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Abstract In food industry, quality and safety are con-

sidered important issues worldwide that are directly related

to health and social progress. The use of vision technology

for quality testing of food production has the obvious

advantage of being able to continuously monitor a pro-

duction using non-destructive methods, thus increasing the

quality and minimizing cost. The performance of an

intelligent decision support system has been evaluated in

monitoring the spoilage of minced beef stored either aer-

obically or under modified atmosphere packaging, at dif-

ferent storage temperatures (0, 5, 10, and 15 �C) utilising
multispectral imaging information. This paper utilises a

neuro-fuzzy model which incorporates a clustering pre-

processing stage for the definition of fuzzy rules, while its

final fuzzy rule base is determined by competitive learning.

Initially, meat samples are classified according to their

storage conditions, while identification models are then

utilised for the prediction of the Total Viable Counts of

bacteria. The innovation of the proposed approach is fur-

ther extended to the identification of the temperature used

for storage, utilizing only imaging spectral information.

Results indicated that spectral information in combination

with the proposed modelling scheme could be considered

as an alternative methodology for the accurate evaluation

of meat spoilage.

Keywords Neurofuzzy systems � Modelling �
Classification � Meat spoilage � Neural networks �
Regression

1 Introduction

With the current growing need for lower production costs

and high competence, food industry is faced with a number

of challenges, including maintenance and assurance of food

quality and safety. Food companies and suppliers need

efficient, low-cost and non-invasive quality and safety

inspection technologies to enable them to satisfy different

markets’ needs [1]. Various rapid, non-invasive methods

based on analytical instrumental techniques, such as

Fourier transform infrared spectroscopy (FTIR) [2], Raman

spectroscopy [3] and Electronic Nose technology [4] have

been investigated for their potential in assessing food

quality. With recent advances in sensorial developments,

there have been significant progresses in techniques for

assessment of food quality and safety. Machine vision

techniques based on RGB colour systems have been suc-

cessfully applied to the evaluation of foods’ external

characteristics. Such methods, however, are not able to

capture broad spectral information which is related to

internal characteristics [5]. The association between NIR

spectra and food components makes NIR spectroscopy

more attractive than other spectroscopic techniques. Nev-

ertheless, these spectral methods have been proved inef-

fective to heterogeneous materials such as meat, due to the

fact that they are not capable of obtaining any spatial

information about objects [6]. In recent years, spectral

imaging (i.e. hyperspectral and multispectral) has been

considered as an alternative tool for safety and quality

inspection of various agricultural products. This technique
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integrates the conventional imaging and spectroscopy

technique to attain simultaneously both spatial and spectral

information from the target product. Inspection of internal

and external features in various fruits and vegetables such

as apple [7] and fresh-cut spinach leaves [8] have been

performed using multispectral imaging combined with

various chemometric methods.

Meat is a nutritious and expensive food product in

human diet worldwide due to the fact that it is an important

source of protein and trace elements. A non-invasive

method based on multispectral imaging in the visible and

near infrared (NIR) regions to predict the aerobic plate

count in cooked pork sausages has been considered

recently [9]. The prediction of total viable counts of

minced pork meat stored under two different storage con-

ditions—aerobic and modified atmosphere packages—has

been performed using the VideometerLab multispectral

imaging device [10]. A hyperspectral imaging technique

has been investigated for evaluating pork meat tenderness

and Escherichia coli contamination [11]. In that research

study, a Modified Gompertz function was exploited to

extract the scattering characteristics of pork meat from the

spatially-resolved hyperspectral images. The identification

and extraction of useful colour and texture features from

fresh beef samples using a multispectral imaging system

has been also explored and a support vector machine

algorithm was utilised to predict cooked beef tenderness

[12]. The detection of minced lamb and minced beef

adulteration has been considered using hyperspectral

imaging [13, 14], while the possibility of combining both

spectral with texture features in order to improve pH pre-

diction for salted pork was investigated through hyper-

spectral imaging [15].

Application of hyperspectral imaging actually may be

restricted due to the resulting large and computationally

excessive hypercube. Thus, it is essential to extract char-

acteristic features by operating quantitative analysis [16].

This has been achieved through the integration of modern

analytical platforms with computational and chemometric

techniques. For quantitative analysis prediction, multi-

variate analytical tools such as principal component anal-

ysis (PCA), partial least square regression (PLS) are widely

used modelling methods [17]. However meat spoilage is a

dynamic process which leads to the undesirable change in

external attributes (colour, texture, and even flavour) as

well as to the internal attributes (chemical compositions,

tissue structure) of meat. The spectra extracted from

hypercube can express the internal changes of meat attri-

butes, and the relationship between meat spoilage and

extracted information is very complicated and tends to

nonlinearity [18]. Neural networks utilising the back-

propagation algorithm (MLP), which is one of the most

commonly used non-linear regression method, have been

recently used in food applications of hyperspectral imaging

[19].

Neural networks (NNs) have become a popular tool in

non-parametric function learning due to their ability to

learn rather complicated functions. While they have gained

much interest in predictive engineering and quantitative

modelling, their application in the field of food science is

still in its early development stage [20]. NNs usually

require a large number of neurons for solving the majority

of approximation problems, while the greedy nature of the

Gradient Descent (back-propagation) algorithm used in the

training process, often settles in undesirable local minima

of the error surface or converges too slowly [21]. In

addition, NNs are prone to dimensionality problems, as

each single neuron-node cannot define a multi-dimensional

hyper-sphere of the input domain. Although fuzzy logic

systems, provide such input space mapping, they do not

have learning ability, thus it is difficult to analyse complex

systems without prior and accurate knowledge on the

system being analysed [22]. To overcome these limitations

of NNs and fuzzy systems, neuro-fuzzy approaches have

attracted growing interest of researchers in various scien-

tific and engineering areas.

The main objective of this paper is to associate, for the

first time according to literature, spectral data acquired by

multispectral imaging techniques with meat spoilage, using

neuro-fuzzy systems. An intelligent decision support sys-

tem initially classifies minced beef samples stored either

aerobically or under modified atmosphere packaging and

then predicts for each case, the total viable counts (TVC) of

bacteria. The Adaptive Fuzzy Inference Neural Network

(AFINN), a Takagi–Sugeno–Kang (TSK) based structure,

has been considered as the core component for the pro-

posed intelligent decision support system [23]. Results

from AFINN scheme are compared against models based

on Adaptive Neural Fuzzy Inference System (ANFIS),

multilayer neural networks (MLP), as well as non-linear

and linear (PLS) regression schemes. Such comparison is

considered as a essential test, as we have to emphasise the

need of induction to the area of food microbiology,

advanced learning-based modelling schemes, which may

have a significant potential for the accurate estimation of

meat spoilage.

2 Experimental case

2.1 Sample preparation and microbiological

analysis

The entire experimental case study was performed at the

Agricultural University of Athens, Greece. Minced Meat

was separated into small portions (75 g) and packaged
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individually either aerobically or under modified atmo-

sphere (MAP) (40 % CO2, 30 % O2, 30 % N2), and in

different temperatures (0, 5, 10, 15 �C) that are associated

with acceptable/non-acceptable storage practices in a dis-

tribution chain for meat products [24]. At the beginning

and during storage, after appropriate time intervals, meat

samples were divided into two parts; one part was used for

microbiological analysis while the other one for image

analysis. It was assumed that the microbial population at

both parts would be comparable. Aerobic samples stored at

0 and 5 �C were analysed approx. every 48 h for the period

0–186 h and every 24 h for the period 186–378 h. Finally,

the last sample was analysed at 479 h. Similarly, samples

stored at 10 and 15 �C were analysed approx. every 12 h

for the period 0–156 h. In total, 14 samples were analysed

for each temperature case, resulting 56 samples in total.

The same procedure was repeated for MAP case too.

Microbiological analysis was performed, and resulting

growth data from plate counts were log10 transformed and

fitted to the Baranyi and Roberts’ model in order to verify

the kinetic parameters of microbial growth (maximum

specific growth rate and lag phase duration) for the TVC

and salmonella (XLD). A detailed description of the

preparation of minced beef samples, as well as their related

microbiological analysis, is described in [24]. The growth

curves of TVC and XLD for minced beef storage at

different temperatures under AIR and MAP conditions as a

function of storage time are illustrated in Fig. 1.

The growth curves for both TVC cases are similar, with

the exception that the maximum specific growth rate

(lmax) for the AIR packaged condition is different than of

that of the MAP case. It has been found that packaging

under modified atmosphere delay the growth rates of all

members of the microbial association, as well as the

maximum population attained by each microbial group

compared with aerobic storage. Aerobic storage accelerates

spoilage due to the fast growing Pseudomonas spp.; in

addition such growth can be significantly inhibited by the

presence of gas carbon dioxide [25]. Analysis specified that

the total viable counts ranged from 3.8–9.8 log10 cfu cm-2

for aerobic cases, and 3.7–8.5 log10 cfu cm-2 for MAP

cases. However, for both AIR and MAP conditions, the

growth rate is increased faster, as the storage temperature

increases. For the case of XLD, significant changes occur

only when temperature reaches at 15 �C.

2.2 Multispectral imaging acquisition

Images from every sample (56 aerobic and 56 MAP cases)

were captured using VideometerLab, (Videometer A/S,

Denmark), a system which acquires multispectral images in

18 different wavelengths ranging from 405 to 970 nm.

Fig. 1 Population dynamics of TVC and XLD at various temperatures for minced beef samples
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More specifically, the wavelengths are at 405, 435, 450,

470, 505, 525, 570, 590, 630, 645, 660, 700, 850, 870, 890,

910, 940 and 970 nm. Meat samples were presented in

Petri dishes and collected at the same time as microbio-

logical analysis occurred [26].

The acquisition system records surface reflections with a

standard monochrome charge coupled device chip, nested

in a calibrated digital camera. The meat sample was placed

inside an Ulbricht sphere in which the camera is top-

mounted. The sphere has its interior coated with matte

titanium paint. The coating together with the curvature of

the sphere ensures a uniform reflection of the cast light and

thereby a uniform light in the entire sphere. At the rim of

the sphere, light emitting diodes (LEDs) with narrow-band

spectral radiation distribution are positioned side by side in

a pattern, which distributes the LEDs belonging to each

wavelength uniformly around the entire rim. These char-

acteristics ensure an optimal dynamic range and keep the

amount of shadow and shading effects to a minimum. The

result is a monochrome image with 32-bit floating point

precision for each LED type, giving in the end, a multi-

spectral 3D cube of dimensionality 1280 9 960 9 18 [27].

As images include redundant information, such as the

Petri dish as well as meat fat, a segmentation procedure is

required as a pre-processing step. The main objective of

segmentation is to identify only the minced meat as the

Region of Interest (ROI) from the background or any other

undesired regions. This step includes transformation and

segmentation procedures, which were implemented using

VideometerLab software. The pre-processing was imple-

mented by maximizing the contrast between the sample

meat material and the other non-relevant objects, enabling

thus a threshold operation [28]. Canonical discriminant

analysis (CDA) was employed as a supervised transfor-

mation building method to divide the images into regions

of interest [29]. Following transformation using CDA, the

separation was distinct and a simple thresholding was

enough to separate meat from non-meat. The multispectral

image sample without the background was transformed to

spectrum by mean calculation. For each image, the mean

reflectance spectrum was calculated by averaging the

intensity of pixels within the ROI at each wavelength.

Thus, the resulting data consisted of 18 mean values of the

reflectance, as it was recorded by the camera for the pixels

that were included in each image’s ROI, and were further

analyzed with the proposed intelligent decision support

system [30]. Figure 2 illustrates samples of mean reflec-

tance spectra acquired for from both AIR and MAP minced

beef samples. A close look on selected spectra at Fig. 2

and more precisely on the case of aerobic samples stored

at 5 �C reveals that there are some differences in the

reflectance’s magnitude in the wavelength range from

600 to 850 nm, between unspoiled sample (t = 0 h,

TVC = 4.1 log10 cfu cm-2) and spoiled sample

(t = 479.5 h, TVC = 9.3 log10 cfu cm-2). These differ-

ences usually result from the spoilage and deterioration of

nutrient compositions such as carbohydrates, protein, fat,

which are gradually consumed and decomposed during

storage, producing a series of chemical substances,

including ammonia, hydrogen sulphide, ketones and alde-

hydes [9]. A similar situation can be also observed in the

near infrared region (850–970 nm) where reflectance val-

ues are decreased with increasing storage time [26].

Datasets related to reflectance spectra as well as the asso-

ciated microbiological analysis from meat samples, were

provided by Agricultural University of Athens, Greece and

were further utilised towards the development of the pro-

posed intelligent decision support system.

3 AFINN architecture

The proposed neuro-fuzzy (NF) system is a modification of

the ANFIS model and incorporates an additional layer of

output partitions. Initially, a clustering algorithm has been

applied to the training data in order to organize feature

vectors into clusters. The fuzzy rule base is then derived

using results obtained from the clustering algorithm. The

schematic of the AFINN model, shown in Fig. 3, consists

of five layers. Layers L1 and L2 are associated to IF part of

fuzzy rules while layers L4 and L5 to THEN part of these

rules and are related to the defuzzification task. In layer L3

a mapping between the rules layer and the output layer is

performed through a competitive learning process and as a

consequence, the linear units at L4 are linked with each

term of layer L3. Thus the size of required matrices for

least-squares estimation at the consequent part is much

smaller compared to the ANFIS approach. The clustering

algorithm at layer L2 consists of two steps [23]. In the first

step, a method similar to Learning Vector Quantization

(LVQ) algorithm creates crisp c-partitions of the dataset.

The number of clusters c and the associated centres

vi; i ¼ 1; . . . c; calculated from this step are utilised by

the fuzzy c-means (FCM) algorithm in the second step. The

first cluster is created starting with the first data vector from

X ¼ ½x1; . . .; xn� 2 Rnp, which is the learning data set.

Cluster centres vi are then modified for each cluster (i.e.

i ¼ 1; . . .; c) according to the following equation

viðt þ 1Þ ¼ viðtÞ þ atðxk � viðtÞÞ ð1Þ

where t ¼ 0; 1; 2; . . . denotes the number of iterations and

at 2 ½0; 1� is the learning rate. These cluster centres which

are considered to be the initial values of the fuzzy centres

derived by the second step algorithm. In the second step,

the FCM algorithm has been used to optimise the values of

cluster centres.
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Fig. 3 Structure of AFINN

system

Fig. 2 Selected spectra for both AIR and MAP cases
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3.1 AFINN internal structure

The number of rules in the AFINN scheme is identical to

the number of clusters c obtained from the clustering

algorithm. Fuzzy IF–THEN rules then can be written in the

following form:

IF ðx1 is Ui
1 AND. . .AND xq is Ui

qÞ
THEN ðy ¼ wi

0 þ wi
1x1 þ � � � þ wi

qxqÞ
ð2Þ

where Ui
j ; i ¼ 1; . . .; c; j ¼ 1; . . . p and q ¼ p� 1, are

fuzzy sets defined based on c-partition of learning data X.

The membership functions of fuzzy sets Ui
j have be chosen

as Gaussian membership functions with the following

form:

O1
Ui

j
¼ lUi

j
¼ exp � xj � vij

rij

� �2
" #

ð3Þ

for j ¼ 1; . . .; q and i ¼ 1; . . .; c. The values vij in Eq. (3)

represent the centres of the membership functions and are

equal to the values of the components of vectors vi which

derive from the FCM algorithm. The values rij in Eq. (3)

define the widths of the membership functions. These

values are calculated according to

rij ¼
Xn
k¼1

uikðxkj � vijÞ2
,Xn

k¼1

uik

 !1=2
ð4Þ

The second layer L2 has c elements that realize a mul-

tiplication operation. Outputs of this layer represent the fire

strength of the rules, expressed as:

O2
i ¼

Yq
j¼1

O1
Ui

j
ð5Þ

where i ¼ 1; . . .; c. Nodes at the additional layer (L3),

represent the partitions of the output variables. The nodes

should perform the fuzzy OR operation to integrate the

fired rules:

O3
l ¼

X
k

O2
kw

3
l;k ð6Þ

where, k ¼ 1; . . .; c. Hence, links between L2 and L3

function as an inference engine that does not require the

rule-matching process. Initially, the links at layers L2–L3

are fully interconnected. However, not all the rules are

necessary to the fuzzy system. The weight of the link

connecting the kth rule node from L2 and the lth output

partition at L3 is denoted as w3
l;k and assigned to be 0.5. A

competitive learning algorithm is then utilised. For the set

of training data pairs ðx; yÞ the weights are adjusted as:

Dw3
l;k ¼ O3

l ð�w3
l;k þ O2

kÞ ð7Þ

where O3
l is denoted as the output of the l output term node,

while O2
k is the output of the k fuzzy rule node. Hence, O3

l

serves as a win-loss index of competition. As the com-

petitive algorithm needs the number of output nodes O3
l to

be a priori known, this has been heuristically set to be (1/

2 ? 1) of the defined number of rules. The main principle

of this phase is to remove the less important rules and to

retain essential ones based on the results of competitive

learning through the whole set of trained data pairs. The

weight of a link that connects a rule node and an output

partition node indicates the strength of the rule affecting

the output partitions. The link with the maximum weight is

chosen and it is assigned to 1, while the remaining ones to

0. Therefore, only the rule with the link of maximum

weight will be assigned to the output partitions. After that,

the weights of the links that connect the same output term

node are compared. If the weight of the link is found to be

small compared to the maximum one, the weight of the link

is assigned to zero. The remaining weights are then

assigned to 1. Hence w3
l;k will be either 0 or 1, which

indicates the existence of the links connecting the node l in

L3 and the node k in L2. At layer L4, every node is an

adaptive node, with a node function as:

O4
l ¼

O3
lP

l O
3
l

fl ¼
O3

lP
l O

3
l

ðplx1 þ qlx2 þ rlÞ ð8Þ

where fpl; ql; rlg is the consequent parameter set of this

node. Finally in the last layer, L5, the single node in this

layer computes the overall output as the summation of all

incoming signals:

O5 ¼
X
l

O4
l ð9Þ

Similarly to the ANFIS model, a hybrid learning

approach has been also adopted for the AFINN

scheme [23]. All modelling schemes have been imple-

mented in MATLAB (ver. R2014a, Mathworks.com).

4 Decision support system development

An intelligent decision support system, based on the pro-

posed AFINN model, has been designed in such way in

order to accommodate all relevant information. The real

challenge in this paper is to propose a new learning-based

structure which could be considered as a benchmark

method towards the development of efficient intelligent

methods in food quality analysis. For this reason, AFINN’s

results are compared with those obtained by MLP neural

networks, ANFIS neurofuzzy identification models and

PLS regression schemes. Such schemes have been applied

recently in the area of food science and technology as

3908 Neural Comput & Applic (2017) 28:3903–3920

123



modelling systems [31]. Its overall schematic diagram

shown at Fig. 4 includes a classifier unit to discriminate

AIR/MAP based samples as well as an identification model

to predict the temperatures under which meat samples were

stored. Individual identification models have been also

developed for the prediction of the total viable counts of

bacteria (TVC) as well as the growth of salmonella (XLD)

for both AIR/MAP conditions.

Due to the multi-variable nature of multispectral data,

a dimensionality reduction algorithm was applied on

multispectral data used for training purposes. The robust

PCA (RPCA) scheme has been utilized to obtain prin-

cipal components that are not influenced much by out-

liers [32].

The RPCA is implemented in three main steps. First, the

data are pre-processed such that the transformed data are

lying in a subspace whose dimension is at most n� 1. A

preliminary covariance matrix is then constructed and used

for selecting the number of components k that will be

retained in the sequel, yielding a k-dimensional subspace

that fits the data well. Then the data points are projected on

this subspace where their location and scatter matrix are

robustly estimated, from which its k nonzero eigenvalues

l1; . . .; lk are computed. The corresponding eigenvectors are

the k robust principal components [32]. RPCA scheme was

implemented in MATLAB, with the aid of PLS_Toolbox

(ver. 8.0 Eigenvector.com). For this particular experimen-

tal case study, the first five principal components (PC) were

associated with the 99.675 % of the total variance, as

shown in Table 1. These specific PCs were extracted and

utilized as input variables to the learning-based models

developed for this specific case study.

A mandatory check however is required to validate the

integrity and applicability of the developed model in pre-

dicting/classifying unknown samples to make sure that

models could work in the future for new and similar data.

Full cross-validation, also called leave-one-out cross-vali-

dation (LOOCV), is commonly utilized to validate the

established models [33, 34]. LOOCV leaves one sample

out of the calibration process, which is used for validation.

All samples are used in an exhaustive way providing thus

repeatability of the results compared with other random

methods of partitioning of the training dataset. As the

number of samples was small, separation of the dataset into

training and testing subsets (hold-out method) would fur-

ther reduce the number of data and would result in insuf-

ficient training of the network. Therefore, in order to

improve the robustness of classification, the LOOCV

method has been adopted to evaluate the performance of

the developed models. Meanwhile, it is necessary to look

for effective methods to evaluate the predictive effective-

ness, robustness, reliability, and accuracy for practical

Fig. 4 Structure of proposed

decision support system

Table 1 Robust PCA scheme

PCs Robust PCA

Eigenvalue Prop. % Cum. prop. %

1 346 65.98 65.98

2 125 22.94 88.92

3 48.8 8.98 97.90

4 8.96 1.56 99.46

5 1.21 0.21 99.67
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applications. The performance of developed models for the

prediction of TVC and XLD for each meat sample was

determined by the bias (Bf) and accuracy (Af) factors, the

mean relative percentage residual (MRPE) and the mean

absolute percentage residual (MAPR), the root mean

squared error (RMSE) and finally the standard error of

prediction (SEP) [34, 35].

5 Results and discussion

The final dataset consisted of 56 minced beef samples at

aerobic and 56 samples at MAP conditions respectively.

Information related also to sampling times was also con-

sidered for this analysis.

5.1 Classification of meat samples

The classification accuracy acquired by the AFINN

model for the categorization of storage conditions

(Aerobic vs. MAP) is presented in the form of a confu-

sion matrix in Table 2. For this specific model, 22 rules

have been created by the clustering scheme, while the

input vector consisted of the five PCs extracted from the

RPCA algorithm. The hybrid parameter learning algo-

rithm resulted in a high speed training process, i.e. 20

epochs. The sensitivities reveal an overall excellent

performance for both cases. The model overall achieved

a 95.53 % correct classification, and 96.43 and 94.64 %

for AIR and MAP meat samples, respectively. The sen-

sitivities for AIR and MAP-based meat samples reveal

54 (including two marginal cases) AIR samples, and 53

MAP samples properly classified to their own class.

Misclassified samples ‘‘1A5’’, ‘‘1A10’’ correspond to

minced beef AIR samples stored at 5 and 10 �C
respectively and collected immediately (0 h of storage).

Similarly, misclassified samples ‘‘1M5’’, ‘‘1M10’’,

‘‘1M15’’ correspond to minced beef MAP samples stored

at 5, 10 and 15 �C respectively and collected instantly

(0 h of storage). Such misclassification can be explained

by the fact, that at t ¼ 0, meat samples share the same

spectral information.

The specificity index was also high, indicating satis-

factory discrimination between these two classes. In addi-

tion to AFINN, an ANFIS model has been also developed

to classify AIR/MAP samples. Under the same training

conditions, ANFIS performed very satisfactory, its per-

formance however was achieved with a relatively compu-

tational cost, utilising 32 fuzzy rules, using two

membership functions for each input variable. An overall

classification accuracy of 93.75 % resulted in 7 misclas-

sifications. In addition to previously misclassified samples,

new samples ‘‘4A0’’ and ‘‘4M0’’ were also failed to be

identified. These samples correspond to AIR and MAP

samples stored at 0 �C, collected after 138 h of storage

respectively.

5.2 Temperature identification model

The changes in microbial flora of fresh minced meat has

been monitored at different storage temperatures (0–15 �C)
under aerobic and MAP conditions. Results from micro-

biological analysis, revealed that changes in Total Viable

Counts follow temperature changes during storage and

thus, temperature could be considered as a good indicator

for meat spoilage. However, the knowledge of storage

temperature is not always available, thus this issue could be

considered as an obstacle for production line use.

The motivation for this research study derives from the

aim to predict, for the first time, directly the storage tem-

perature by utilising only multispectral information. Such

non-invasive temperature ‘‘measurement’’ could be then

utilised for the prediction of TVC and XLD levels. The

accuracy acquired by an AFINN model for the temperature

prediction was 93.75 % and is presented in the form of a

confusion matrix in Table 3. Seven minced meat samples

were not identified properly. These include the aerobic

‘‘1A0’’, ‘‘1A5’’, ‘‘5A10’’, ‘‘1A15’’ and the MAP ‘‘1M0’’,

‘‘1M5’’, ‘‘1M15’’ samples. The ‘‘1A0’’, ‘‘1A5’’, ‘‘1A15’’

cases correspond to AIR samples stored at 0, 5 and 15 �C

Table 2 Confusion matrix for

class of storage conditions
Class (AIR/MAP) Predicted class (AFINN) Row total Sensitivity

(%)
AIR MAP

AIR (n ¼ 56) 52 (?2 marginal) 2 56 96.43

MAP (n ¼ 56) 3 53 56 94.64

Column total (nj) 57 56 112

Specificity (%) 94.74 94.64

Overall correct classification (accuracy): 95.53 %
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respectively and collected immediately (0 h of storage). The

case ‘‘5A10’’ corresponds to an AIR sample stored at 10 �C
and collected at 48 h. Similarly, ‘‘1M0’’, ‘‘1M5’’, ‘‘1M15’’

cases correspond to MAP samples stored at 0, 5 and 15 �C
respectively and collected immediately (0 h of storage).

An ANFIS model has been also developed to predict

temperature levels. An overall classification accuracy of

92.85 % resulted in 8 misclassifications, as clearly shown

in Table 4. In addition to the misclassified samples which

were collected immediately (0 h of storage), new samples

‘‘9M5’’ and ‘‘13M5’’ were failed also to be identified.

These cases correspond to MAP samples both stored at

5 �C, but collected at 282 h and 378 h respectively.

Additionally, an MLP network has been implemented

using the same conditions using two hidden layers (with 24

and 12 nodes respectively). Due to the usage of gradient

descent learning algorithm, 20,000 epochs were applied,

resulting thus a rather slow training procedure. The pre-

diction accuracy obtained from MLP was inferior to those

achieved by both AFINN and ANFIS, with an overall rate

of 90.17 %.

5.3 Total viable counts identification model

AFINN models have been also constructed for TVC pre-

diction for both Aerobic and MAP cases [36]. For each

case, two simulation studies were carried out.

In the first study, AFINN’s input vector consisted of the

five PCs extracted from the RPCA algorithm, as well as the

sampling time and temperature information, while in the

second study only the extracted PCs were considered as

input variables. The number of rules used in these networks

was 34 and 22 for each study respectively.

Results revealed that the identification accuracy of the

AFINN model was very satisfactory in the prediction of

TVCs for the AIR dataset, indicating the advantage of this

approach in tackling nonlinear problems, such as meat

spoilage. The plot of predicted versus observed TVCs is

illustrated in Fig. 5, and shows a very good distribution

around the line of equity, with almost all the data included

within the ±0.5 log unit area.

Based on Fig. 5, the ‘‘7A5’’ pattern that corresponds to a

minced beef sample stored at 5 �C and collected after

Table 3 Confusion matrix for temperature using AFINN model

Temp (AIR/MAP) Predicted class (AFINN) Row total Sensitivity total (%)

AIR MAP

0 �C 5 �C 10 �C 15 �C 0 �C 5 �C 10 �C 15 �C

0 �C 13 1 13 1 28 92.85

5 �C 13 1 13 1 28 92.85

10 �C 1 13 14 28 96.43

15 �C 1 13 1 13 28 92.85

Column total (nj) 13 14 16 13 13 13 17 13 112

Specificity (%) 100 92.85 81.25 100 100 100 82.35 100

Overall correct classification (accuracy): (AIR: 92.85 %, MAP: 94.64 %) 93.75 %

Table 4 Confusion matrix for temperature using ANFIS/MLP models

Temp (AIR/MAP) Predicted class (ANFIS) Row total Sensitivity ANFIS (%) Sensitivity MLP (%)

AIR MAP

0 �C 5 �C 10 �C 15 �C 0 �C 5 �C 10 �C 15 �C

0 �C 13 1 13 1 28 92.85 89.28

5 �C 13 1 2 11 1 28 85.71 89.28

10 �C 14 14 28 100 89.28

15 �C 1 13 1 13 28 92.85 92.85

Column total (nj) 13 13 17 13 15 11 17 13 112

Specificity (%) 100 100 82.35 100 86.66 100 82.35 100

Overall correct classification (accuracy)—ANFIS: (AIR: 94.64 %, MAP: 91.07 %) 92.85 %

Overall correct classification (accuracy)—MLP: (AIR: 91.07 %, MAP: 89.28 %) 90.17 %
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234 h of storage was placed outside the specified area. The

performance of the AFINN model to predict TVCs in

minced beef samples in terms of statistical indices is pre-

sented in Table 5. The RMSE values of the model were

very low for testing samples, with an overall indicator of

0.1673. The accuracy factor Af, which indicates the spread

of results about the prediction, reveal that predicted total

viable counts were 1.4 % above from the observed values

for meat samples. The mean relative percentage residual

index (MRPR) verified the overall under-prediction for

samples (MRPR[ 0). Finally, the standard error of pre-

diction (SEP) index was 2.049 % for the overall samples

indicating a good performance of the network for microbial

count predictions.

In order to investigate further the capabilities of AFINN

model for this specific identification problem, a second

experiment was carried out, where the initial multi-AIR

dataset was divided into a training subset with approx.

82 % of the data and a testing subset with the remaining

18 % (i.e. 10 samples). The performance of the AFINN

model to predict TVCs in minced beef samples for this

second experiment, in terms of statistical indices is also

presented in Table 5. Based on the new calculated values

of the bias factor Bf , it can be assumed that model has over-

estimated (Bf[ 1) microbial population. However, a closer

comparison of AFINN’s performance at these two experi-

ments reveals a problem with the limited number of sam-

ples for training. The SEP index is worse in this second

case, and this reflects an open problem in learning-based

systems, i.e. the need to have as large as possible training

datasets.

An ANFIS and MLP models have been developed to

predict TVCs utilising the same training conditions. ANFIS

model performed very satisfactory, as shown in Table 6, its

performance however was achieved with a high computa-

tional cost, utilising 128 fuzzy rules and subsequently a

Fig. 5 AFINN prediction

model for TVC (AIR case—all

inputs)

Table 5 Statistical performance for AIR case (all inputs)

TVC—AIR case (LOOCV) PCA inputs, time, temperature

(P, O, denote the predicted and observed values, while n is

the number of observations)

Mathematical

expression

Temperatures (AFINN) Total

AFINN

Total

AFINN

(46/10)0 �C 5 �C 10 �C 15 �C

Mean squared error (MSE) 1
n

Pn
i¼1

P� Oð Þ2 0.0304 0.0599 0.0064 0.0153 0.028 0.1335

Root mean squared error (RMSE)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

O�Pð Þ2

n

q
0.1745 0.2447 0.0797 0.1238 0.1673 0.3654

Mean relative percentage residual (MRPR %) 1
n

P 100 O�Pð Þ
O

0.5465 -0.787 0.1028 0.5387 0.1003 -1.5921

Mean absolute percentage residual (MAPR %) 1
n

P 100 O�Pð Þj j
O

1.6684 2.1346 0.7659 0.9869 1.3889 3.3159

Bias factor (Bf) 10
P

log P=Oð Þ=n 0.9943 1.0075 0.9989 0.9945 0.9988 1.0152

Accuracy factor (Af) 10
P

log P=Oð Þj j=n 1.0169 1.0216 1.0077 1.0100 1.014 1.0332

Standard error of prediction (SEP %)
100
�O

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
O�Pð Þ2

n

q
2.1274 2.9941 1.0124 1.4728 2.0498 4.1566
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large number of consequent parameters. After a few trials,

the MLP was constructed with two hidden layers (with 12

and 10 nodes respectively) and one output node for the

TVC prediction.

The performance of the MLP network in predicting

TVC in meat samples in terms of statistical indices is also

presented in Table 6. Although both AFINN and ANFIS

share the same TSK-style architecture, the clustering

component allowed AFINN to achieve a superior perfor-

mance. On the other hand, the localisation spread through

the membership functions, is one advantage of ANFIS and

AFINN models against the classic MLP structure.

In addition to these computational intelligence

structures, partial least squares (PLS) and nonlinear

regression schemes have been applied to the same

dataset, in order reveal the advantage of advanced

learning-based methods. The PLS model was con-

structed using the same input vector as in the cases of

AFINN, and the PLS_Toolbox software (ver. 8.0,

Eigenvector.com) in association with MATLAB was

used to perform the PLS analysis. The SIMPLS algo-

rithm has been chosen as the appropriate optimisation

scheme [37]. The algorithm calculates the PLS factors

directly as linear combinations of the original variables.

These factors are determined such as to maximize a

covariance criterion, while obeying certain orthogonality

and normalization restrictions. The optimal number for

latent variables was set to 7. The following PLS model

is associated with this specific case study.

Y1 ¼ 6:63310þ 0:00555� X1þ 0:07886 � X2

� 0:00677� X3þ 0:05901� X4þ 0:14028� X5

þ 0:06439� X6þ 0:11419� X7 ð10Þ

where X1 represents the sampling time, X2 the temperature,

and the remaining Xi inputs the five PCs from the RPCA

scheme. Nonlinear regression is often used to model

complex phenomena which cannot be handled by the linear

model. The XLSTAT (v. 2015.2) software provides such

capability through the use of nonlinear regression (NLR)

modelling using the nonlinear iterative partial least squares

(NIPALS) algorithm. For this specific case, the following

4th order model has been constructed using XLSTAT and

achieved a remarkable performance compared to PLS

scheme. Its performance could be easily compared to

MLP’s results.

Y1 ¼ 4:96194þ 0:05334� X1� 0:33833 � X2

� 0:00504� X3þ 0:00893� X4

þ 0:11732� X5þ 0:00651� X6

� 0:11490� X7� 0:00026� X12

þ 0:07909� X22 � 0:00127� X32

þ 0:00079� X42 � 0:01233� X52

� 0:02901� X62 þ 0:27772� X72

þ 6:03629E�7� X13 � 0:00344� X23

� 5:67724E�6� X33 þ 0:00001� X43

� 0:00074� X53 þ 0:00156� X63

þ 0:03664� X73 � 5:13162E�10� X14

þ 7:81010E�7� X34 � 1:47147E�6� X44

þ 0:00006� X54 þ 0:00025� X64

� 0:04060� X74 ð11Þ

Statistical information for both NLR and PLS models is

illustrated at Table 6. However, such performance from

PLS scheme was expected, as it is well known that linear

PLS has some difficulties in its practical applications since

most real problems are inherently nonlinear.

For the second simulation study, the input vector was

consisted of the five only PCs extracted from the RPCA

algorithm. The plot of predicted versus observed TVCs is

illustrated in Fig. 6, and shows a good distribution around

the line of equity. The comparison of Fig. 5 with the

related Fig. 6 is more than evident. One sample, the

‘‘2A15’’, is clearly outside the border line of the ±0.5 log

unit area and it is associated to a meat sample stored at

15 �C and collected after 12 h of storage. Three samples

(i.e. ‘‘2A10’’, ‘‘2A5’’, ‘‘4A10’’) are however in the border

Table 6 Statistical performance for AIR case (all inputs-comparison)

TVC—AIR case (LOOCV) PCA inputs, time, temperature Total ANFIS Total MLP Total NLR Total PLS

Mean squared error (MSE) 0.0579 0.0744 0.0909 0.9022

Root mean squared error (RMSE) 0.2406 0.2727 0.3015 0.9498

Mean relative percentage residual (MRPR %) -0.2408 -0.486 -0.2166 -2.396

Mean absolute percentage residual (MAPR %) 2.4768 3.0725 3.3923 11.263

Bias factor (Bf) 1.0019 1.0041 1.0010 1.0109

Accuracy factor (Af) 1.0250 1.0310 1.0342 1.1105

Standard error of prediction (SEP %) 2.9479 3.3412 3.6938 11.6366
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line of the ±0.5 log unit area. ‘‘2A5’’ corresponds to a

minced beef, stored at 5 �C and collected after 42 h of

storage, while ‘‘2A10’’ and ‘‘4A10’’ were stored at 10 �C
and collected after 12 h and 36 h of storage respectively.

The performance of the AFINN model to predict TVCs in

minced beef samples for this second simulation, in terms of

statistical indices is presented in Table 7. Based on the

calculated values, undoubtedly the SEP index is worse in

this second scenario, and this is mainly explained by the

absence of the sampling time of meat samples from the

input vector. There is an open problem of incorporating the

time into the spectral information, which could be inves-

tigated in a future research. AFINN’s performance is still

however superior to other applied models, especially

against PLS which is considered as a standard modelling

tool in food microbiology.

An important advancement in food packaging tech-

niques is the development of Modified Atmosphere Pack-

aging (MAP). Modified atmospheric packaged foods have

become increasingly more available, as food manufactures

are interested for foods with extended shelf life. In addition

to aerobic TVCs prediction, AFINN models have been also

applied for minced beef samples packaged under modified

atmosphere conditions. The plot of predicted versus

observed TVCs for MAP spectra is illustrated in Fig. 7, and

shows a good distribution around the line of equity, with

almost all the data included within the ±0.5 log unit area,

only for the case where additional features (i.e. sampling

time, temperature) were included as input variables. Based

on Fig. 7, ‘‘2M15’’ and ‘‘14M5’’ patterns were clearly

outside the borderline. ‘‘2M15’’ corresponds to a minced

beef sample stored at 15 �C and collected after 12 h of

storage, while ‘‘14M5’’ corresponds to a sample stored at

5 �C and collected after 479.5 h of storage. Three samples

(i.e. ‘‘10M15’’, ‘‘12M5’’, ‘‘7M0’’) were however in the

border line of the ±0.5 log unit area. ‘‘10M15’’ corre-

sponds to a minced beef, stored at 15 �C and collected after

108 h of storage, while ‘‘12M5’’ was stored at 5 �C and

collected after 354 h. Finally, meat sample ‘‘7M0’’ corre-

sponds to a minced beef, stored at 0 �C and collected after

Fig. 6 AFINN prediction

model for TVC (AIR case—

RPCA inputs)

Table 7 Statistical performance for AIR case (PCA inputs)

TVC—AIR case (LOOCV) PCA inputs Temperatures (AFINN) Total

AFINN

Total

ANFIS

Total

MLP

Total

NLR

Total

PLS
0 �C 5 �C 10 �C 15 �C

Mean squared error (MSE) 0.0399 0.0607 0.0535 0.3661 0.1301 0.1989 0.2564 0.3004 1.1807

Root mean squared error (RMSE) 0.1998 0.2463 0.2314 0.6051 0.3606 0.446 0.5063 0.5481 1.0866

Mean relative percentage residual

(MRPR %)

-0.755 -2.208 -1.139 2.0953 -0.5018 -0.6087 -0.1852 -0.7906 -3.0959

Mean absolute percentage residual

(MAPR %)

2.3601 3.0684 2.7021 3.6667 2.9493 4.3986 5.2674 5.5568 12.8970

Bias factor (Bf) 1.0070 1.0210 1.0104 0.9739 1.0029 1.0032 0.998 1.0046 1.0127

Accuracy factor (Af) 1.0237 1.0299 1.0267 1.0426 1.0307 1.0455 1.0548 1.0567 1.1245

Standard error of prediction (SEP %) 2.4369 3.0141 2.9399 7.1969 4.4182 5.4645 6.2031 6.7148 13.3119
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234 h of storage. The performance of the AFINN model to

predict TVCs in minced beef samples for the MAP case, in

terms of statistical indices is presented in Table 8. The

RMSE values of the AFINN model were very low, with an

overall indicator of 0.22. A SEP value of 3.38 % was

calculated for this specific study, which is however higher

compared to the equivalent achieved SEP index for the

AIR samples.

Overall, a comparison against AFINN’s performance for

AIR case, reveal an increased level of difficulty in predicting

TVCs for samples packaged in MAP conditions. Similarly to

the AIR case, an experiment was carried out, where the

initial multi-MAP dataset was divided into a training subset

with approx. 82 % of the data and a testing subset with the

remaining 18 % (i.e. 10 samples). The performance of the

AFINN model to predict TVCs for this experiment, in terms

of statistical indices is also presented in Table 8. Based on

the new calculated values of the bias factor Bf, it can be

assumed that model has under-estimated (Bf\ 1) microbial

population, while the SEP index was increased to 4.24 %.

Furthermore, an ANFIS and MLP model have been devel-

oped to predict TVCs for the MAP case.

Similarly to the previous aerobic case study, both

ANFIS and MLP performed very satisfactory, as shown in

Table 9, MLP’s performance however was achieved with a

computational cost, by utilising two hidden layers (with 18

and 12 nodes respectively), while ANFIS model utilised

128 fuzzy rules. In addition to these learning-based struc-

tures, PLS and NLR schemes have been also applied to the

same dataset. The following PLS regression model is

associated with this MAP dataset

Y1 ¼ 5:01285þ 0:00516� X1þ 0:08757 � X2

þ 0:01390� X3þ 0:07088� X4

� 0:03170� X5þ 0:01656� X6

þ 0:00409� X7 ð12Þ

For this specific case, the following 5th order NLR

model has been also constructed using XLSTAT 2015 and

the results are also summarised at Table 9.

Fig. 7 AFINN prediction

model for TVC (MAP case—all

inputs)

Table 8 Statistical performance for MAP case (all inputs)

Statistical index—MAP case (LOOCV) PCA inputs, time,

temperature

Temperatures (AFINN) Total AFINN Total AFINN

(46/10)
0 �C 5 �C 10 �C 15 �C

Mean squared error (MSE) 0.046 0.0668 0.0163 0.0693 0.0496 0.0960

Root mean squared error (RMSE) 0.214 0.2585 0.1276 0.2632 0.2227 0.3098

Mean relative percentage residual (MRPR %) -0.021 0.2853 -0.057 -0.890 -0.1708 1.7648

Mean absolute percentage residual (MAPR %) 2.446 2.7323 1.7543 3.4124 2.5863 3.5787

Bias factor (Bf) 0.999 0.9964 1.0002 1.0068 1.0008 0.9779

Accuracy factor (Af) 1.025 1.0277 1.0178 1.0331 1.0258 1.0372

Standard error of prediction (SEP %) 3.362 3.7002 2.0716 3.8460 3.3784 4.2436
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Y1¼2:69484þ0:02708�X1�0:03163�X2

�0:03285�X3þ0:09362�X4

�0:02093�X5þ0:10341�X6

þ0:27366�X7þ0:00010�X12þ0:02910�X22

þ0:00084�X32�0:00448�X42þ0:01279�X52

�0:00246�X62�0:24896�X72�1:14461E�6�X13

�0:00138�X23þ0:00008�X33�0:00050�X43

þ0:00020�X53�0:00723�X63�0:12594�X73

þ2:94030E�9�X14�4:93287E�7�X34

þ0:00005�X44�0:00009�X54

�0:00006�X64þ0:04442�X74

�3:61721E�8�X35�1:43622E�6�X45

�2:69827E�6�X55 ð13Þ

AFINN model was also tested with the reduced input

vector for this MAP study. The plot of predicted versus

observed TVCs is illustrated in Fig. 8, and shows a dis-

tribution around the line of equity, with eleven samples

placed however outside the ±0.5 log unit area. This

specific plot, compared with the equivalent for aerobic

case, reveals the difficulty in predicting correctly meat

samples under MAP conditions. Five patterns (i.e.

‘‘2M15’’, ‘‘4M15’’, ‘‘5M15’’, ‘‘7M15’’, ‘‘11M15’’) were

associated to meat samples stored at 15 �C and collected

after 12 h, 36 h, 48 h, 72 h and 120 h respectively. Three

patterns (i.e. ‘‘4M5’’, ‘‘9M5’’, ‘‘13M5’’) were associated to

meat samples stored at 5 �C and collected after 138 h,

282 h and 378 h respectively. Two patterns (i.e. ‘‘4M0’’,

‘‘8M0’’) were associated to meat samples stored at 0 �C
and collected after 138 h and 258 h respectively. Finally,

one pattern, ‘‘4M10’’, was associated to meat samples

stored at 10 �C and collected after 36 h of storage.

The performance of AFINN model to predict TVCs in

minced beef samples for this MAP case study, in terms of

statistical indices is presented in Table 10. The sole use of

PCs in the input vector resulted in a severe deterioration of

the prediction accuracy, as clearly shown by all statistical

indices. Table 10, however, reveals an additional important

issue. Both neurofuzzy schemes (i.e. AFINN and ANFIS)

Table 9 Statistical performance for MAP case (all inputs-comparison)

Statistical index—MAP case (LOOCV) PCA inputs, time, temperature Total ANFIS Total MLP Total NLR Total PLS

Mean squared error (MSE) 0.0707 0.1103 0.181 1.0268

Root mean squared error (RMSE) 0.266 0.3321 0.4254 1.0133

Mean relative percentage residual (MRPR %) -0.2573 -0.3622 -0.6577 -3.5658

Mean absolute percentage residual (MAPR %) 3.4666 4.2612 5.5206 15.3059

Bias factor (Bf) 1.0012 1.0015 1.0027 1.0172

Accuracy factor (Af) 1.0349 1.0428 1.0559 1.1548

Standard error of prediction (SEP %) 4.0351 5.038 6.4542 15.3741

Fig. 8 AFINN prediction

model for TVC (MAP case—

RPCA inputs)
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managed to keep their SEP index below to 10 %,while in the

same time, the MLP neural network achieved a not satis-

factory prediction performance. In fact, MLP’s performance

could be comparable to the one achieved by the NLR

scheme which has been also applied to the same dataset.

5.4 Salmonella identification model

Finally, two AFINN models have been developed for the

prediction of growth levels of Salmonella (XLD) for both

AIR and MAP conditions. The number of rules created by

the clustering unit in these two AFINN networks was 28

and 32 for AIR and MAP cases respectively.

Results revealed that the accuracy of the AFINN model

was very satisfactory in the prediction of XLD for the AIR

dataset. The plot of predicted versus observed XLD is

illustrated in Fig. 9, and shows a very good distribution

around the line of equity, with all the data included within

the ±0.5 log unit area. Based on Fig. 9, an excellent fitting

has been achieved for the minced samples stored at 15 �C
and 10 �C. This can be also verified through the statistical

indices which are presented in Table 11.

Based on the calculated values, the SEP index is very

low for these temperatures, while the overall SEP value

is considered as acceptable for this specific problem,

taking into account the XLD growth graphs at Fig. 1.

Furthermore, ANFIS and MLP models have been

developed to predict XLD for the aerobic case. Simi-

larly to the previous aerobic case studies, both ANFIS

and MLP performed very satisfactory, as shown in

Table 11.

The prediction of salmonella growth levels under MAP

conditions, proved to be less accurate from the equivalent

AIR case, similarly to the previous TVC predictions. The

Table 10 Statistical performance for MAP case (PCA inputs)

TVC MAP case (LOOCV)—PCA inputs Temperatures (AFINN case) Total

AFINN

Total

ANFIS

Total

MLP

Total

NLR

Total

PLS
0 �C 5 �C 10 �C 15 �C

Mean squared error (MSE) 0.1287 0.1919 0.1062 0.3223 0.1873 0.3374 0.5844 0.7543 1.4963

Root mean squared error (RMSE) 0.3587 0.4380 0.3260 0.5677 0.4327 0.5808 0.7644 0.8685 1.2232

Mean relative percentage residual

(MRPR %)

0.0436 1.5998 1.0274 -2.998 -0.4913 -1.2785 -2.8391 -2.6597 -4.9347

Mean absolute percentage residual

(MAPR %)

4.3587 4.3702 4.2935 7.6113 5.1584 7.0959 10.5108 11.9987 18.8424

Bias factor (Bf) 1.0147 0.9825 0.9880 1.0243 1.0022 1.0058 1.0183 1.0131 1.0234

Accuracy factor (Af) 1.0439 1.0456 1.0446 1.0748 1.0522 1.0692 1.1088 1.1211 1.1912

Standard error of prediction (SEP %) 5.6239 6.2704 5.2939 8.2961 6.5656 8.8126 11.5981 13.1766 18.5589

Fig. 9 AFINN prediction

model for XLD (AIR case—all

inputs)
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plot of predicted versus observed XLD is illustrated in

Fig. 10 and shows a good distribution around the line of

equity, with all the data, except one, included within the

±0.5 log unit area. Based on Fig. 10, an excellent fitting

has been achieved for the minced samples stored at 15 �C.

The performance of the AFINN model to predict XLD in

minced beef samples for this MAP case study, in terms of

statistical indices is presented in Table 12. ANFIS model

performed very satisfactory, achieving a comparable to

AFINN’s SEP prediction.

Table 11 Statistical performance for AIR case (XLD case)

XLD—Statistical index AIR case (LOOCV) PCA inputs,

time, temperature

Temperatures (AFINN) Total

AFINN

Total

ANFIS

Total

MLP
0 �C 5 �C 10 �C 15 �C

Mean squared error (MSE) 0.0162 0.0476 0.0116 0.0260 0.025 0.0430 0.0644

Root mean squared error (RMSE) 0.1273 0.2183 0.1076 0.1612 0.159 0.2072 0.2539

Mean relative percentage residual (MRPR %) 2.4355 -1.029 -1.1968 -0.1493 0.015 -0.1971 -0.7459

Mean absolute percentage residual (MAPR %) 4.4350 7.2118 2.5285 2.6404 4.204 5.6081 5.8530

Bias factor (Bf) 0.9742 1.0064 1.0114 1.0003 0.998 0.9992 1.0030

Accuracy factor (Af) 1.0462 1.0736 1.0251 1.0265 1.043 1.0577 1.0607

Standard error of prediction (SEP %) 5.5684 8.9097 3.2613 2.6359 4.501 5.8586 7.1760

Fig. 10 AFINN prediction

model for XLD (MAP case—all

inputs)

Table 12 Statistical performance for MAP case (XLD case)

XLD—Statistical index MAP case (LOOCV) PCA inputs,

time, temperature

Temperatures (AFINN) Total

AFINN

Total

ANFIS

Total

MLP
0 �C 5 �C 10 �C 15 �C

Mean squared error (MSE) 0.0327 0.0367 0.1267 0.0020 0.0495 0.0661 0.1054

Root mean squared error (RMSE) 0.1808 0.1917 0.3560 0.0449 0.2226 0.2571 0.3247

Mean relative percentage residual (MRPR %) -0.477 -3.272 2.5640 -0.430 -0.4041 -1.076 -0.2048

Mean absolute percentage residual (MAPR %) 4.9747 4.8535 8.2098 0.7047 4.6857 6.0833 7.9474

Bias factor (Bf) 1.0029 1.0305 0.9692 1.0042 1.0015 1.0071 0.9948

Accuracy factor (Af) 1.0509 1.0473 1.0884 1.0070 1.048 1.0624 1.0814

Standard error of prediction (SEP %) 6.4911 7.3320 10.741 0.8298 6.3018 7.2788 9.1919
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6 Conclusions

In conclusion, this simulation study demonstrated the

effectiveness of the detection approach based on multi-

spectral imaging which in combination with a learning-

based identification model could be considered as an

alternative technique for monitoring meat spoilage.

Although MLP and PLS schemes have already been

applied to similar multispectral/hyperspectral studies, the

exploitation of neurofuzzy models for this specific imaging

related application is completely novel and this is the main

contribution of this paper. The realization of AFINN model

follows the classic TSK structure, incorporating however a

clustering unit in the fuzzification section and an additional

internal competitive clustering layer. Overall prediction for

TVC and XLD cases has been considered as very satis-

factory, although lower performance was observed espe-

cially for the MAP cases. ANFIS’s prediction performance

appeared to be comparable to AFINN’s case; however such

results were achieved with huge expensive computational

cost. Prediction performances of MLP, and PLS schemes

revealed the deficiencies of these systems which have been

used extensively in the area of Food Microbiology. The

problem of small amount of real experimental dataset has

been tackled in this paper through the LOOCV approach.

Research work is in progress to generate ‘‘virtual’’ data

from limited experimental spectral samples based on a

modified version of the mega-trend-diffusion technique

[38]. Future work will be also focused on incorporating in

the decision support system information from additional

sensors, such as FTIR.
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