6)). Most papers
(79.2%) did not describe comparison of their system or model against another system ((0)—
(3)). The rest (8.3%; (4)) attempted to compare their system with another, but used
inappropriate statistics.

Table 2 presents an analysis of the results of the structured Medline search. The r x ¢
cross-tabulation indicates that the degree of evaluation in the paper is associated with the
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Table 1
Table of frequencies of evaluation in the Medline search
Degree of evaluation Number Percentage
0 None 4 8.3
1 Train and test, cross-validation (self-testing) or against 27 56.3
gold standard, poor or against invalid other methodology
2 Against gold standard, good 4 8.3
3 Against other system, poor, or not via same gold standard 4 8.3
4 Two systems, via gold standard, but poor 3 6.3
5 Two systems, via gold standard, just sufficient 4 8.3
6 Two systems, via gold standard, full, appropriate 2 4.2
Table 2
Analysis of evaluation in the Medline search
Degree of evaluation with Pearson * d.f. Sig. Exact Sig.
Intent 15.33 6 0.018 0.022
Gold standard 41.98 6 <0.001 <0.001
Year 55.91 54 0.403 0.403
Class type 39.10 24 0.027 0.066

d.f., degrees of freedom; sig., two-sided significance; Exact Sig., an extended Fisher’s exact test to account for
low counts in some cells.

intention of the authors (intent) to apply the model or not (P = 0.022). The degree of
evaluation is, unsurprisingly, associated with the presence of an identifiable gold standard
(P < 0.001). The year of publication has no effect on the degree of evaluation found
(P = 0.430), indicating that the degree of evaluation has not increased over the sample
period, i.e. 1990-2000. The classification type category was marginal with respect to
significance feature (P = 0.066) and this has been expanded to present the results
indicating the type of classification and the degree of evaluation in Table 3.

Table 3
Cross-tabulations—classification type with degree of evaluation Medline search
Degree of evaluation Classification type
a b c d
0 1
1 13 12 1
2 2 1 1
3 1 1 2
4 2 1
5 4
6 2
Total 1 24 17 2

a, no class; b, binary; ¢, multiple; d, continuous. The paper in (a) was a clustering techniques paper. Three papers
were in a category of “other”, e.g. feature selection techniques.
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Table 3 indicates that just over half (13/24) of the most common type of classification—
binary (b)—were of degree 1 evaluation. Otherwise 6/24 fell into the categories of
sufficient evaluation (degree 5 or 6) and the rest were divided between the other evaluation
categories. Of the second most common classification type—multiple (c) 12/17 were of
grade 1 evaluation, none in the full evaluation categories of 5 or 6 and the rest divided
between the other categories. Only one paper dealt with no classification and only three
with continuous data outputs, which were evenly distributed in the evaluation categories.
This makes a statement that the modal evaluation for both binary and multiple category
classification is degree 1, i.e. poor evaluation.

6.3. Discussion of Medline results

The aims of this part of the study were not to give a precise breakdown of the paucity of
inherent performance evaluation, and criticise papers in the literature. We only wished to
indicate that there might be an overall lack of stringency in the approach to inherent
performance evaluation, especially given that these systems are being suggested as suitable
for application in the medical field. This conclusion has been justified by the study.

7. A methodological overview of suggested possibilities for inherent
performance evaluation

We have used the evidence from the literature review of Section 5 along with our own
expertise to try to construct a methodology overview for this topic. Full formal perfor-
mance evaluation, as defined in Sections 4 and 6, is all about valid comparison with another
equivalent methodology, which can be all types of artificial intelligence techniques, plus
Bayesian networks and statistical approaches, or a hybrid of these. (Bayesian methods are
considered to be systems on their own and generally require specific expertise in the field;
however, simple Bayes’ theorem is integral to many so called “Frequentist’ tests.)

When testing for performance, it is better to use the raw data output for each case in the set,
wherever possible, rather than producing an overall classification in the form of a con-
tingency table or confusion matrix. Mistakes can be made when the data is summarised and
information lost, plus no details are given on the shape of the distribution of the output.
Comparisons of classifications are best carried out on paired output, but it is recognised this is
not always possible. Primarily the focus should be on what alternatives are being considered
in the analysis and goodness of fit tests. Because this is inherent performance evaluation, we
are not concerned with costs and benefits or opportunity costs or clinical impact, as these are
evaluations at a different stage of the development of a system. Nor are we concerned with
building the model here, or the score functions to minimise the errors of the algorithm,
although comparisons of performance may give feedback for this. When testing at the level
of train and test sets, whether leave-one-out, 10-fold cross-validation, two-third and one-
third, etc. to give mean squared errors from the gold standard, these divisions of the data can
be compared directly with the same divisions of the statistical or other system model.

A complete approach to inherent performance does not exist. We will attempt to give
researchers and developers of systems some indications of the possible valid comparisons
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and tests that are appropriate to each classification goal, using NNs as an example. The aim
is to give information to those who have little idea as to how to go about evaluating their
system, rather than the expert. This will attempt to cut through the maze of information to
give specific suggestions, which may be applicable to the problem that the researcher is
trying to overcome. All testing can be applied at the cross-validation stage or to the whole
model stage, providing it is between two classifiers, under the same conditions. The
distinction is not hard and fast, it is essential to keep appropriateness in mind, rather than
proscribed constraints. This said, mean squared errors, Brier scores, etc. are often quoted
by researchers as being evidence of performance, but these are insufficient on their own as
performance measures. Also inequalities stating that >1 or 2 standard errors (S.E.) are
significant, whereas a conventional #-test would give specific probabilities and thus more
opportunities for direct comparisons.

We suggest that questions on the nature of the output from the system should be
addressed in a decision tree type of approach. Firstly, is the output unsupervised or
supervised in the form of a binary, a multiple category or a continuous output?
(Unsupervised clustering methods cannot be evaluated properly as such, in the absence
of any gold standard, but informal comparisons with statistical clustering techniques are
possible.) However, if clustering is of a supervised nature as, for example, with some k
nearest neighbour (knn) approaches, where a gold standard exists, then evaluation is
possible and the output can be treated as one of the other three types of classification and
tested as such. (This has been carried out by Anand et al. [4].) Deciding the form of the
classification can be difficult for the researcher as some think that all classification can be
considered to be binary, depending on the point of view. Nugent et al. [79] have shown
that it is possible for classification problems to be segregated into a number of bi-
dimensional classification problems. This issue relates to the goal of the classification
and the way the output data is to be presented. Although this may appear initially
confusing, the researchers will understand the nature of their own data and that being
produced by the output of the system and be able to interpret accordingly. Within these
categories, is the output in the form of a series of raw data points or presented as
contingency table? Is the output data spread parametric or non-parametric, that is, is there
a recognisable distribution form or not?

We will take each classification in turn and suggest suitable comparisons and tests for the
outputs. Since space is limited in one paper, these will necessarily be very brief and only an
indication of what is possible. For each classification goal, possible comparison meth-
odologies are given and then tests of performance suitable for this type of goal. These are
discussed in the text here, but the intrinsic nature of the subject means that it does not lend
itself to readability, so for a fuller interpretation of these, we suggest the reader refers to
suggested texts for further explanation on each topic as required. The methodologies and
tests are in italicised text, to highlight them and some knowledge of standard statistical
shorthand is assumed.

7.1. Binary classification

This is by far the most commonly used classification goal in medical applications,
typically required for the discrimination between disease or not disease categories, or those
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at risk or not. For example, single nodes in output layers of NNs frequently are binary in
nature with a threshold identifying a yes/no division in the predictor attribute.

7.1.1. Binary classification—comparisons

Researchers have compared NNs with linear discriminant analysis (cf. Section 5), but
this is more appropriately used for grouping into three or more categories of dependent
attributes and is relatively complex for non-statisticians to apply. It also lacks flexibility
and generally requires normality of distribution of the predictor attributes, although a little
flexibility with some binary attributes is possible. When there are just two groups for
classification, Vach et al. [105] state that similar results to discriminant analysis can be
achieved using binary multiple logistic regression (MLR) and NNs. A clearly presented
example of a comparison between these two methodologies is contained in the paper by
Aranaet al. [7]. Ely et al. [36] state that MLR gives greater flexibility, readily incorporating
models with quadratic terms and multiplicative interaction terms, whilst having the benefit
of being more easily understood. Both NNs and MLR are similar iterative processes and
MLR can be regarded as using weighted scoring of all the inputs, in an analogy to that of
NNs. The output of MLR is constrained between 0 and 1, by a logistic transformation and
this can be interpreted as the probability of membership of that class, since this basically
follows one of the same forms as the NN output—a logistic regression function:

estimated probability = 1)

14e=
where e is the constant 2.718. .., from log. x. The z is the linear combination of the
covariate values: z = Bg + B1X| + By Xo + - - + B,X,,.

Traditionally, statistical models are reduced to give a parsimonious model, but we
believe that all attributes should remain in the logistic regression model as far as possible
for comparison with NNs. If these have to be reduced, then we advise cutting down the
model for both techniques by using, e.g. y*-tests, explained by Delucci [29] for each factor
individually for the two classes as identified by the gold standard. Stepwise logistic
regression is also used frequently for feature selection. A reasonably safe approach is to
take each attribute that has P > 0.1 out of the model, but leave the rest, even if not
significant, in order to retain as far as possible those that may contribute to interactions. It is
necessary to compare like with like, that is, duplicate the model for all the techniques
otherwise the comparison may be invalid. For the same reason we suggest that, for the final
model, researchers enter all the attributes together in the MLR model, since this is the same
as the input layer to NNs. Other researcher may have used both forward and backward
stepwise regression procedures, but Derksen and Keselman [30] demonstrate that there can
be problems with stepwise regression for comparison, for example, when multiple testing
is required.

Simple survival analysis where all the cases are uncensored, where this means that there
is a record of survival or the event is known, can be compared with MLR. If there are
censored cases where the event is unknown, or lies outside the time frame of the study, then
this can be compared with Cox’s regression [25] for covariates. This gives prediction of
binary hazard ratios for survival, or event-or-not, but all the previous comments on
similarity of modelling between the two systems apply here. Log-rank tests for simple
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models with few covariates can also be employed. A full explanation of this and other
survival modelling techniques are given in Collett’s textbook [24] on the subject.

All the risk scoring and models, plus mortality prediction (prognosis, without censor-
ing), mentioned in Section 5, which are mostly derived from MLR modelling, can be used
for comparison with NNs. These examples have the advantage of being established in the
domain, but exactly the same attributes and weights of these models need to be presented to
the input layer.

As a simple approach, it is possible to compare binary output with that of Z-values, when
the data is transformed to achieve a normal distribution and z = (x; — Xmean )/Standard
deviation, as Anderer et al. [5] have done. For example, are the proportions produced by the
classifier different from the proportions that would be produced by the appropriate Z-values
on the same data?

7.1.2. Binary classification—testing of performance
The evaluation of binary classification has received more attention than any other type,
and many multiple node outputs are treated as a series of binary outputs for evaluation
purposes. The researcher has to decide which output classification is appropriate to the
questions they are trying to answer. For example, cross-fold validation results can have
simple #-tests applied ([20], p. 132-4) for the differences in mean absolute errors, using:
Xi-X
"TSE®X X))
the hypothesis of no difference in the means. These are usually in the form of testing of
paired samples, where the data has the same cases being compared, the paired ¢-test. They
can also, however, be in the form of independent samples where these are not exactly the
same and adjustments have to be made to the standard error to account for this. The #-test
assumes that the data is approximately normally distributed about the mean error and is
useful for small samples (<30) in that it depends on the size of the sample and thus the
degrees of freedom for the resultant probability [2]. A note about this would be to avoid just
stating the inequality, often quoted in the intelligent system literature that if the value of #is
>2, then it is significant, without giving an exact probability value. If the output data to be
tested is large, i.e. >30, then the difference in proportions between two binary outputs can
be tested with Z-tests [26] where this is asymptotically the same as the #-statistic:
X —X;
(S.E.)

difference

2

3)

=

This utilises the standard error and gives a test statistic and associated probability.

If the data is presented as a2 x 2 contingency table, then researchers should decide if the
samples require a paired proportions test. Perhaps the most appropriate test here is
McNemar’s test on a 2 X 2 contingency table of comparisons of ratios ([3], p. 258-9)
if the output data to be tested is in this reduced form. If the comparisons, between
methodologies, are not on exactly the same data then they will be independent and unpaired
and require the use y’-test for 2 x 2 tables, which is testing for non-paired proportions:

0—E
p=y 0 4
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Then employment of Yates continuity correction, for bias produced by small samples:

) (|0 - E[ - 0.5)*
c=> -
and Fisher’s exact test if any cell in the table has frequency <5, where the probability of the
other tables giving the same marginal totals are summed to give more evidence of
association. McNemar’s and xz—tests are covered in Altman’s textbook ([3], p. 250-9).
In supervised learning, where a possible threshold can be identified whereby the output
measure can be deemed to be a correct classification or not, ROC analysis in all its forms is
appropriate, where there are positive (4ve) and negative (—ve) values, that indicate the
outcomes with respect to the classification. Sensitivity and specificity, which are part of
this, are regularly quoted in the literature as evidence of performance evaluation, along
with the positive predictive value (PPV) and negative predictive value (NPV) [43] with the
following definitions.

®)

e Sensitivity: proportion of +ves which are identified by the system.

e Specificity: proportion of —ves which are identified by the system.

e PPV: proportion of true 4ves which are identified by the system.

e NPV: proportion of true —ves which are identified by the system.

However, some researchers may not be aware of the shortcomings and constraints of
these, such as the prevalence of disease in the population or the prior probabilities of the
condition or state, which will affect the classification threshold. This involves Bayes’
theorem calculations for PPV and NPV based on these prior probabilities to give posterior
probabilities ([106], p. 244-6).

A likelihood ratio (LR) can be calculated ([3], p. 416-7) which can perhaps simplify
matters, where LR = sensitivity/(1 — specificity). This can be combined with what can be
termed as pre-test odds, where this is the prevalence/(1 — prevalence), to give the post-test
odds, which are effectively the change in certainty of the classification from that pre-
existing to that predicted by the model:

conditional probability = pre-test probability (odds) x LR (6)

These conditional probabilities (or proportions) can then be compared directly, using a -
test.

If exactly the same model and exactly the same population are being used, however, then
this should not influence the test results of a direct comparison between techniques. The
way to ensure against this is to carry out full ROC analysis; which provides a rigorous
assessment of a test’s diagnostic accuracy and is independent of the prior probabilities.
ROC curves display the ability of a classifier to discriminate between binary groups
without having to specify a threshold level, by graphically displaying the sensitivity versus
the false positive rate (1 — specificity) for all possible threshold values produced by the
classifier. In this way, they give summaries of performance over a range of possible
decision cut-offs and are therefore insensitive to the selection of these, thus avoiding the
erroneous results that can occur with stipulated thresholds.

For direct comparisons of ROC curves, the area under the curve (AUC) is increasingly
being used [11] and these can be considered to be a measure of the diagnostic power of a
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test, independent of thresholds chosen by the researcher [113]. The significance of the
differences between areas are more complex to calculate but Pearson’s correlation
coefficient which measures the degree of association (—1 to +1) between the values of
the two variables/attributes, can be used. Otherwise Kendall’s tau, a rank correlation
coefficient when there are small numbers of categories, can be employed. Both are
suggested by Hanley and McNeil [43]. These methods give significances at a chosen level
(usually o = 0.05) by:

7 - Al —Ap )

V/(SE) + (S - 2r(SE.), (S.E.),

where r is one of the above correlation coefficients and Z the normal score to be converted
to the probability. Many statistical packages now give the area under the ROC curve
calculations, so quoting these has become simplified.

7.2. Multiple category classifications

The ideas of Section 7.1.2 for testing of binary outputs can generalise readily to the
multiple category classification case. Often it is useful to draw up a contingency table or a
confusion matrix, a cross-classification of predicted versus the observed class. When there
are, for example, multiple nodes in the output layer of NNs then comparisons can be carried
out with statistical techniques that classify a dependent attribute into several categories.
Keeping a clear focus on the emphasis of the analysis would answer the following
questions. Is each node to be considered as a separate binary classification or separate
continuous classification? Are all the outputs related as multiple categories and are inter-
category comparisons required?

7.2.1. Comparisons of multiple category classifications

Discriminant function analysis [5] can be used to predict group membership, but this is
usually possible only when predictor attributes are normally distributed or nominal, but not
of equal variances and where the dependent attribute is a nominal measure. This approach
cannot handle a dependent attribute with a large number of categories. Researchers should
remember to use the “priors’ option if there is a prior knowledge of the proportions in each
category from the data set being examined and if this has been incorporated into the
application. Other researchers see this analysis technique as being difficult for non-
statisticians to handle and interpret.

Perhaps the most appropriate comparison with systems such as NNs with multiple nodal
output, is that of multinomial logistic regression [98], which can handle a dependent
(predictor) attribute with few categories, but otherwise is similar to ordinary multiple
(binary) logistic regression where parameter estimation is performed through an iterative
maximum likelihood algorithm. This procedure is little utilised in intelligent systems
research as yet. For survival analysis problems where all the cases are uncensored in the
form of multiple category classifications of time, e.g. 0—6 months, 1-2 years, etc. are
required, it is possible to compare the outcomes with multinomial logistic regression.
Otherwise, if there a censored cases, the outputs could be compared with hazard ratios for
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survival with Cox’s regression [25], using these same categorisations as the system output
for separate testing. The censored cases can be inserted into the final category, as other
researchers have done [82].

7.2.2. Multiple categorical classification—testing for performance
Generally, y*-tests for 2 x k categories, as used by de Laurentis and Ravdin [27], in:

2 _ N (05— By)’ g
1 ;; EU @®)
the form of contingency table tests are useful here, but we would suggest the employment
of a y*-test for trend ([3], p. 261-5) if there are ordered categories, which will give a more
powerful test because it gives a test statistic in the same way, but on one degree of freedom
rather than k — 1 degrees of freedom on the >-distribution. Testing with two-way analysis
of variance (ANOVA) ([41], p. 191-4) can be carried out if the outputs are individually
approximately normally distributed (a generalisation of the t-test). Also Friedman’s
analysis ([3], p. 334—6), which is the non-parametric equivalent of this can be applied
if visualisation of the output indicates that the assumption of normality of distribution is
invalid. Sometimes inter-rater agreements can be applied to categorical outputs; Cohen’s
kappa a measure of *“‘chance-corrected proportional agreement™ ([41], p. 187-8) will give
values between —1 and 1. This measures the agreement between estimates for the same
categories and ranges from worse than chance agreement (—1), through no agreement
greater than chance (0), to perfect agreement (1):
Cohen’s kappa (k) = )
If the outputs are to be considered to be independent individual binary outputs, then all the
techniques employed under Section 7.1.2 can be utilised. These include Z-statistics, or
McNemar’s test, or y°-test for 2 x 2 tables, or sensitivity and specificity for each category,
or ROCs and AUCs for each category (cf. Section 7.1.2).
Alternatively, if the output categories are considered to be individually of a continuous
output nature, then all the tests under continuous outputs, which follow, could be applied.

7.3. Continuous classification

Continuous classification can be in the form of, e.g. laboratory testing or any other scale
that does not have a specific threshold that identifies normal/abnormal or other binary class
results. If a threshold can be identified then all the binary comparisons and testing above
can be applied. The most common form of continuous classification used by system
developers has been in the estimation of survival or time-to-event data.

An elementary preliminary for continuous classification output is to consider whether
this is in the form of a parametric or non-parametric distribution. Testing for the type of
distribution should be carried out before further analysis. Tests include those for normality,
e.g. using Shapiro—Wilks test ([3], p. 139-42), but check for outliers as this test is very
sensitive to these. Other parametric distribution fits to the data, e.g. using curve fitting
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approaches [1], can quickly reveal other possible distributions found in continuous data in
the medical domain, such as the Weibull distribution or negative binomial distribution.
Linearity of the data is also detected by curve fitting and measure of R, the line fit.

7.3.1. Continuous classification—comparisons

Comparisons of this type of system output are dependent on the shape of the distribution.
If the dependent attribute can be shown to be a linear value that represents an additive
association of the predictor attributes, which themselves are normally distributed, then
multiple linear regression is appropriate ([20], p. 93-6):

Vi = o+ Bixgi + BoXoi + - -+ Brx (10)

where y is the linear combination of covariates (fx) and o is a constant.
If non-linear, then the equivalent of this, a multiple non-linear (polynomial) form such as
a quadratic regression model ([3], p. 310) can be used:

Y =a+ bX +cX? (11)

When investigating survival or time-to-event analysis and where there are no censored
cases, comparison with multiple linear regression is possible if the assumptions for this
hold. When there are right or left censored cases, comparison of survival estimates can be
made with Kaplan—Meier [54] graphs and estimates for time intervals, provided there are
few attributes being considered, using:

k
R n —d:
s0 =11,
j=1 J

(12)
n

where n; is the number still surviving at the jth time start and d; is the number who have the
event in the jth time interval. S(¢) is the probability of surviving until after time 7. If
covariates are available and the assumptions of constant proportional hazards with time can
hold, then Cox’s regression ([24], p. 54-5) can be utilised in the form of survival estimates
rather than hazards to survival:

S(t) = [So(r))’  wherep = e2_ Bik (13)

where X,, are the covariates. Direct comparisons can now be made using the technique of
Smith and Anand [96] to give actual time estimates for each case, for direct comparison
with intelligent systems which give an estimate of time-to-event. Where the assumptions
required for Cox’s regression are seriously eroded, then Weibull analysis can be used if the
system output is in the correct distributional form for this ([24], p. 110-3).

7.3.2. Continuous classification—testing for performance

Generally continuous classification does not have +ve or —ve categories, that is, there is
no decision threshold and so ROC curves and all the tests under this are inappropriate. If,
however, it is possible that a threshold could be used for classification into binary
categories, then all the testing under Section 7.1.2 is applicable. If the system output is
normally distributed, then the obvious approach is to carry out paired t-tests (Eq. (2)) ([20],
p. 132—4) using n — 1 degrees of freedom, rather than just comparing the mean absolute
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errors. Also, independent sample t-testing (Eq. (2)) can be utilised for non-paired data
outputs, using n; + ny — 2 degrees of freedom, which gives a less powerful test than the
paired samples. Researchers should give confidence intervals and standard errors where
appropriate. With linear outputs, if the degree of association between two outcomes is
required, then Pearson’s correlation coefficient [56] can be calculated from the original
observations, but because of restrictions on the validity with this, it should be considered to
be a preliminary analysis only. Non-parametric equivalent coefficients are available in the
form of the various rank correlation coefficients, such as Spearman’s rho ([20], p. 82), and
Kendall’s tau [56]. These have the advantage that confidence intervals can be constructed
to give more information rather than just a coefficient and a probability.
Non-parametric testing of paired outputs mainly uses Wilcoxon’s rank sum test:

7 T—nn+1)/4
Vn(n+1)(2n+1)/24

where n is the number of pairs that are ranked according to the absolute values of the
differences between the two attributes. This has been used by Anand et al. [4] to directly
compare the outputs from NNs, knn models and regression tree induction with each other
and with Cox’s regression, for survival analysis, where the output was not normally
distributed. Care is required in interpretation of this ranking test, however, because this
does not take account of the size of the differences—it only ranks them by magnitude
comparisons, so it may give different results to, for example, the mean absolute errors. If
the output is unpaired, the Mann—Whitney U-test ([20], p. 141-2) should be applied, it
being the non-paired equivalent of the Wilcoxon’s test:

(14)

T —m(n +n+1)/2
\/l’l]l’lz(n] +ny + 1)/12
Kaplan—Meier and Weibull graphs can be compared by using the log-rank test ([24], p. 40—

3), based on a Xz-distribution, for individual graphical output, where A and B are the two
graphs being compared:

z 5)

Oa —EA)?  (Op — Eg)’
x2=<AEAA)+(BEB b) (16)

Note: Parametric tests are more powerful and should therefore be used in preference to non-
parametric tests when the assumptions (e.g. normality) hold. Note that confidence intervals
and standard errors should be given wherever possible. Also note that if several separate z-
tests are carried out then researchers should employ Bonferroni’s modification, where the
probability obtained from each test should be multiplied by the number of separate tests
([3], p- 211), however, care in interpretation is required [85].

7.4. In summary
As stated previously, this paper is intended as an indication of what is possible, but may

save the researcher much searching, by suggesting suitable methodologies for comparisons
of classifiers. The summarised form of this is presented in Table 4.
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Table 4

Possible tests and comparisons according to classification goal

A.E. Smith et al./Artificial Intelligence in Medicine 27 (2003) 1-27

Type of
classification goal

Possible comparisons

Possible tests

Binary

Z-statistics
Linear discriminant analysis
Multiple logistic regression

Independent sample #-tests
Paired #-tests
Z-tests

McNemar’s test

%>-test for 2 x 2 tables

Sensitivity, specificity

Positive and negative predictive values
True, false positive values

Area under the ROC curve

(with Pearson’s correlation

coefficient or Kendall’s tau)

y>-test for 2 X k categories
xz—test for trend

Two-way ANOVA
Friedman’s analysis
Cohen’s kappa

Multiple category Discriminant function analysis

Multinomial logistic regression

Continuous Multiple linear regression

Quadratic regression

For survival or time-to-event data
Kaplan—Meier graphs
Cox’s regression, Smith adaptation
Weibull analysis

Independent sample #-tests
Paired t-tests

Pearson’s correlation coefficient
Spearman’s rho

Kendal’s tau

Wilcoxon’s rank sum test
Mann—Whitney U-test
Log-rank test

We have given indications of suitable tests that should be further investigated, if the
researcher is unfamiliar with them, for constraints and limitations. Suitable sources giving
some of the mathematics involved can be found in textbooks such as Altman [3], Campbell
and Machin [20], or other sources referred to in the text. Survival analysis types can be
examined in Collett [24]. All the conditions and constraints should be taken into account
along with knowledge of the domain, the data being used, the problems present and the
questions being posed.

8. Discussion

Many evaluation papers for intelligent systems designed for medical application have
been published, mostly of a subjectivist nature, e.g. [47,75,77,80]. The reader could also
look at Friedman and Wyatt’s “Evaluation methods in medical informatics™ [41] to get the
global evaluation perspectives, both subjectivist and objectivist, and the issues involved.
Also, Ergemont-Petersen et al. [38] have specifically examined the quality and perfor-
mance of NN classifiers and this is pertinent to this subject. Objectivist studies have
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indicated the possible quantitative ways to evaluate systems, but have, however, not
generally given structured, comprehensive information about how to carry out adequate
inherent performance evaluation, according to the classification goals of the outputs, as this
paper has tried to do. This seems to be largely left to those who are interested in
mathematical classification theory and are published in a form not easily understood
by the non-experts in the field.

There is a general recognition that new technologies such as NNs should be medical
problem driven with output that is both appropriate and understandable to the end-user.
Clinicians are wary of new inroads into their domain and so it is advisable that systems
should be compared with statistical and other current acceptable approaches utilised in the
domain. The gold standard relevant to the DSS goal should be sufficient and, as stated
earlier, not just the diagnosis of one clinician.

Randomised controlled trials (RCTs) are used routinely in medical research, where they
perform well in the original concept of direct comparison of treatment regimes. They are
now being regarded by some, however, as generally unsuitable for the evaluation of
intelligent systems, since they take little account of the barriers to the introduction of new
technologies and are also limited in their range of coverage [45]. Others would disagree
and state that they could be applied to more complex interventions in an iterative approach,
gathering all the results from all the elements together [19].

There are no ideal answers, but this is not to say that an attempt cannot be made to test
the inherent performance of systems empirically. Our intention is to give details of the
specific tests appropriate to the type of data output, along with examples and constraints.
Rossi-Mori [90] is of the opinion that these measures should essentially treat the system
processes as a black box, as the methodological processes are hidden at this particular stage
of performance.

We recognise that the imposition of too judgmental a form of assessment criteria, while
the system or model is being finalised, would mean that many systems and ideas would not
reach all the intended recipients who might benefit from it, or develop it further. If it is
intended that the system or model be applied in the domain, however, then adequate formal
performance evaluation is necessary. Not carrying out this core evaluation avoids answer-
ing—‘“does the system do what it claims?” and “is it more accurate than current
methods?”” Such questioning is essential for giving evidence that a real, scientific process
has been applied to meet the safety—critical requirements of medical systems. All this is
part of an overall evaluation of these systems, with all the subjectivist and objectivist
components mentioned in Section 1.

9. Conclusions and future work

What can be seen to be new in this paper is an attempt to organise a practicable approach
to performance evaluation of DSSs in a manner that designers of system themselves can
use, to carry out some adequate evaluation. This is a sufficiency of methodology rather than
trying to obtain some optimal and often unachievable technique exclusive to each specific
problem. We have tried, by structuring our approach, starting with the output classification
that the researchers are dealing with, to help the researcher into DSSs to get directly to the
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type of tests they require rather than searching through many texts to try to achieve the
same aim. In other words, enabling and saving time on performance evaluation and making
it as simple as possible, whilst being appropriate and sufficient. We have started with the
taxonomy of the types of output from NN as a typical example of DSSs and how others
have attempted to assess their performances, then led on to suggestions of how to deal with
comparing and evaluating these. These suggestions use standard methods, but no one to our
knowledge, has organised them in this overview manner to give very specific guidance as to
how to go about testing the inherent performance of intelligent systems. These tests are
what colleagues in artificial intelligence inform us they require to overcome their lack of
statistical knowledge. Also, the statistics are organised in a readily accessible form for
quick reference and made understandable to DSS researchers and developers. Since only
these have thorough knowledge of their methods, the application of the above techniques
requires careful consideration as to what is uniquely appropriate in terms of comparisons
and tests for a particular set of data. Those who require more in-depth treatment of the
subject matter will find this in more specialist literature in their field. Many texts have been
written on individual parts or aspects of classification performance evaluation, but not an
overall view.

Section 7 has suggested current methodologies for comparing the inherent performance
of NN classifiers. This could be expanded to include other intelligent DSSs, as suggested
by Hart and Wyatt [44]. It is hoped that we can contribute to the debate that will proceed
towards realistic and achievable guidelines. It is anticipated that the current paper will help
developers of intelligent DSSs to indicate that a scientific approach has been utilised in
assessing the outputs. We have confined ourselves to empirical testing of the direct outputs
from systems, not promoting the wider issues of evaluation. It is hoped that the guidelines
for these can be formed by a committee of experts in the field, in the form of a white paper
on this subject. We have aimed to only give a minimal sufficiency of inherent performance
evaluation that is achievable by the DSS researchers and designers themselves, as part of
this. The intention has been to give specific advice of a practicable, easy look-up nature to
allow adequate performance evaluation, which may enable the plethora of systems that
have been described in the literature to be turned into reality and applied in the medical
domain, rather than just remaining on the shelf.
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Appendix A. The proforma used for Medline summaries

(a) Title
(b) Date of publication
© Intention—applied or theoretical

(d) Gold standard
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Appendix A. (Continued)

(e) Degree of evaluation

0 None

1 Train and test, cross-validation, etc.

1 Against gold standard, insufficient

1 Against invalid other methodology

2 Against gold standard, sufficient

3 Against another system, insufficient

4 Two systems, via gold standard, but insufficient, MAEs, etc.

5 Two systems, via gold standard, sufficient, sensitivity/specificity

or gold standard not ideal

6 Full two systems, via gold standard, sufficient, full ROCs or other

) Classification type

0 Clustering

1 Binary

2 Multiple

3 Continuous
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