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Global manufacturing companies have some pressing needs to improve production visibility and
decision-making performance by implementing effective production monitoring and scheduling. This
paper proposes a radio frequency identification (RFID)-based intelligent decision support system
architecture to handle production monitoring and scheduling in a distributed manufacturing environ-
ment. A pilot implementation of the architecture is reported in a distributed clothing manufacturing
environment. RFID and cloud technologies were integrated for real-time and remote production capture
and monitoring. Intelligent optimization techniques were also implemented to generate effective
production scheduling solutions. A prototype system with remote monitoring and production scheduling
functions was developed and implemented in a distributed manufacturing environment, which
demonstrated the effectiveness of the architecture. The proposed architecture has good extensibility
and scalability, which can easily be integrated with production decision-making as well as production
and logistics operations in the supply chain. Lastly, this paper discusses the difficulties encountered and
lessons learned during system implementation and the managerial implications of the proposed

architecture.
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1. Introduction

Labor-intensive manufacturing companies in China, such as
those specializing in clothing and footwear, face unprecedented
global competition and unpredictable demand fluctuations. These
companies must determine methods to improve supply chain
management. Global uncertainty and business complexity in
supply chain operations have recently increased and various
leagile supply networks have been proposed (Purvis et al., 2014).
“The Smarter Supply Chain of the Future” released in 2010 (Butner,
2010) by IBM Corporation suggests that a smart supply chain is
instrumented, interconnected, and intelligent. To possess these
core characteristics, information visibility and transparency, as
well as decision-making performance in supply chain operations
need to be improved.

Companies have developed and implemented various informa-
tion systems to increase information visibility and transparency
(Francis, 2008). The accuracy of production data in these systems
relies on the effectiveness of production data capture and
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monitoring. In labor-intensive manufacturing industries in China,
the collection of production data mainly relies on manual record-
ing, barcode scanning, and radio frequency identification (RFID)-
based techniques (Wong and Guo, 2014). Manual recording and
barcode scanning usually result in incomplete and lagged data,
and barcode labels easily become wrinkled or smudged during
labor-intensive production. Meanwhile, RFID technology involves
a simple process and can be used in these environments because
the electronic components of RFID tags are adequately protected
inside.

Most information systems for labor-intensive manufacturing
are intended to facilitate various business operations and activ-
ities. However, these systems fail to automatically provide users
with production decisions. Production decision-making, such as
production scheduling, relies on the experience and the subjective
assessment of production management, which is rarely optimal.
Thus, effective production scheduling in labor-intensive manufac-
turing needs to be investigated.

This study focuses on the production monitoring and schedul-
ing problem faced by distributed labor-intensive manufacturing
companies with multiple production plants. This company aims to
effectively track and monitor the progress of each production
order and determine where and when to produce each order on
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the basis of real-time production data. An RFID-based intelligent
decision support system (RIDSS) architecture is developed in
which RFID and cloud technologies are integrated for real-time
production capture and remote production monitoring, whereas
intelligent optimization techniques are applied to generate effec-
tive production scheduling solutions.

The remainder of this paper is organized as follows: Section 2
reviews related studies on RFID-based production monitoring and
production scheduling. Section 3 presents the production mon-
itoring and scheduling problem faced by labor-intensive manu-
facturing companies with multiple production plants. In Section 4,
the RIDSS architecture is proposed to address this problem.
Section 5 describes the implementation of the RIDSS architecture
in a distributed manufacturing company with multiple plants.
Sections 6 and 7 present the performance evaluation and discus-
sion of this system. Finally, Section 8 summarizes this paper and
suggests future research directions.

2. Literature review
2.1. Previous studies in RFID-based production monitoring

RFID technology enhances information visibility and traceabil-
ity in supply chains (Delen et al, 2007). Studies have been
conducted on the application of RFID in monitoring production
processes (Huang et al., 2007; Lee and Park, 2008) and concluded
that RFID technology can improve supply chain performance (Sari,
2010). Effective production decisions are driven by accurate and
real-time production data.

Various RFID-based systems have been developed and imple-
mented to track and monitor production and logistics operations
in manufacturing industries. Several studies have focused on
production monitoring in shop-floor environments (Chen et al.,
2010; Liu and Chen, 2009; Ngai et al., 2007; Poon et al., 2007).
Ngai et al. (2007) developed an RFID-based traceability system for
monitoring and tracing aircraft repairable items in an aircraft
engineering company in Hong Kong. Poon et al. (2007) presented
an RFID-based decision support system to monitor the real-time
state of equipment and products in a shop floor. Liu and Chen
(2009) suggested an RFID-based electronic control framework for
improving production efficiency in an integrated-circuit packaging
house. Chen et al. (2010) proposed an RFID-based integration
framework for facilitating real-time management of dynamic
production operations. This framework provides the enterprise
with an effective technique to integrate RFID-based solutions into
its information technology infrastructure and manufacturing
environment. These systems can effectively handle production
monitoring in various shop floor environments but not in dis-
tributed manufacturing environments. Studies have rarely been
reported on the applications of RFID-based systems in distributed
manufacturing environments across multiple plants.

RFID-based remote monitoring systems by integrated RFID and
Internet technologies have been developed for monitoring and
control of production systems within a manufacturing company
(Wang et al.,, 2011; Zhou et al., 2007). These systems allow real-
time transfer and storage of production data on the database via
the Internet. With a remote connection feature, these systems can
also potentially monitor distributed manufacturing environments.
In these systems, RFID terminals are installed at the entrance and
exit of each shop floor or assembly line to collect information on
materials and parts at a frequency of 915 MHz, which can read
RFID tags at a distance in the range of 5-10 m. However, these
systems fail to collect and track detailed production information
from workstations at each shop floor or assembly line. This
limitation is attributed to the longer reading distance (5-10 m)

compared with the distances between workstations in labor-
intensive assembly lines (usually less than 1 m). Reading distance
within such a range enables terminals to read the information on
workpieces (not being processed and those being processed) in
neighboring workstations. This problem results in chaotic and
inaccurate production information collected. Labor-intensive man-
ufacturing with many manual operations need to collect produc-
tion information from each workstation and then monitor its
production status because production in assembly lines substan-
tially affects production performance.

Numerous studies have evaluated the effects of RFID in produc-
tion management and scheduling (Chen et al., 2010; Fan et al.,
2014; Liu and Chen, 2009; Zhou et al., 2007; Zhou and Piramuthu,
2013) and demonstrated that RFID can significantly improve
scheduling performance and productivity, as well as reduce
production costs. However, studies on the integration of the RFID
technology with production scheduling have rarely been reported.
Chongwatpola and Shardab (2013) presented an RFID-based sche-
duling approach to improving the production scheduling perfor-
mance in a job shop environment. Real-time production data,
which were collected using the RFID-based system, were used to
adjust production schedules. Their study indicated that the per-
formance of RFID-based scheduling rule was superior to that of
traditional scheduling rules in terms of cycle time, machine
utilization, backlogs, and penalty costs. However, the RFID-based
scheduling rule in their study is only applicable to the job shop
environment investigated. Thus, RFID technology needs to be
integrated with production scheduling in complex labor-
intensive production environments.

2.2. Production monitoring in distributed labor-intensive
manufacturing

Compared with highly automated industry (e.g., the automo-
bile industry), labor-intensive manufacturing industries, such as
those specializing in clothing and footwear, have installed and
implemented RFID-based production and monitoring systems only
recently because of their low-automation and low-profit features.
RFID-based data capture and monitoring systems have been
developed for gathering real-time and accurate production data
and monitoring production progress as RFID technology has
become economically feasible for application in labor-intensive
manufacturing industries. The effectiveness of these systems has
been proven by various industrial applications and practices
(Wong and Guo, 2014). However, existing data capture and
monitoring systems are designed for a separate plant. RFID-
based systems need to be installed separately in each plant to
collect the production data in each plant. Consequently, the
production data collected in various plants are isolated. Mean-
while, labor-intensive global manufacturing companies in China
currently generate production orders in multiple subordinate and
collaborative plants located in different regions.

In order to track and monitor production in all plants effec-
tively, companies develop additional systems to integrate produc-
tion data from different plants and save these data to a central
database located at headquarters. However, real-time synchroni-
zation of the headquarter database with subordinate plant data-
base is characterized by technological complexity and entails
additional costs for secondary development and maintenance. In
addition, these systems can only track and monitor production in
subordinate plants but not the progress of material and out-
sourcing production. Unfortunately, material and outsourcing
production substantially affects the entire production performance
of the company in certain labor-intensive manufacturing indus-
tries such as clothing and footwear. In the clothing industry, the
majority of raw materials are customer order-dependent, which
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usually cannot be pre-prepared before confirming customer
orders. As a result, uncontrollable material production processes
may lead to poor production performance. Hence, a clothing
manufacturer must monitor the material production process.

Therefore, an effective system must be developed for tracking
and monitoring production in distributed production manufactur-
ing companies with multiple production plants in different
regions. In recent years, cloud-based systems and applications
have emerged as an important trend in information technology.
This technology has been applied successfully in various govern-
ment organizations (Smitha et al., 2012) as well as the manufac-
turing (Xu, 2012), healthcare (Lai et al., 2012), and education
(Sultan, 2010) sectors. Cloud-based applications benefit the dis-
tributed manufacturing environment through cost reductions and
applicability. Despite the benefits provided by these applications,
studies on the use of cloud-based technology for production
monitoring and decision-making in labor-intensive manufacturing
industries have been rarely reported.

2.3. Previous studies in production scheduling

The existing data capture and monitoring systems installed in
each plant can collect large quantities of real-time production data
from production frontlines in labor-intensive manufacturing.
However, these abundant data are chiefly used in payroll recording
and simple production reporting and fail to facilitate effective
production decisions in production management.

Numerous comprehensive reviews have been published in the
field of production scheduling (Biskup, 2008; Hart et al., 2005;
Koulamas, 2010; Panwalkar et al., 2013). These studies include
many scheduling problems: single machine scheduling (Koulamas,
2010; Wang et al., 2010), parallel machine scheduling (Vallada and
Ruiz, 2011; Yanga et al., 2012), job shop scheduling (Weng and
Ren, 2006), flow shop scheduling (Panwalkar et al., 2013), flexible
manufacturing system scheduling (Tomastik et al., 1996; Xing et
al., 2010), and order scheduling at the company and supply chain
levels (Chen and Pundoor, 2006; Guo et al., 2013a, 2013b). Some of
these studies consider labor-intensive manufacturing environ-
ments, such as the fabric-cutting (Rose and Shier, 2007) and
sewing (Tomastik et al., 1996; Wong et al.,, 2014) processes in
clothing production.

Previous studies limited their scope to independent scheduling
problems in a separate production unit, such as a machine, a shop
floor, or a plant, where each type of production units corresponds
to a management level. Thus, the scheduling problems were
investigated independently and separately at each management
level. In real-world production, production scheduling decisions at
different management levels, such as company and plant levels,
are based on correlative dependence and interplay. Production
scheduling problems at multiple management levels in a distrib-
uted manufacturing company have not been simultaneously
examined based on a holistic view. Methods in which the use of
real-time production data would suffice to make scheduling
decisions remain undetermined. A scheduling mechanism that
can generate effective scheduling solutions to real-world produc-
tion scheduling problems in the distributed labor-intensive man-
ufacturing environment needs to be established based on real-
time production data.

Most production scheduling problems are non-deterministic
polynomial-time hard (Hart et al., 2005). Current labor-intensive
manufacturing is characterized by short production lead-time,
short life-cycles, volatile customer demands, small quantities with
frequent product change, and distributed multi-plant production
environments. These characteristics inevitably increase the com-
plexity of production scheduling problems in the global labor-
intensive manufacturing environment. Traditional approaches,

such as simulation, mathematical programming, and heuristic
methods, fail to address these complex problems. Intelligent
optimization algorithms have been widely used in handling
scheduling problems because they can potentially determine the
global optimum (Hart et al., 2005).

Previous related studies are generally limited despite the
pressing need to improve production visibility and scheduling
performance in current labor-intensive manufacturing industries
in China. Production scheduling problems in distributed manufac-
turing environments with multiple plants that involve material
and outsourcing production have not been examined from a
holistic perspective. Demirkan and Delen (2013) have pointed
out that further research is required to explore the integration of
database management system and decision-making methodology.
However, the integration of RFID-based management system with
these production scheduling activities have not been reported.
Cloud technology and intelligent optimization techniques can
feasibly handle distributed production monitoring and compli-
cated production scheduling, respectively.

Consequently, an effective decision support methodology based
on RFID technology, cloud technology, and intelligent optimization
techniques is worthwhile for development. This methodology
should provide effective real-time remote production monitoring,
as well as effective production scheduling solutions for a real-
world labor-intensive manufacturing environment with multiple
plants.

The present study proposes the development of an RIDSS
architecture in which RFID and cloud technologies are integrated
for real-time production capture and remote production monitor-
ing. Intelligent optimization techniques are also applied to gen-
erating effective scheduling solutions.

3. Problem statement

This study aims at proposing an effective RIDSS architecture for
production monitoring and scheduling, which is faced by a typical
distributed labor-intensive manufacturing company in China. This
architecture can be achieved by assisting the production manage-
ment in monitoring the production progress of each customer
order and assigning the production for each order to appropriate
production units on a real-time basis. Numerous similar manu-
facturing companies are operational in China, especially in global
make-to-order clothing and footwear manufacturing.

The production tasks in this kind of manufacturing companies
are completed in m production plants, including collaborative or
self-owned plants located in different regions. These plants
involve N production departments. These production departments
comprise two categories: ordinary category and special category.
Each category consists of multiple production departments. The
ordinary departments are fully contained in all plants, whereas the
special departments may be only partly included (or not included)
in some plants. Each production department consists of multiple
shop floors, with each shop floor having either multiple work-
stations or multiple assembly lines that consist of workstations.
Fig. 1 shows the structure of the manufacturing company and the
production task allocation flowchart after customer orders are
received. PD};, denotes the nth production department of plant m
and SF)? denotes the pth shop floor of PD},.

The manufacturing company receives various production
orders from different customers. Each group of production orders
with the same due date from a same customer are called as an
order group. After customer orders of an order group are con-
firmed, the manufacturer needs to purchase raw materials from
material suppliers according to the material requirement of the
customer orders. Labor-intensive manufacturing industries, such
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as those specializing in clothing and footwear, are usually char-
acterized by quick response manufacturing. The timely acquisition
of raw materials is important because lack of supply significantly
affects production decision-making. Thus, monitoring is crucial to
effectively monitor and control the progress of material produc-
tion in supplying plants. All production processes of customer
orders need to be effectively tracked and monitored as well. In
particular, manual operations can be potential production bottle-
necks, thereby influencing production performance in labor-
intensive manufacturing. For instance, manual sewing operations

are the most important production activities in clothing produc-
tion. This situation requires monitoring of production in work-
stations with key manual operations. Production management at
different levels has different monitoring requirements according
to responsibilities. For example, production management at the
head company needs to track and monitor all orders, whereas
shop managers only need to monitor orders at their respective
shop floors.

In a distributed labor-intensive manufacturing environment
with multiple plants, the purpose of production scheduling aims

\ 4 PD;! SF,n!
Supplier 1 Plant 1 PDp j/ :
pp Z / H SF m™
N :
Materials § Prod. PD,
orders 5 orders
a PD,! SFn!
. — E N :
Supplier 2 5 Plant 2 PD,"
% “/ H Sanp
9 PD,N :
£
§ PD,y! SF!
Supplier k Plant m A PD," SF: -
PD." :

Fig. 1. Flowchart of production task allocation after receiving customer orders.

Data analysis and processing

Production decision-

Data capture middleware

model making database
= i
Real-time production Production monitoring and
database scheduling server
it
RRPM RISD model
model

RRDC model
RRDC RRDC RRDC
submodel 1| |submodel 2| | submodel n

Plant 1

Plant 2 Plant n

U S8

User | User 2 User 1 User 2
User n-1 Usern User n-1 User n

Fig. 2. RIDSS architecture for production monitoring and scheduling.


Julian
Hervorheben

Julian
Hervorheben

Julian
Hervorheben

Julian
Hervorheben

Julian
Hervorheben

Julian
Hervorheben

Julian
Hervorheben

Julian
Hervorheben

Julian
Hervorheben

Julian
Hervorheben

Julian
Hervorheben


20 ZX. Guo et al. / Int. . Production Economics 159 (2015) 16-28

to assign production orders to their appropriate production units
at different management levels: the company level, plant level and
shop level. At the company level, each production order from
a customer is assigned to its appropriate plant. The production
orders are assigned to appropriate shop floors at the plant level
whereas the production orders are then assigned to appropriate
assembly lines or workstations at the shop level. Each order
consists of a maximum of N production processes, which must
be performed in production departments 1 to N, respectively. Each
production process of an order is assigned to only one plant.
Different production processes of an order should be performed in
different plants if a plant does not include all production depart-
ments required. Several real-world problem features in production
scheduling, including multiple scheduling objectives and various
production uncertainties need to be addressed. Possible schedul-
ing objectives include minimizing total tardiness, total throughput
time of production orders and total idle time in production plants
or floors. Potential production uncertainties include uncertain
production orders and uncertain production efficiencies.

This research aims to propose an effective system architecture
for tracking and monitoring the production progress of each
production order - from material production to packing process
- in a real-time manner, and for determining the time and place
for the production of each order on the basis of real-time
production data.

4. RFID-based intelligent decision support system architecture

This section presents the establishment of the RIDSS architec-
ture to implement effective production monitoring and scheduling
in a distributed labor-intensive manufacturing environment. Fig. 2
shows the structure of the RIDSS architecture. This architecture
uses RFID technology to collect production data from distributed
manufacturing environments real-timely while intelligent optimi-
zation techniques are implemented to make effective production
scheduling decisions. The RIDSS architecture comprises an RFID-
based real-time data capture (RRDC) model, data capture middle-
ware, a real-time production database, a data analysis and processing
(DAP) model, a production decision-making database, a remote
real-time production monitoring (RRPM) model, and a remote
intelligent scheduling decision-making (RISD) model. All models
are run remotely from the servers located at the company head-
quarters, except for the RRDC model, which is run in distributed
plants. The proposed system architecture fits the concept of
a community cloud because this architecture provides ubiquitous,
convenient, and on-demand network access to the cloud infra-
structure, shared production data from plants, as well as produc-
tion monitoring and scheduling services, and because it is shared
by multiple production plants and supports a specific community
with shared concerns.

The RRDC model collects real-time production records from
workstations of each shop floor or assembly line in material
supplying plants and product assembly plants. The production
records are transferred to the data capture middleware, which
receives data from the RRDC model, enters the production data
into the real-time production database, and provides access to the
data. The real-time production database stores production data by
using MySQL, MS SQL Server, or Oracle according to specific data
processing requirements. The DAP model extracts necessary sum-
mary data from the raw data collected, and stores them to the
production decision-making database. The RRPM model is pro-
posed based on the information on this database to monitor the
production progress of each production order in production plants.
The RISD model generates effective production scheduling deci-
sions by using intelligent optimization techniques. These models

provide user-friendly interfaces that allow Web-based remote
interaction with users from different production units.

The following subsections describe four key models under the
RIDSS architecture: RRDC, DAP, RRPM, and RISD.

4.1. RFID-based real-time data capture (RRDC) model

In labor-intensive manufacturing, each shop floor or assembly
line comprises certain workstations. Each workstation is typically
a physical location that accommodates an operator, a machine and
a buffer. The RRDC model collects production records of each
workpiece and each operator from workstations based on RFID
technology. The model then transfers the collected data to the
remote data capture middleware through the Internet. The RRDC
model is composed of submodels installed in each plant. Fig. 3
shows the structure of the RRDC submodel installed in a shop floor
or assembly line. Each shop floor or assembly line uses the same
method of collecting production records. An RFID terminal is
installed on each workstation processing key or bottleneck opera-
tions of each production process. If it is necessary to collect all
production and processing records from all workstations, RFID
terminals can also be installed on each workstation although this
installation would be more costly. Collecting the production
information from key operations or key workstations is sufficient
for implementing effective production tracking and monitoring in
practice. The RFID terminal reads the RFID tag attached to each
workpiece and captures its beginning and completion processing
time at a given workstation during production in a real-time
manner. In each submodel, access switch and internet access are
performed by network switches, which connect the RFID term-
inals into an intranet and channels incoming data from any
multiple-input ports to the specified output port. The number of
RFID terminals collected from a network switch depends on the
number of switch ports. The data of output port are sent to a
remote data capture middleware via internet access. TCP/IP pro-
tocol is used to implement data communication between the
switch and the middleware. The production progress of materials
and outsourced parts can be tracked and monitored by installing
RRDC submodels on related supplying and outsourcing plants
workstations.

To avoid reading RFID tags wrongly attached on workpieces not
being processed, we use passive RFID tags with a low frequency of
125 KHz in this model. Compared with the high frequency tag of
915 MHz, such a low frequency tag provides a shorter read range
(<5 cm) and stronger capability of resisting disturbance, which is
also low-cost and technically mature for industrial use. The ID
number of each RFID tag is stored in the memory of this tag. All
other relevant information is stored on the remote real-time
production database. These information include the information
of the workpiece this tag attached to, such as corresponding order
number, operation number and precedence of this workpiece.
Each tag ID is linked with its corresponding additional information
through the real-time production database.

Networking | Internet access ‘

v

| Access switch ‘

Data capture $
RFID RFID RFID Data
terminal 1 ||terminal 2| " [terminal n |input
Shop floor/ m)rk— ‘ Work- Work- HP c ‘
Line station 1 _||station 2 station n

Fig. 3. Structure of RRDC submodel for a shop floor or an assembly line.
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Except for the data collected by the RFID terminals, some data
are also input directly by computer operators from each shop floor
through a Web-based computer program embedded into the RRDC
model. These data include the data of production orders, shop
floors, assembly lines, workstations, and operators. The program
provides a user-friendly interface to the computer operator in the
production frontline to input related production information.

The RFID-based data capture process cannot be replaced by
a barcode-based capture process in labor-intensive manufacturing
environments such as clothing and footwear production due to the
following two reasons. First, the production beginning and com-
pletion times of key operations of each workpiece need to be
recorded during production in a real-time manner. It is time-
consuming and unacceptable to use barcode scanning to collect
real-time production records. Comparing with scanning barcode,
reading RFID tags is much faster and acceptable. Second, RFID tags
are rugged and reusable because they are protected by a plastic
cover. Meanwhile, barcodes can be wrinkled and damaged easily,
which would make scanning impossible.

4.2. Data analysis and processing (DAP) model

The purpose of the DAP model is to efficiently generate
necessary data for the RRPM and the RISD models. A large amount
of real-time production data is collected from the production
frontline, affecting the efficiency of database operations. In addi-
tion, high-level production management is not concerned with the
detailed production information. Despite a large collection of real-
time production records, only these raw data are insufficient to
implement production monitoring and production decision-
making. Some necessary parameters need to be extracted from
the real-time production database according to specific monitor-
ing and scheduling requirements.

These necessary parameters, which are used by the RRPM and
the RISD models, include the following: (1) operator and machine
configuration of each production department, shop floor, and
assembly line; (2) information on each production order, including
the production operations of each order and the standard allowed
minutes of each operation; (3) daily working records of each
operator, including the number of operations completed by this
operator and this operator's daily average operative efficiency for
each operation. Based on these parameters, several other para-
meters need to be calculated further and used in monitoring
reporting and scheduling decision-making. These parameters
include the workload of each production process in each order,
available production capacity and production efficiency of each
production unit, and completion time of each production process
in its corresponding production unit. The extracted parameters are
saved in the production decision-making database for further
production monitoring and decision-making.

Before these necessary parameters are calculated, raw produc-
tion data must be preprocessed because they are collected by
frontline production operators scanning RFID tags attached to
workpieces. The scanning of RFID tags cannot be fully automated
and can only be performed by the frontline operator because only
the operator knows the actual beginning and completion

Cloud Production Production Production
monitoring monitoring at monitoring at monitoring at
layer company level plant level shop/line level
\ R \
\ \ \
User Users at Users at Users at
layer company level plant level shop/line level

Fig. 4. Structure of the RRPM model.

processing times of a workpiece at a given workstation. Hence,
some production data collected are possibly inaccurate because of
the difficulty in obtaining 100% accuracy in the scanning opera-
tions of each operator. To reduce the side effects of inaccurate raw
data, we use the median of a parameter as the average value of the
parameter. For example, an operator's average operative efficiency
in a day is set as the median of all operative efficiencies of the
operator on the same day.

4.3. Remote real-time production monitoring (RRPM) model

Production management at different management levels - that
is, company, plant, and shop levels - must track and monitor the
production progress of customer orders in a timely and accurate
manner according to job responsibilities. The RRPM model is thus
designed and developed by integrating production monitoring
functions at three different levels: the company, plant and shop
floor levels. Although RFID-based production monitoring has been
successfully applied to monitor production within a plant, success-
ful applications of remote and distributed production tracking and
monitoring have not been reported in the current industrial
practice of labor-intensive manufacturing.

The structure of the RRPM model is shown in Fig. 4. At the
cloud monitoring layer, three monitoring submodels at different
management levels are included, which provide a user-friendly
Web portal to help production management at different manage-
ment levels monitor the progress of each order. Production
management at different levels can easily access to information
on job requirements. For example, the production management at
the headquarters needs to track and monitor the progress of each
order group in subordinate and supplying plants but not the
production details of each operation. At the shop floor, the front-
line supervisors must focus on the details of each operation for the
orders produced in the shop. At the user layer, the users at each
management level can browse information related to their respon-
sibilities in accordance with their access rights, through Web
browsers in Internet-ready microcomputers and intelligent mobile
devices. This RRPM model is implemented by a Web-based
production monitoring program that connects with the remote
production decision-making database.

4.4. Remote intelligent scheduling decision-making (RISD) model

This subsection presents the development of the RISD model by
a scheduling mechanism based on an intelligent technique to
handle production scheduling tasks at different management
levels from a holistic perspective.

Production management at different levels needs to determine
the assignment of orders to appropriate production units, as well
as the processing sequences of these orders. Fig. 5 shows the
flowchart of the RISD model for a distributed labor-intensive
manufacturing environment involving multiple plants. The sche-
duling mechanism in this model implements production schedul-
ing in the distributed environment by dividing the scheduling task
into three-order scheduling problems at the following manage-
ment levels:

(1) Company level: after the confirmation of new production
orders from a customer, the order scheduling submodel at
the company level assigns each order to an appropriate plant.

(2) Plant level: after the confirmation of production orders
assigned by the head company, the order scheduling submodel
at the plant level assigns each order to one or more appro-
priate shop floors.

(3) Shop level: the scheduling submodel at this level schedules
the production of orders in the shop floors. In some production
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Fig. 5. Flowchart of the RISD model.

environments, such as sewing, in which each shop floor
comprises multiple assembly lines, assigning orders to each
assembly line is also necessary.

Production orders are assigned according to the scheduling
solutions generated. After the production of a group of orders from
a customer, the finished products are delivered to the specified
destinations. Users at different management levels can access
these scheduling submodels through the Internet. Scheduling
solutions at each management level are stored real-time on the
production decision-making database. These scheduling solutions
are also used as input parameters of scheduling and decision-
making processes at lower management level to achieve transpar-
ent and timely information sharing.

In real-world production, the three scheduling problems at
different levels need to consider various labor-intensive produc-
tion features. These characteristics include multiple plants, multi-
ple shop floors, multiple orders, multiple production objectives,
and production uncertainties. These features transform these
problems into complex, uncertain, and multi-objective combina-
torial optimization problems, for which traditional optimization
techniques, such as mathematical programming and heuristic
techniques, cannot provide optimal or near-optimal solutions.
Guo et al. (2013a) proposed a hybrid intelligent decision-making
model to solve an order allocation problem considering multi-
objective production uncertainties. Various production uncertain-
ties, such as uncertain order arrival time and uncertain processing
time, are represented by random variables. Multi-objective intel-
ligent optimization and Monte Carlo simulation techniques are
integrated to generate Pareto-optimal solutions. The decision-
making model proposed by Guo et al. (2013a) developed a general
framework of optimum-seeking process for complex, uncertain,
and multi-objective combinatorial optimization problems, which
can be thus used to address production scheduling problems at
different levels. The main procedures involved in this optimum-
seeking process are described briefly, as follows:

(1) A multi-objective intelligent optimization submodel is adopted
to generate initial Pareto-optimal solutions to the deterministic
production scheduling problem. The deterministic problem

disregards production uncertainty by these assumptions:
all uncertain orders need to be produced and the processing
time of an order equals the mean of its processing time in
a production department. Multi-objective intelligent optimi-
zation algorithms, such as the non-dominated sorting GA-II
(Deb et al., 2002) and the memetic Pareto archived evolution
strategy (Knowles and Corne, 2000), can be used to search for
Pareto-optimal solutions.

(2) The stochastic production scheduling problem is addressed
using the Monte Carlo simulation submodel to evaluate the
performance (fitness) of each initial Pareto-optimal solution
under various uncertainties in production scheduling.

(3) Based on the fitness of initial solutions for the stochastic
problem, the heuristic pruning submodel is employed to
generate the final optimal solutions for production scheduling.

5. Prototype system development and implementation

A pilot system was developed to evaluate the effectiveness of
the RIDSS architecture proposed in Section 3. A distributed labor-
intensive manufacturing company with multiple plants was
selected as the pilot company in which this system was evaluated.
The pilot manufacturing company is a medium-sized clothing
manufacturer producing casual wear and sportswear. The com-
pany consists of four production plants located in four different
cities. This type of labor-intensive manufacturing company exists
widely in mainland China. The company receives production
orders from global customers and processes these orders in four
plants according to customer requirements.

These plants include six production departments: cutting,
embroidering, printing, sewing, finishing, and packaging. Each
production department occupies one or more shop floors. Each
sewing shop floor comprises multiple assembly lines, whereas
other shop floors comprise multiple workstations. Each produc-
tion plant consists of different production departments. Table 1
shows the production departments in each plant. Plant 1 includes
six production departments, plants 2 and 3 do not include
embroidering and printing departments, and plant 4 does not
include cutting and embroidering departments.

The pilot system contains remote production monitoring and
production scheduling functions at the company level. In the pilot
manufacturing company, one shop floor in each production
department of each plant was selected to implement and test
the pilot system.

The production performance of each clothing production plant
is most affected by the sewing department. Six to ten RFID
terminals are installed in sewing workstations to collect the
production records of key sewing operations in each sewing
production line. A sewing production line consists of about 30
workstations usually. In the cutting department, RFID terminals
are installed in each cutting bed to capture the outputs of cutting
process of each production order. In the embroidering and printing
departments, the outputs of embroidering and printing processes
of each order are collected by installing an RFID terminal in each
embroidering and each printing workstation. In the finishing
department, three RFID terminals are installed to collect the

Table 1
Production departments included in each plant.

Cutting Embroidering Printing Sewing Finishing Packaging
Plant1 v/ N v v v v
Plant2 +/ x x v vV v
Plant 3/ X x Vv v v
Plant4 x x v Vv v Vv
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Fig. 6. Interface 1 - production detail of operations in an order.

production record for each piece of garment while an RFID
terminal is installed to collect the records of each carton of
garments in the packing department. Three RFID terminals are
installed in the shop floors of the fabric supplier to monitor the
production progress of the main fabric materials.

The production scheduling problem at the company level
involves the determination of the optimal allocation of a produc-
tion process for each order to an appropriate plant and the optimal
time for processing. The scheduling solutions are generated based
on the hybrid intelligent optimization model presented by Guo
et al. (2013a).

The pilot system was based on Java/J2EE, SQL Server 2005, and
Web technologies. The production management at different levels
can monitor the production progress for each order by using
summarized production reports and can assign each order to an
appropriate plant. Some examples of the pilot system interfaces
are shown in Figs. 6-8.

Fig. 6 presents an interface comparing the production efficiency
and progress of different operations in a production unit. The
average efficiency and progress of different operations involved in
processing a production order in a plant, production department,
shop floor, or assembly line are compared. The completed quantity
from operation 11 is lower than those from other operations,
indicating that Operation 11 is a bottleneck operation and can
inevitably lower the production efficiency of this order. Operations
need to be adjusted to achieve a balanced production flow. This
interface clearly shows whether the production flow of an order in
a production unit is smooth. By using this interface, the actual
operating time can be compared with the standard allowed
minute. For example, the average time of operation is “001” and

the standard allowed minute is 20 and 22 seconds. This interface is
used by production management at different levels to monitor
production details of individual orders.

Fig. 7 presents an interface comparing the production progress
of all orders in a group. As shown in this figure, the order group
NKE-SP01B1 comprises 21 production orders. On the whole, 55% of
the total workload of this group is completed. The completed
workload of Order 2 is 89%, whereas that of Order 9 is only 18%. In
addition, Plant 2 has 625 workers, but only 172 are involved in the
production of this order group. By using this interface, the
production progress and the average efficiency (average operating
time for each product) of different orders in a group are compared.
This interface is designed for production management at plant and
company levels to monitor the production progress of each order
and order group.

Fig. 8 presents an interface showing the solution for assigning
production orders to different plants as a result of production
scheduling at company level. The orders of group OKY-WI12-2B
are assigned to Plant 3, and those of group GNT-SP13-1S are
assigned to Plant 1 for processing. Each production order can only
be assigned to one plant because of its small-batch feature. In
addition, the sequence of orders shown in the interface represents
their production sequence in the corresponding plant.

6. Evaluation
The effectiveness of the proposed architecture is evaluated by

the benefits this system provides the pilot company. Prior to the
development and implementation of the pilot system in the pilot
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Fig. 7. Interface 2 - production detail of orders in an order group.

manufacturing company, manual recordings were used to collect
production data. There is a computer operator to input daily job
tickets into the computer in each shop floor of sewing department.
The production management failed to monitor the production
progress of each order in material supplying plants and clothing
production plants in a real-time and accurate manner. A large
amount of time is required to read and analyze daily summary
reports from each plant. The reports are not updated and unreli-
able because manual recordings and inputs often lead to data
errors. In addition, the production schedulers at the headquarters
assign each order to an appropriate plant based on experience and
subjective judgment, which usually generates inconsistent and
low-efficient solutions.

After implementing the pilot system for 6 months, perfor-
mance was analyzed and evaluated by comparing the production
performance of the latest 3 months with that of corresponding
3 months in the previous year. Such comparison was conducted for
the following reasons:

(1) The system was confirmed as stable after several months of
operation in the pilot company. Therefore, production perfor-
mance in the last 3 months represents the overall performance
of the system since implementation.

Similar product types are produced in each plant in the same
months each year because of the seasonal characteristics of
clothing production. Comparison of the production perfor-
mances in the same months for two consecutive years can
reduce production performance variations attributed to differ-
ent product types.

—~
N
~—

(3) In the two selected periods, full-capacity production is
achieved, and the labor force is stable in each shop floor.

Variation in performance can be attributed to the system after
elimination of factors that disturb production performance. Com-
parison of the two selected periods indicates that the pilot
company obtained the following tangible benefits:

(1) 25% Increase in production efficiency: production efficiency is
defined as the production workloads completed/number of
working hours, that is, the average production workloads
completed per hour. The production workload completed in
a period equals the total standard allowed minutes of all
operations completed within this period. The real-time and
accurate production data collected lead to a higher visibility
and transparency of production operations in distributed
manufacturing, which is a motivation for frontline operators
to reduce the possibility of loafing on the job. In addition, more
accurate progress monitoring of raw material production is
helpful to improve the effectiveness of production scheduling
decision-making and effective production scheduling deci-
sions generated by the pilot system can improve production
efficiency as well.

12% Reduction in production waste: overproduction, defects,
and unnecessary inventory are identified as factors that lead to
production waste, which is defined as the total cost incurred
by these three factors. Overproduction costs are incurred
when the company produces more products than required
by a customer. Defect costs are incurred when bad production

(2

—
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Fig. 8. Interface 3 - intelligent production scheduling at company level.

processes lead to substandard products that need repair.
Effective order tracking and monitoring result in a more
transparent production process, thereby preventing overpro-
duction, defective products, and in-process inventory. More
effective monitoring of material production can reduce mate-
rial inventory. Higher production transparency is also helpful
to make operators reduce production waste. Effective produc-
tion scheduling reduce the probability of rush production,
thereby reducing defects.

8% Reduction in labor and system costs: no computer operator
is required to input job tickets. The improvement of produc-
tion visibility is helpful to reduce IE-related manpower for
production management. In addition, the pilot system with
cloud-based architecture requires fewer computer servers,
lower installation and maintenance costs, as well as less IT-
related and IE-related manpower as compared to other data
collection systems which were independently installed on
each plant. The intangible benefits of using the pilot system
include more timely production reports, more effective pro-
duction scheduling performance, and faster production
quick speed.

3

~

The case company continued to run the pilot system because of
the benefits described above. The company is also planning to
further implement the system in all its production departments
and to develop and integrate additional functions into the
structure.

7. Discussion
7.1. Cloud-based architecture

A production data capture and monitoring system designed for
one plant cannot implement effective integration and sharing of
production data collected from different plants. With the devel-
opment of global manufacturing and in the presence of fierce
market competition, this system fails to meet the needs of
a distributed global manufacturing network. New and improved
architectures are needed to integrate and process a large amount
of production data collected from distributed plants and meet
actionable decision-making requirements in a very short time. The
proposed RIDSS architecture, which adopts a cloud-based system
architecture, can provide effective and real-time production mon-
itoring and decision-making functions. The cloud-based system
architecture exhibits the following advantages:

(1) Easy-to-access portal to integrate RRDC models. The models
are developed to collect real-time production data from
different plants, particularly from collaborating or outsourcing
plants. Without cloud-based architecture, such data collection
can be difficult. Real-time production data result in real-time
production monitoring and effective decision-making, thereby
improving response time.

(2) Completion of system installation and maintenance in the
company headquarters rather than in individual plants. It results
in reduced labor and system costs for production plants since
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the main system components of the RIDSS architecture are
installed and maintained in the company headquarters.

(3) System access from anywhere via the Internet for users at
3 different management levels. Such access allows these
users to remotely track and monitor production progress and
make production scheduling decisions, which leads to a higher
production visibility, transparency as well as decision-making
performance.

7.2. Extensibility and scalability of the RIDSS architecture

The proposed RIDSS architecture can be used to effectively
monitor production processes at different production units and to
schedule orders to their appropriate production units. This archi-
tecture is extensible, which can easily be modified to include
additional functions. For example, the proposed system architec-
ture can be enhanced to integrate with production processes of
subcontractors. This enhancement improves visibility of produc-
tion progress in subcontractor floors. The real-time and accurate
production data collected can also be used in other decision-
making processes in supply chain operations, such as production
planning, order acceptance negotiation, and supply chain schedul-
ing. These decision-making functions can be integrated into the
proposed RIDSS architecture. In-depth data analysis and data
mining can be conducted based on the collected production data.
More useful data are revealed for production decision-making.

Based on the proposed RIDSS architecture, considerable
amounts of production data can be collected from its subordinate
and collaborative plants and saved into a central database, which
enables the provision of timely production data and information
on demand to the users at different management levels of the
entire company. That is, data as a service function can be
implemented in the manufacturing company based on the pro-
posed system architecture.

The proposed RIDSS architecture is also scalable, which can be
used in various manufacturing environments, including multi-
plant production and partial or complete production outsourcing.
In addition to manufacturing companies, the system can be used
by trading companies and branders to track and monitor the
production and logistics of orders simply by monitoring the status
of several key logistics nodes. For example, the proposed archi-
tecture is applicable to the tracking and monitoring of clothing
supply networks described by MacCarthy and Jayarathne (2013).

Despite the initial intention of using the system for distributed
manufacturing with multiple production plants, the proposed
architecture can also be applied in simple labor-intensive manu-
facturing environments such as single-supplier and single-plant
environments.

7.3. Difficulties encountered and lessons learned

The following are the difficulties encountered and the lessons
learned during system implementation in the pilot company:

(1) Employee resistance: resistance by employees was the biggest
problem during system implementation. In clothing produc-
tion, the operator in each workstation must scan RFID tags
attached on each workpiece to collect real-time production
records. Operators in production floors were comfortable with
routine procedures. In particular, certain workers (e.g., sewing
operators) resisted the system because their wages directly
depend on the number of completed workpiece, which is
a common management practice in China's labor-intensive
manufacturing company. They consider tag-scanning process a
waste of work time and a cause of output reduction.

Consequently, managers had to frequently handle workers'
resistance. This resistance was gradually exhibited by frontline
managers as well. Thus, operating procedures must be kept
simple and easy to demonstrate. Pilot production floors for
trial runs must also be appropriately selected. Effective mea-
sures to prevent employees from reverting to the outdated
operation are also required. The system can be implemented in
other production floors once the trial run is completed
successfully.

Employee training: compared with employees in high-
automation industries, the majority of employees in China's
labor-intensive manufacturing industries have achieved a
relatively low level of education. As a result, frontline manage-
ment personnel and operators often encounter difficulty of
learning a new technology and accepting a new system in
daily operations. Thus, effective methods must be adopted to
educate relevant participants. The functions and benefits of
the new system must be explained carefully to the participants
for developing their interests in actively using the system.
Inadequate planning and lack of top management commit-
ment: prior to system implementation, a comprehensive plan
can be created by developing step-by-step implementation
procedures. The plan needs to consider various potential
difficulties during system implementation and corresponding
measures to cope with these difficulties. In China's labor-
intensive production, lack of motivation to implement the
new system can be expected from frontline production
management (or even senior management) personnel
because they are always preoccupied with daily work. There-
fore, commitment and support of top management must be
obtained.

(2

—

—
w
—

7.4. Implications

This study has implications for practitioners and academic
studies. First, this study can help production management under-
stand the significance of RFID integration and cloud technology in
improving production performance and reducing costs.

Second, the proposed RIDSS architecture is capable of making
data and information available quickly to people, processes and
applications in a distributed manufacturing environment, which is
helpful to eliminate data silos existing in systems and infrastruc-
ture of different plants, to enable real-time production information
sharing for production monitoring and decision-making.

Third, the proposed RIDSS architecture is capable of providing
decision support capabilities in the cloud, which is one of the
major trends for manufacturing enterprises in hopes of becoming
more agile. The proposed RIDSS architecture is a service-oriented
decision support system architecture characterized by such dis-
tinct features as extensibility, scalability, reusability and customiz-
ability. Reusability indicates that the production monitoring and
scheduling services provided by the RIDSS can be re-used in many
business processes. Customizability represents the ability to be
changed by system users in order to adapt it to a specific
manufacturing context. For example, manufacturing enterprises
with different plant configurations and different decision-making
requirements can customize their own RIDSS on the basis of the
proposed RIDSS architecture.

Fourth, this study reveals that cloud technology is crucial to
real-time production monitoring and scheduling. An increasing
number of labor-intensive manufacturing enterprises currently
produce their customer orders in distributed manufacturing envir-
onments. Thus, production management must consider the impli-
cations of more effective production monitoring and scheduling in
this scenario. For instance, production outsourcing is a common
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practice in distributed manufacturing. However, many enterprises
did not think about the risks of production outsourcing when they
outsourced their production processes to reduce their production
cost. RFID and cloud-based production monitoring and scheduling
are helpful to reduce this risk by improving the visibility and
transparency of distributed production operations and generating
integrated scheduling decisions.

Fifth, this study provides a decision support system architec-
ture for monitoring and scheduling the production processes of
customer orders in distributed manufacturing environments on
the basis of three different management levels. We encourage
more researchers to develop cloud-based production monitoring
and scheduling systems for different manufacturing environments
and integrate various decision-making functions into this system
architecture. The applicability, extensibility, and effectiveness of
the proposed system architecture requires further evaluation in
different manufacturing sectors and supply chain environments,
such as supply networks with different types of flexibilities
described by Purvis et al. (2014).

Lastly, from the implementation case of the proposed system
architecture described above, some key factors of successfully
implementing the system architecture in China's labor-intensive
manufacturing industry can be suggested. These factors include
(1) strong incentive policy that will encourage frontline workers to
accept and use the new system, (2) consistent commitment and
support from both top management and frontline workers to
ensure that the system will be implemented well, and (3) effective
employee training to educate relevant management and workers
and (4) ensure that they will learn about the system so that they
could use it effectively.

8. Conclusions

An RIDSS architecture was proposed for effective production
monitoring and scheduling in a distributed labor-intensive man-
ufacturing environment on the basis of three different manage-
ment levels. RFID technology was utilized to collect real-time
production records from workstations. An intelligent optimization
technique was employed to generate effective production schedul-
ing solutions.

This study is the first to investigate production monitoring and
scheduling in distributed labor-intensive manufacturing environ-
ments in an integrated manner. The proposed RIDSS architecture is
a community cloud-based architecture that can effectively moni-
tor production progress in distributed labor-intensive manufactur-
ing. The cloud-based and easily accessible feature allows the
convenient collection of real-time production data from supplying
and outsourcing plants but not from subordinate plants. Data
collected are transferred to remote real-time production database
via the TCP/IP protocol, and subsequently analyzed and extracted
for use in production scheduling and decision-making. The sche-
duling mechanism based on an intelligent technique in the RISD
model can handle production scheduling tasks in distributed
labor-intensive manufacturing environments from a holistic
perspective.

The effectiveness of the proposed architecture is verified by
developing and implementing a pilot system in a distributed
labor-intensive manufacturing company with multiple plants.
The evaluation of the pilot system clearly demonstrated the
benefits of the system, including a 25% increase in production
efficiency, and a 12% reduction in production wastes, and an 8%
reduction in labor and system costs. Improved supply chain
coordination and production scheduling decisions can be achieved
by implementing this system, which ultimately leads to enhanced
customer service.

The proposed RIDSS architecture can help develop an inter-
connected, visible, and intelligent supply chain because (1) inter-
connectivity of different plants and business partners is improved.
This increased interconnectivity can facilitate collaboration among
plants and partners, in addition to creating a more holistic view of
production progress. (2) The proposed system can improve visibi-
lity in production and supply chain operations. This architecture
enables production management at different levels to “see” more
events and witness these events as they occur. (3) RIDSS archi-
tecture can improve the production decision-making process by
using intelligent optimization techniques to generate effective
scheduling decisions.

This study presents an effective and promising system archi-
tecture for production monitoring and scheduling; however, the
following research limitations must be addressed in the future:

(1) The proposed RIDSS architecture only includes production
monitoring and scheduling functions. Future studies can
extend the scope of this architecture to allow integration with
more extensive supply chain operations and production
decision-making activities.

(2) On the basis of this architecture, a significant amount of real-
time production data can be collected from distributed plants.
The application of these data in other decision-making activ-
ities and existing information systems in the company were
not examined. Future data analysis and processing may be
conducted according to actual decision-making requirements,
thereby maximizing the usefulness of the collected data for
production operations.

(3) Although the RISD model includes a general optimum-seeking
process for real-world production scheduling problems, effec-
tive optimization models must be further developed based on
this mechanism for specific production scheduling problems in
labor-intensive manufacturing. The reason is that no optimiza-
tion technique can be applied to all real-world scheduling
problems.
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