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Adaptive Flood Risk Management Under Climate Change
Uncertainty Using Real Options and Optimization

Michelle Woodward,1,∗ Zoran Kapelan,2 and Ben Gouldby1

It is well recognized that adaptive and flexible flood risk strategies are required to account for
future uncertainties. Development of such strategies is, however, a challenge. Climate change
alone is a significant complication, but, in addition, complexities exist trying to identify the
most appropriate set of mitigation measures, or interventions. There are a range of economic
and environmental performance measures that require consideration, and the spatial and
temporal aspects of evaluating the performance of these is complex. All these elements pose
severe difficulties to decisionmakers. This article describes a decision support methodology
that has the capability to assess the most appropriate set of interventions to make in a flood
system and the opportune time to make these interventions, given the future uncertainties.
The flood risk strategies have been explicitly designed to allow for flexible adaptive mea-
sures by capturing the concepts of real options and multiobjective optimization to evaluate
potential flood risk management opportunities. A state-of-the-art flood risk analysis tool is
employed to evaluate the risk associated to each strategy over future points in time and a
multiobjective genetic algorithm is utilized to search for the optimal adaptive strategies. The
modeling system has been applied to a reach on the Thames Estuary (London, England),
and initial results show the inclusion of flexibility is advantageous, while the outputs provide
decisionmakers with supplementary knowledge that previously has not been considered.

KEY WORDS: Decision tree analysis; economics; flood risk management; multiobjective optimization;
real options

1. INTRODUCTION

Making decisions on long-term flood risk man-
agement intervention strategies is complex. Meth-
ods are required that are capable of identifying the
better performing intervention measures while also
taking into account the most effective spatial loca-
tions and the most beneficial timing. Given the large
portfolio of potential flood risk mitigation measures,
identifying the most appropriate long-term strategy
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is challenging. This problem is further compounded
due to the evolving nature of flood risk, in particular
with regard to climate and socioeconomic changes.
The plausible range of future climate change com-
prises significant uncertainty, presenting decision-
makers with considerable challenges with regard to
long-term planning.

It is widely recognized that the future uncer-
tainties of climate change need to be accounted
for within the development of long-term strategies
to ensure an economic efficiency.(1–5) Traditional
approaches do not always lend themselves to ade-
quately account for climate change uncertainty. In
the past, strategies were developed without account-
ing for future uncertainties, including climate change
(sea level rise, changes in flood frequency).(6) The re-
quirement to account for climate change uncertainty
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has therefore been the subject of significant
research(7–9) and methods have been proposed
to account for the future uncertainty.(10–12)

Real options analysis is a recognized approach
for encouraging appropriate climate change adapta-
tion and mitigation investment decisions.(4,11,13–15) In
this article, the concepts of real options and optimiza-
tion are applied within the context of flood risk man-
agement in an estuarine area under climate change
uncertainty. This methodology makes use of decision
trees and multiobjective optimization to determine
flexible and adaptable intervention strategies over a
long-term planning horizon.

2. BACKGROUND

2.1. Decision Making Under Severe Uncertainty

The uncertainty in the future climate is signifi-
cant and its impact on flood risk management de-
cision making is considered to be severe.(16) There
are a number of methods that can be applied to aid
decision making under severe uncertainty. Wald’s(17)

maximin or Laplace’s principle of indifference(18)

are well-known traditional examples. These meth-
ods implicitly reflect a particular attitude to uncer-
tainty. Implementation of Laplace’s principle is much
less conservative compared to that of Wald’s max-
imin, for example. More recently, there has been an
increasing trend to develop methods that seek to
identify mitigation measures that are described as ro-
bust. The concept of robustness, in the context of cli-
mate change adaptation, is often not associated with
a clear definition; rather, a general concept emerges.
The concept generally relates to as having the ability
to perform well over a range of future scenarios.

For example, robust decision making (RDM) in-
verts traditional sensitivity analysis, seeking strate-
gies whose good performance is insensitive to the
most significant uncertainties.(19) Hall and Harvey(10)

state that a robust option is one that performs
well even under future conditions that deviate from
our best estimate. Info-gap characterizes uncer-
tainty with nested sets of plausible futures and de-
fines robustness as the range of uncertainty over
which a strategy achieves a prescribed level of
performance.(20) RDM uses several definitions of ro-
bustness, including: (1) trading some optimal perfor-
mance for less sensitivity to broken assumptions and
(2) performing relatively well compared to the alter-
natives over a wide range of plausible futures.(20)

Many of these authors indicate that there is
a distinct choice to be made between robustness
and optimization and that robust methods are
preferable.(19,21,22)

It is of note, however, that the primary objec-
tive of a number of these methods is to maximize
robustness;(21) it is thus evident that optimization ap-
proaches can be coupled with the general concept of
robustness. Extensive research has been undertaken
in this regard within the field of robust optimization
(RO). RO provides techniques to optimize outcomes
while accounting for uncertainties.(23–25) RO is de-
fined by Ben-Tal et al.,(24) whereby within, the data
are assumed to be “uncertain but bounded,” that is,
varying in a given uncertainty set, rather than to be
stochastic, and the aim is to choose the best solution
among those “immunized” against data uncertainty,
where Ben-Tal et al.(24) refer to “immunized” such
that: a candidate solution is “immunized” against
uncertainty if it is robust feasible, that is, remains
feasible for all realizations of the data from the un-
certainty set. It is thus evident that a choice between
an optimization and a robustness method is not
necessarily required. The objective function of the
optimization problem can be defined in terms of ro-
bustness criteria that are specified at the outset. This
distinction is discussed further by Sniedovich.(26)

Within the analysis described below, the general
concept of robustness and optimization is prevalent
and hence there are parallels with the RO approach.
Note, however, that in a conventional robust opti-
mization approach, which makes use of some fixed,
rigid intervention strategy, robustness is achieved by
incorporating flexibility within intervention options
(i.e., flexibility and the ability to adapt often provides
robustness). In the methodology presented here, the
robustness (or immunity to uncertainty) is achieved
by continuously evaluating the uncertain variable(s)
of interest (e.g., sea level rise) and allowing for op-
tional, adaptive/flexible intervention strategies to be
implemented/modified in the future, if and when nec-
essary. This can reduce the need for large redundant
capacity to be built into the flood defense system.

2.2. Real Options in Flood Risk Management

In flood risk management, a robust strategy is
considered to be a strategy that performs well over
a range of futures. Performance can be defined using
a range of criteria and typically these include strat-
egy costs and benefits. The benefits comprise reduc-
tion in risk, where risk can be defined in economic,
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life loss, and environmental terms. Previous works in
this area(2,10,27,28) have sought to develop strategies
that are robust to climate change uncertainties. The
strategies that have been developed have, however,
been fixed over the planning horizon, and although
they account for climate change variability, they are
based on particular assumptions about future change.
The magnitude of future change is, however, subject
to severe uncertainty.(29) Rates of change may there-
fore be faster or slower than the rates assumed and
therefore the planned time steps when interventions
are required will change. Strategies developed us-
ing these approaches may therefore typically require
large initial costs and can often result in unnecessary
expenditure if a future state occurs that the infras-
tructure was not tested against.(11)

The core principle of real options analysis is
the ability to value flexibility.(30) This principle en-
courages the identification of opportunities for in-
corporating flexibility into the decision-making pro-
cess. Essentially, real options allows a decisionmaker
to make changes to an investment decision when
new information arises in the future. Opportunities
such as delaying the investment, abandoning, switch-
ing, expanding, contracting, or having multiple op-
tions interacting together are potential choices for
decisionmakers.(31,32) For example, where it is be-
yond doubt that a flood defense has come to the end
of its useful life and requires major refurbishment,
there are a range of possible decisions. Assuming a
worst-case climate change scenario and constructing
a flood defense based on this assumption is likely
to be suboptimum as it requires significant up-front
expenditure and may well constitute an overdesign
should the worst-case scenario not be realized. Con-
structing a defense that is inherently flexible and ca-
pable of future modification is one approach for im-
plementing flexibility within a flood risk system. A
flood defense system that is constructed in an inno-
vative way enabling increases in the level of protec-
tion to be readily achievable, should there be a re-
quirement, is an example of embedding a real option.
The option to raise the level of protection (e.g., raise
the crest level) is purchased at the outset. The deci-
sion whether to exercise the option is delayed to a
future date when more information regarding future
climate change impacts, for example, is known. An-
other example of a real option, in the context of flood
risk management, is the purchasing of land adjacent
to flood defenses. The option to undertake managed
retreat is purchased at the outset. The decision to
exercise the option (or not) is then made at a later

date when more information is available. A further
discussion on these issues is provided by Woodward
et al.(14)

There may, however, be uncertainty regarding
the nature of the mitigation measure. A range of op-
tions may exist that could include whether to refur-
bish a defense, set back a defense, or continue with
maintenance activities, the cost of which may rise as
the structure approaches the end of its design life.
Delaying the decision to refurbish and continue with
the maintenance is another example of implement-
ing real-options-based concepts. A delayed decision
is preferable in terms of the time value of money and
the preference for future investment. Flexibility is
maintained and the decision to refurbish or set back
is delayed until more information is known. These
benefits, however, need to be considered with the po-
tential increase in risk from poorly performing struc-
tures and the potential increase in maintenance costs
as the structure deteriorates.

There are many methods and tools available to
value flexibility and undertake real options analy-
sis. Many are based on financial valuation methods,
including the Black-Scholes formula(33,34) and the
discrete-time option pricing formula.(35) It is often ar-
gued that financial valuation methods such as these
are not suitable for valuing real options.(31) Wang
and De Neufville(36) explain that real options can be
broadly classified into two categories; real options
“in” systems and real options “on” systems. Real
options “on” systems are real options that focus on
the external factors of a system and would benefit
most from financial valuation methods. Real options
“in” systems, on the other hand, incorporate flexibil-
ity into the structural design of the system and valu-
ing this flexibility using financial tools is less suitable.
Methods for real options analysis were identified and
include partial differential equations,(37) binomial(31)

and trinomial(38) decision trees, and stochastic dy-
namic programming.(39)

In the analysis described below, the use of real
options is aligned with real options “in” systems
where flexibility is inherently captured within the en-
gineering design of the system. De Neufville et al.(40)

provide an approach to value flexibility for a real op-
tions “in” systems project and the approach adopted
in this article follows a similar procedure, evaluating
flexibility as the difference between an option with
embedded flexibility and an option defined in a more
conventional, deterministic way.

In addition to the above, a decision tree ap-
proach is also employed enabling real, and other
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more conventional intervention, options to be in-
corporated within an intervention strategy, allowing
multiple optional intervention paths into the future
dependent on the nature and level of climate change.
This, in turn, enables more effective adaptation of
the analyzed engineering system to climate change.

2.3. Optimization Methods

Formal optimization methods have been applied
to flood risk management decision-making prob-
lems for many years.(41,42) More recently, evolu-
tionary multiobjective optimization techniques have
been developed that have the capability to consider
a wide range of multiple objectives simultaneously
while searching through a large portfolio of poten-
tial decision variables.(43–47) Woodward et al.(48) have
recently applied the Nondominated Sorting Genetic
Algorithm II (NSGAII), an evolutionary multiobjec-
tive optimization method,(49) to optimize for short-
term flood risk intervention strategies where climate
change uncertainty is not a consideration. Multiob-
jective optimization techniques enable options to be
compared over a range of criteria. For example, in
flood risk management, relevant criteria include op-
tion costs, benefits, life loss, environmental impact
(or enhancement), and amenity value. While it is pos-
sible to attempt to reduce these criteria to a single
monetary measure, the monetization of life, for ex-
ample, can be particularly controversial. The analysis
described here extends upon the work presented by
Woodward et al.(48) that uses the NSGAII algorithm
to aid the development of long-term flood risk strate-
gies where climate change uncertainty is significant.
The analysis is performed in terms of benefits and
costs using a multiobjective approach that is readily
extendable to include additional criteria as required.

3. METHODOLOGY

3.1. Problem

The problem of coastal flood risk management
is complex and typically involves a range of perfor-
mance measures. For the purposes of demonstrating
the concepts of the methodology, it is formulated and
solved here as a multiobjective objective optimiza-
tion problem. The two objectives are as follows:

f1(x) = max(Benefit) (1)

f2(x) = min(Cost) (2)

where Benefit represents the present value of the re-
duced flood risk in the analyzed area over a long-
term planning horizon (see Equation (5) below)
due to the implementation of a specific interven-
tion (or mitigation measure), when compared to the
“do nothing” scenario (do nothing is defined as the
“walk away” scenario, with no further expenditure).
Risk is defined in terms of the expected annual
damage (EAD), a measure that is used in standard
practice.(50–54) Cost represents the present value of
the total cost incurred over the same time period due
to any interventions implemented and the operation
and maintenance costs of the flood defense system
(see Equation (11) below).

In order to facilitate the evaluation of flexibil-
ity and adaptability, intervention strategies consid-
ered are represented as decision trees with multi-
ple paths into the future (see Fig. 1), rather than
representing intervention strategies as single paths
fixed over the planning horizon. The structure of the
adaptable intervention strategy, coded as a decision
tree, consists of specific paths at each time step of the
planning horizon, where each path or decision node
corresponds to a set of intervention measures. Note
that these measures are dependent on the uncertain
future sea level rise denoting different intervention
measures for different cases where the sea level may
rise more or less in the future (but not drop down).
The intervention measures considered include rais-
ing the crest level of the defense (this is constrained
based upon the existing defense footprint specifica-
tion) and enhancing the defense foundation footprint
to enable additional crest level raising. In addition,
different maintenance regimes of the defenses are
also considered.

The intervention measures, coded as decision
trees, inherently include flexibility providing oppor-
tunities to delay, contract, expand, and abandon in-
vestment decisions, depending on how the uncertain
future actually unfolds (i.e., how the sea level rises
in the case study shown here). Thus, the value of
flexibility is explicitly evaluated within the method,
thereby incorporating real “in” option analysis. The
decision variables within the optimization process
not only include the intervention measures but also
the threshold values on uncertain climate change
variables. This means information on the optimal
timing to make an intervention, given the future cli-
mate change realization, is provided to decisionmak-
ers.

The decision variables are represented using the
following vector:
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Fig. 1. Intervention strategy represented as decision tree.

X = (Xs, Xm, Th) = (xs1 , xs2 , . . . , xsn, xm1 , xm2 , . . . , xmn,

Th1 , . . . , Thy ) (3)

where Xs and Xm, are subvectors that represent the
specific intervention to apply to each of the defenses,
d, in the flood system such thatXs = (xs1 , xs2 , . . . , xsn )
andXm = (xm1 , xm2 , . . . , xmn ) where n equals the to-
tal number of defenses in the flood system, Th is
the threshold value between decision paths, and y
is the total number of threshold values. Structural
interventions, such as raising the height of a de-
fense, are defined as discrete variables. The deci-
sion variable Xm can take the value of four possible
maintenance options, including no maintenance, low,
medium, and high.

3.2. Climate Change Uncertainty Characterization
and Quantification

The decision tree intervention strategies shown
in Fig. 1 are evaluated over the three UKCP09
high, medium, and low emission scenarios(55) focus-
ing specifically on sea level rise. The data provided
within the three emission scenarios on sea level rise
include yearly predicted increases from 1990 to 2100
for the 5th, 50th, and 95th percentiles. For a given

emission scenario, the 5th and 95th percentiles are
at equidistance from the mean, showing evenly dis-
tributed data. A normal distribution was therefore
used to represent the uncertainty on sea level rise val-
ues for a given emission scenario (see Fig. 2). It was
then possible to sample from that distribution to pro-
duce a range of future realizations to evaluate the in-
tervention strategies against. For any specific realiza-
tion, the quantile sampled for the first time step was
used for subsequent time steps. This ensured consis-
tency of percentiles at each time step.

Although the three emission scenarios were
used, it is important to note that no information
on the likelihood of the three scenarios is provided
within UKCP09 (see Stainforth(56) for a further dis-
cussion on this topic). The approach applied in the
case study example was therefore to sample from the
three distributions assuming they are equally likely.
The methodology is not, however, prescriptive in
this regard and consideration of other approaches or
weightings is readily achievable.

The uncertainties relating to climate change are
accounted for by evaluating each intervention strat-
egy over the full range of future sea level realizations.
Given a future realization, the decision path taken is
determined according to a threshold value that has
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Fig. 2. Normal distributions of sea level rise for each high, medium, and low emission scenario for the year 2030.

been sampled from the normal distributions of sea
level rise. At each time step, if the sea level rise of
a given realization is greater than the threshold, the
higher path is taken, if less, the lower path is taken.

3.3. Flood Risk Assessment

Each adaptable intervention strategy (coded as a
decision tree) is evaluated over the range of sampled
future scenarios using a risk analysis model and an
intervention costing module. The risk analysis model
used has been applied to support the development
of a long-term flood risk intervention strategy on the
Thames Estuary and the Environment Agency’s Na-
tional Flood Risk Assessment.(54)

The model considers a system of flood protection
infrastructure protecting the floodplain (Fig. 3). The
floodplain is divided into a series of impact zones and
further divided into impact cells. The hydraulic load-
ing conditions (e.g., water levels) are represented as
continuous random variables acting upon the system
of defense sections. The performance of the flood de-
fenses is defined by fragility curves.(57–59) For each
hydraulic loading event, it is necessary to consider
multiple combinations of defense section failures and
overtopped flood defenses. The simulation of flood
wave propagation can be computationally time con-
suming and hence defense system states are sampled
using a standard Monte Carlo. The flood wave simu-

lation provides floodplain depths that are then com-
bined with depth damage curves(60) to estimate flood
damages. The model evaluates the spatial variation
in risk, which is defined as:

R =
∫ 2n∑

i=1

P(di |l) fL(l)g(di , l)dL, (4)

where R is the risk expressed as EAD, in monetary
terms (U.K. pounds in the example below), n is the
total number of defense sections, l is the hydraulic
load at each defense throughout the system, fL(l) is
the probability density function of hydraulic load, d
is a specific defense system state, and i is the defense
system state index. The function (g) represents the
consequences of a single discrete flood event (defined
in terms of a specific hydraulic loading level and a
defense system state).

The risk analysis model can be used to calcu-
late the present day and future flood risk, account-
ing for climate change and mitigation measures that
are implemented. More specifically, calculation of
the flood risk associated with structural and nonstruc-
tural interventions, Xs, and routine defense main-
tenance, Xm, can be incorporated in the model by
modifying the fragility curves, defense information,
or depth-damage functions. Climate change scenar-
ios are represented by modifying the extreme value
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Fig. 3. Conceptual illustration of the
modeled system (Gouldby et al., 2008).

distributions of hydraulic loads. While in principle
socioeconomic scenarios can be incorporated to a
certain degree, by modifying the depth damage sce-
nario, this analysis is not included in the example de-
scribed below.

For a given climate change realization (e.g., sea
level realization), the actual path through the deci-
sion tree is determined and the risk analysis model is
then used to calculate the associated risk R for that
path (see Equation (4).) The risk of a given inter-
vention strategy at any point in time is a function of
the intervention measures, the extreme flood events,
l, and the performance of the defense infrastructure
such that R = g(Xs, Xm, l,). The benefits for that path
and given realization can then be obtained as the
difference between the “do nothing” option and the
path where interventions are applied. The “do noth-
ing” option applies no interventions or defense main-
tenance over the lifetime of the strategy. The benefits
are therefore:

Benefit =
T∑

t=1

g(Xs, Xm, l, Xp)t − g(l, Xp)t

(1 + r)t
, (5)

where T is the total number of planning horizon time
steps considered in an intervention strategy, t repre-
sents the time step index, and r is the discount rate.

For each intervention strategy, there is a require-
ment to run the risk analysis tool for every sea level
rise projection to obtain the benefits over a wide
range of samples. Depending on the size of the sam-
ple, this can become computationally expensive. For
this reason, a relationship between the outputs of the
risk analysis tool (EAD) and sea level rise has been
established for each intervention strategy analyzed
to reduce the number of model simulations required.

The EAD obtained for each sea level rise sample was
found to follow an exponential relationship:

y =Aebx, (6)

where x represents a given sea level rise value, A and
b are constants specific to an intervention strategy,
and y is the EAD for a given intervention strategy
at the sea level rise value x. For each intervention
strategy, the flood risk analysis model is run for the
maximum and minimum sea level rise values to gen-
erate the respective maximum and minimum EAD
values. A and b can then be determined using simul-
taneous equations to produce the exponential rela-
tionship for that intervention strategy. It is then pos-
sible to determine the EAD values for the remain-
ing sea level rise samples for that intervention strat-
egy using the generated relationship (see, for exam-
ple, the relationship curve in Fig. 4). The exponen-
tial relationship in Fig. 4 gives an R2 of 0.99 show-
ing the exponential curve fits the data well. The ex-
ponential relationship (Equation (6)) was tested for
a range of different sea level realizations and differ-
ent intervention strategies for the case study area be-
low, each time showing consistent results. With this
relationship (i.e., surrogate model), it is possible to
significantly reduce the overall computational cost as
generating a curve for any intervention strategy eval-
uated requires only two full runs of the risk analysis
model.

3.4. Costs

The approach to costing the intervention op-
tions developed here identifies costs for 61 different
defense classes used within the risk model, which



82 Woodward, Kapelan, and Gouldby

Sea Level Rise (m)

EA
D

 (£
 0

00
s)

Fig. 4. Exponential relationship between EAD and sea level rise.

were formulated for the National Flood Risk As-
sessment of England.(61) The basis of the cost model
established by Woodward et al.(48) extends the cost
estimation model given by Phillips.(62) The costs asso-
ciated with structural interventions, Cs, take into con-
sideration the mobilization (M) and operating costs
(Od), the quantity of work required (Qj), and the
costs of materials (Wj):

Cs = M + Od +
m∑

j=1

Qj Wj , (7)

where m is the number of maintenance and con-
struction items. The quantity of work required is ex-
pressed using the characteristics of the defense such
that:

Qj = VDDLg(Dx, Xs, G), (8)

where VD are the defense dimensions, DL is the
length of the defense that requires attention, Dx is
the severity of the defects, which is a function of the
condition grade of the levee, Xs represents the inter-
vention measures being applied, and G is the type of
defense being modified. The total overhead and mo-
bilization costs are based on a combination of process
published in Langdon(63) and expressed as:

M + Od =
m∑

j=1

h j (TwUj + Mj ) + A, (9)

where hj is the unit number of each mobilization ac-
tivity, Tw is the number of weeks on site, Uj is the
unit cost of each overhead for each mobilization ac-
tivity, Mj is the mobilization and demobilization cost

for each activity, A is the site access costs, and m is
again the number of maintenance and construction
items.

Maintenance costs, Cm, for four different lev-
els can be evaluated: do nothing, low, medium, and
high. The different maintenance levels are reflected
within the model by different rates of deterioration
associated with the fragility curves.(54) The rates used
within this model are obtained from the Environ-
ment Agency of England and Wales,(64) also see
Hames,(65) with the associated costs obtained from
Environment Agency.(66) The total cost, Ct, for a
given point in time is simply the maintenance costs
plus the structural intervention costs:

Ct = Cs + Cm. (10)

The total cost of an intervention path sums up
the costs at each point in time and then discounts
these back to the present day:

Cost =
T∑

t=1

Ct

(1 + r)t
, (11)

where r represents the discount rate, T is the num-
ber of time periods, and Ct is the total cost for time
period t as defined in Equation (5).

3.5. Implementation of the Optimization Method

The implementation of the optimization algo-
rithm within the context of the methodology pro-
ceeds as follows. First, a population of N (500
here) flood risk intervention strategies are generated
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Fig. 5. Flow chart of the methodology.

that follow the structure described in Fig. 1. Each
intervention strategy is then evaluated according to
its benefits and costs over multiple future scenarios
as described above. With each of the N initial in-
tervention strategies analyzed according to their ob-
jectives (e.g., benefits and costs), the NSGAII op-
erators are applied to create the next generation
population of solutions (i.e., strategies). The oper-
ators consist of selection, cross-over, and mutation,
as shown in Fig. 5. The selection procedure, applied
first, determines which strategies will be considered
for cross-over and mutation when forming the next
generation, with the better performing strategies as-
signed a higher probability of being selected. To

identify the better performing strategies, each strat-
egy is first ranked according to which set of non-
dominated strategies it is in and, second, accord-
ing to how close it is to its neighboring strategies
in the same rank. A set of solutions is considered
to be nondominated (or Pareto optimal) if no other
solutions can improve one of the criterion without
causing a simultaneous deterioration in another cri-
terion. In the methodology described in this arti-
cle, binary tournament selection is used whereby
two strategies are picked at random and the bet-
ter performing strategy of the two will survive into
the next generation. The process is repeated until
a new population of N strategies has been created.
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Table I. Summary of the NSGA Parameters and Settings Used

Parameter
Description Value

Generations 200
Population size 500
Cross-over type Bit tournament cross-over
Cross-over rate 0.7
Mutation rate 0.03
Discount rate Based on the Green Book declining discount

rate(71)

Next, the newly selected strategies have the op-
portunity to undergo cross-over and mutation, to
generate new strategies, and prevent convergence
on a local optima. These operators are controlled
by a probability of occurrence, with cross-over more
likely than mutation. The cross-over operator ap-
plied in this article is a single-point cross-over where
two strategies exchange their setup from a randomly
chosen point in their structure. Mutation is then pos-
sible, and if it occurs, applies the random replace-
ment procedure. This mutation method randomly
modifies a section of the strategy within the bounds
of the decision variable range. See Table I for the
rates of occurrence used for cross-over and mutation.
With the new generation created, the benefit and cost
objectives are again evaluated and the process re-
peated until convergence on a Pareto optimal set has
been achieved or a stopping criterion has been met.
The overall methodology described in this article is
illustrated in a flow chart in Fig. 5.

4. CASE STUDY

4.1. Case Study Description

The methodology has been applied on an area
of the Thames Estuary (Fig. 6). The Thames Estu-
ary in London, England is an area that is suscep-
tible to flooding. A large-scale flood event could
have a devastating impact as it accommodates over
a million residents and workers, 500,000 homes, and
40,000 nonresidential properties.(61,67–69) The threat
of flooding on the Thames Estuary occurs from a
number of different sources, including high sea levels
and surges propagating from the North Sea into the
Estuary and extreme fluvial flows along the Thames
and its tributaries.(70) Protection against flooding is
provided by a range of fixed defenses and actively

operated barriers and flood gates. The majority of
the defenses were designed to protect against a 1-in-
1,000 year flood; however, at the present day these
flood defenses are gradually deteriorating. In the
longer term, with the potential impacts of climate
change, the need to consider a range of intervention
measures is evident. It is, however, recognized in the
planning for the future of the Thames Estuary that
the decisions made today can impact the ability to
adapt in the future. The Thames Estuary is there-
fore a suitable case study to investigate the use of the
real options concepts and optimization methods de-
scribed in this article for flood risk management.

For reasons of computational practicality, this
study focuses on a specific reach, Thamesmead,
within the Estuary (Fig. 6). It is important to note
that some data have been somewhat modified and
hence the results presented here do not reflect the
true risk within Thamesmead. This area contains 79
defenses, which have been classified into five groups
according to defense characteristics and location.
The defense characteristics that influence the group-
ings of the defense are the defense type and condition
grade. The defense types include brick and masonry
and sheet pile vertical walls, and rip-rap and rigid em-
bankments.

The case study looks at two different situations
(cases 1 and 2). First, the optimization model is ap-
plied in a deterministic manner whereby only one
future climate change realization is considered, the
50th quartile of the high UKCP09 emission scenario.
For this case where it is assumed that the future is
certain, there is no requirement to build in flexibility
and thus use a decision tree structure. The strategy is
instead defined as a single fixed path over the plan-
ning horizon. The second case assumes the future is
uncertain and therefore considers multiple future re-
alizations, adopting the decision tree structure for the
intervention options to enable flexibility in long-term
planning. Two differing future paths are considered
for this second case to demonstrate the real options
decision tree approach where each future path rep-
resents a possible investment route into the future. A
comparison of the two cases is also undertaken.

In both cases, the intervention strategies con-
sider a planning horizon of 100 years with interven-
tion measures considered at every 50-year time step.
The decision variables that are considered within the
intervention strategies include raising the crest level
of defenses, increasing the capacity of the defenses
for future expansion, and the level of maintenance
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Fig. 6. The present day flood risk (obtained using the flood risk assessment method explained in Section 3.3) to the flood area of interest
on the Thames Estuary with the five groups of defenses protecting the floodplain.

applied. The NSGAII parameters and settings
used for all optimization runs are summarized in
Table I.

4.2. Results and Discussion

4.2.1. Case 1

Fig. 7 displays the optimal Pareto front obtained
in case 1 evaluated against one future realization,
showing the tradeoff between flood risk reduction
and costs. A range of intervention strategies on the
Pareto front have been highlighted, including the
strategy with the highest net present value (NPV;
triangle) and the highest benefit-cost ratio (BCR;
square) for illustrative purposes. NPV is the present
value of the net benefit (difference between benefit
and cost).

Using the respective positioning of these strate-
gies on the Pareto front, decisionmakers can make
a well-informed decision, comparing the different
strategies available to select the most appropriate. A
solution cannot be improved with respect to one ob-
jective without causing a negative effect on the other
objective. For example, improving the benefit will
result in an increase in the cost. Decisions can also
be determined according to specific target levels that
must be met for each criterion. For example, a spe-
cific flood risk reduction level that must be reached
or if there is a constraint in the total expenditure
allowed.

Table II displays a summary of the five optimal
strategies from the Pareto front that have been
highlighted. Comparing strategies C and D, it can be
seen that for a minimal increase in cost, the benefits
in terms of flood risk reduction can be significantly
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Fig. 7. Pareto front obtained using deterministic optimization ap-
proach.

improved, favoring strategy C. Similarly, comparing
strategy B and C, the increase in benefits for strategy
B does not outweigh the considerable increase in
costs.

The suggested intervention measures for these
five strategies vary (see Table II). Strategy E, for ex-
ample, applies the minimum number of intervention
options, only applying a low-maintenance regime,

and achieves the highest BCR. For an increase in cost
and a large increase in flood risk reduction, strategy
D applies a medium level of maintenance instead of
a low level. To achieve a further increase in flood risk
reduction, structural interventions are required.

Strategies A, B, and C comprise either a low or
medium maintenance over the 100 years as well as
a height increase to at least one group of defenses
in at least one of the time steps. In all three solu-
tions, the defenses in group 1 are increased by 1.33
m. Group 1 defenses protect a highly developed area
in a vulnerable location to storm surges and increas-
ing the height of these defenses enables a significant
amount of the risk to be reduced.

4.2.2. Case 2

Fig. 8 displays results from case 2, where the
Pareto front of the 200th generation was optimized
for flexible long-term strategies, which inherently
capture the real options concepts. A total of 1,000 sea
level rise samples were used to evaluate each inter-
vention strategy on the Pareto front. Four interven-
tion strategies on the Pareto front have been iden-
tified, strategies A to D, including the strategy with
the highest NPV (triangular point) and the highest
BCR (square point). Table III displays the benefits,
costs, NPV, and BCR for these strategies while Fig. 9

Table II. Summary of the Benefits, Costs, NPV, BCR, and Intervention Measures of Select Strategies from the Pareto Front Highlighted
in Fig. 7

Benefit Cost NPV
Strategy (£M) (£M) (£M) BCR Intervention Measures

A 77.31 2.41 74.89 32.08 Time step 1
Raise G1 by 1.33 m, G2 by 1.00 m, and G4 by 0.33 m
Time step 2
Raise G3 by 0.66 m
Medium maintenance to G3 and G4

B 77.29 1.55 75.74 49.86 Time step 1
Raise G1 by 1.33 m, apply medium maintenance to G3
Time step 2
Apply medium maintenance to G3

C 77.28 0.79 76.49 97.82 Time step 1
Low maintenance to G1, G3, and G4
Time step 2
Raise G1 by 1.33 m
Low maintenance to G3

D 49.87 0.72 49.15 69.26 Time step 1
Medium maintenance to G1, G3, and G4
Time step 2
Medium maintenance to G3

E 12.53 0.11 12.42 113.91 Time step 1
Low maintenance to G1, G3, and G4
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Fig. 8. Pareto front obtained using real-options-based
optimization.

Table III. The Benefits, Costs, NPV, and BCR of the Solutions
Highlighted in Fig. 8

Benefit Cost NPV
Strategy £M £M £M BCR

A 104.45 4.31 100.14 24.23
B 104.22 1.88 102.34 55.44
C 94.97 1.87 93.10 50.79
D 79.23 0.84 78.39 94.32

displays the structure of each of the four solutions
and the intervention measures for each path.

Strategy B obtains the highest NPV. This strat-
egy comprises the incorporation of refined founda-
tions to three groups of defenses at the first time step,
to enable further elevation increase, as well as raising
two of these groups. At the next time step of strat-
egy B, the bottom path represents a “do nothing”
option, which is the chosen path for sea level real-
izations with a rise less than 0.37 m. In this case, if
the sea level rise increase does not go beyond this
threshold no additional investment needs to be spent
on interventions. For the sea level realizations, that
have a sea level greater than 0.37 m, the top inter-
vention path is taken where the defense’s crest levels
will be raised. Sixty-one percent of the 1,000 sea level
rise samples were directed to the top path while only
29% took the bottom. For strategies C and D, it is
also recommended that if the sea level rises above
0.37 m it is optimal to take the top path, otherwise
take the bottom.

Strategy A on the other hand comprises taking
the top path if the sea level rise increase goes beyond

0.52 m, otherwise take the bottom path. Strategy B
achieves a very similar benefit compared to strategy
A but for a significantly lower cost, which improves
the overall NPV. The difference in cost can be at-
tributed to the way the flexibility is used. Strategy A
here does not purchase the “insurance policy” for the
second time step (i.e., does not extend the defense’s
footprint at the first time step in order to have the
opportunity at a later date to increase the height).
Instead strategy A delays any decision to widen or
raise the defense. For strategy A, if the sea level rise
is beyond the threshold, a greater capacity for crest
level raising therefore needs to be introduced. This
requires additional costs. Although the option is flex-
ible in that a decision is delayed until more is known
about the future impacts of climate change, the costs
in the way this flexibility is used are less favorable. In
particular, it is important to note that the decision to
delay, while affording flexibility, incurs an increase in
risk (hence less benefit), in the near term. Strategies
B and C instead purchase this “insurance policy” to
enable flexibility to be inherently built into the de-
fenses. Strategy B is then able to achieve similar ben-
efits to strategy A but for a reduction in costs of 56%
and thus shows strategy B to be more favorable.

In this case study, strategy A applies real “on”
options using a delay in the investment. Flexibility is
not built into the design of the defenses as the de-
fense infrastructure needs to be modified in the sec-
ond time step if the top path is taken. Strategy C ap-
plies real “in” options by building flexibility into the
design of the system. In the second time step, the de-
fense can be easily adapted to account for an increase
in sea level rise.

This inclusion of flexibility, real “on” options,
can increase the cost of the investment compared
to strategies without flexibility and also incur higher
risks in the near term. In this example, even with the
increase in cost, the incorporation of flexibility can
still improve the overall investment decision; this can
be seen through the comparison of the case 1 and 2
results.

4.2.3. Comparison of Cases 1 and 2

In order to compare the adaptable strategies
(i.e., strategies obtained assuming an uncertain fu-
ture) with the deterministic strategies (i.e., strategies
obtained assuming a certain future), the Pareto
fronts obtained using the two approaches have been
reevaluated with the same set of 1,000 future sea
level rise samples. This enables the comparison of
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Fig. 9. Summary of the intervention strategies identified in Fig. 8. Each strategy is a decision tree with two optional paths at the second time
step (T2) with the percentage of samples evaluated at each path undertaken. The first row of each block represents the group (G) where
the interventions are being implemented, the second row represents height increases in meters, the third row represents width increases in
meters, and the final row represents the defense maintenance (0 = no maintenance, L = low, M = medium, H = high).
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Fig. 10. The Pareto front of the real options optimization and de-
terministic optimization.

the performance of the two sets of solutions in a
like situation. Fig. 10 displays the two reevaluated
Pareto fronts. From this figure, it can be seen that the
inclusion of flexibility within the intervention strate-
gies has increased the overall cost of the solutions
when there is an uncertain future. This inclusion of
flexibility does, however, also provide the oppor-
tunity to significantly increase the benefits in terms
of flood risk reduction, resulting in a considerable
improvement to the overall investment. For exam-
ple, the decision-tree-based optimization overall has
been able to obtain solutions with significantly higher
benefits than the deterministic approach. This is
partly due to the additional optional paths in the de-
cision tree solutions. Each path can be optimized to
a smaller range of climate change samples and there-
fore provide better flood protection. Additionally,
the deterministic solutions were optimized according
to one climate change realization and therefore when
analyzing the solutions over a range of samples, it is
likely that these solutions will not fair so well under
different samples and thus bring in less benefits.

For example, strategies Ad and ARO have simi-
lar costs (differ only by 0.7%) but the flexible strat-
egy ARO returns a larger benefit by 8% and again
improves the NPV, this time by 9% (see Table IV).
Strategy Ad only raises and widens the defenses in
group 1 by 1 m. ARO is able to widen the base of the
defenses in groups 1 and 4 in the first time step, then
in the second time step decides on the height of the
crest level increase according to the climate change
realization. If the sea level increases beyond 0.56 m, it
is suggested the defenses are raised by 1 m in group 1
and apply maintenance to group 4 whereas if it does
not go beyond this threshold, a raise of 0.66 m to

Table IV. A Comparison of Two Solutions from the Real
Options Pareto Front and Deterministic Pareto Front When
Evaluated Over the Same 1,000 Climate Change Scenarios as

Highlighted in Fig. 10

Benefit Cost NPV
Strategy £M £M £M BCR

Ad 47.76 0.72 47.04 66.33
ARO 67.20 0.83 66.37 80.96
% difference 28.93 13.25 29.12 18.07
Bd 76.58 1.38 75.20 55.49
BRO 83.81 1.40 82.41 59.86
% difference 8.63 1.43 8.75 7.97

group 1 is suggested. Having the flexibility within the
strategy enables a more effective investment to be
planned.

From this example, it can be seen that with sim-
ilar costs, the adaptable strategies (coded as deci-
sion trees) that make use of the real options concept
will return higher benefits and thus dominate (in the
Pareto sense) the deterministic, rigid strategies. This
is because the decision tree solutions have been de-
signed to account for the future uncertainties of cli-
mate change by developing alternative, customized
strategies appropriate for specific realizations of cli-
mate change, thus covering, in a flexible manner, a
large range of possible future realizations. In addi-
tion to this, the concept of real options, which effec-
tively acts as an insurance policy, is ensuring that the
options available to the decisionmaker are kept open
in the future (at a cost), i.e., that certain interven-
tion options can be implemented later on, if, when,
and in the quantity required. The deterministic solu-
tions on the other hand were developed based on a
single forecasted future realization only and without
allowing for any flexibility in the intervention strat-
egy. Therefore, in the face of uncertainty where many
different scenarios could potentially occur, the deter-
ministic solutions may not be sufficient. These are
therefore not as favorable and have been shown to
be dominated by solutions that account for the future
uncertainties of climate change.

5. CONCLUSIONS

This article describes a new methodology to sup-
port decision making in long-term flood risk manage-
ment. An existing flood risk assessment model has
been coupled with a costing model and an NSGAII
multiobjective optimization algorithm. The concepts
of real options and adaptive engineering design with
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intervention strategies represented using decision
trees specified over the predefined planning horizon
have then been applied to create the new method-
ology. The resulting system trials different flexible
intervention measures, using the intelligent option
searching characteristics of the NSGAII; it then eval-
uates the costs associated with the interventions and
their benefits, in terms of flood risk reduction taking
account of future climate change uncertainty. This
process is iterated until a Pareto front, or “trade-off”
curve, is formed producing optimal decision tree
strategies for flood risk management.

The decision trees display the most appropri-
ate intervention measures at various planning hori-
zon time steps depending on how the future unfolds.
Threshold values are optimized to determine, given
a future projection, which intervention route is best
to follow. The use of real options analysis enables the
flexibility within the decision trees to be valued and
thus account for the future uncertainties of climate
change.

The use of evolutionary multiobjective optimiza-
tion algorithms has the potential to provide a greater
range of information to decisionmakers. The system
is capable of outputting a set of trade-off solutions,
which present a range of potential flood risk miti-
gation intervention strategies. Each strategy is opti-
mal according to given criteria (costs, benefits) and
presents information describing the most appropri-
ate intervention measures to implement, when and
where. The application of the new methodology in
area of the Thames Estuary demonstrates the bene-
fits that real options optimization can bring to flood
risk management decision making.

Future work will include applying the method-
ology developed and presented here to even more
complex real-life case studies with wider range of in-
tervention measures considered and more detailed
decision tree structures considered. Future work
will also consider transferring some of the concepts
shown here to other water engineering systems (e.g.,
urban water infrastructure systems).
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