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assets. In this paper, a dedicated
is proposed to enhance the onboard safety of the URV. First,
is built by integrating the state information of sensors, actuators and running status.
Second, in the risk analysis subsystem, the onboard syste
fuzzy inference capabilities of the

which enables the intelligent decision to take critical operation and ensure the safety of the URV.
Finally, the proposed fault treatment system is
Experimental results demonstrate the feasibility and efficiency of the intelligent fault treatment system for the

The marine community has witnessed a remarkable growth of underwater robotic vehicles (URVs) for undersea
exploration and exploitation in recent decades. Yet, it is critical to and

and render critical decision to ensure the safety of the URV with high-value
including and

on the adaptive learning and
Third, in the safety decision

1. Introduction

Although the vast ocean is rich in biological organisms, chemicals,
mineral deposits, natural gas and petroleum resources (Blidberg et al.,
1991), the oceanic environment is quite harsh and hostile such that
human beings are not capable of diving into deep sea or staying
underwater for long time intervention. As an emerging marine vehicle
without human being onboard, underwater robotic vehicle (URV) with
persistent autonomy plays an important role in undersea activities
(Roberts and Sutton, 2006), and it is widely used for accomplishing
underwater missions, such as offshore oil/gas exploration and exploi-
tation (Xiang et al., 2015a), oceanographic survey (Choyekh et al.,
2015), deepsea sampling (Xiang et al., 2015b), environmental assess-
ment (Arshad, 2009), subsea cable/pipeline inspection (Xiang et al.,
2016a), and underwater intervention (F. Zhang et al., 2015).

Yet, when the URV navigates in the complex and harsh undersea
environment, one fault of the onboard system might threaten the safety
of the URV if there are no risk analysis and emergent decision
functions onboard. In the case of minor system fault, the URV cannot
successfully accomplish underwater tasks. However, a serious fault will
results in a terrible catastrophe that the URV is missing or cannot be

* Corresponding author.

recovered. The loss accidents of underwater vehicle KAIKO and Nereus
brought the underwater robotic community huge losses in history
(Momma et al., 2004; Showstack, 2014)). Hence, as a paramount tool
for replacing human being to explore and exploit undersea resources,
autonomy and safety are the most critical requirements for the URV.
With the continuous improvements of URV's functions, the complexity
of the onboard system is also increasing and its safety attracts more
and more attentions, which demands the development of fault diag-
nosis for thrusters, decision making and fault-tolerant control in order
to guarantee the safety of the vehicle (Lazakis et al., 2010, 2016; Zhang,
2012; Chu and Zhang, 2014).

In fact, onboard sensors and thrusters carried by the URV are
necessary for underwater activities but they are also the main causes of
faults that at least destroy the successful mission accomplishment, and
worst of all, pose a huge threat to the safety of the URV (Zhu and Sun,
2013). According to the concept of device and system, the faults of the
URV in this paper are classified into two categories:

(1) Device-level fault: This mainly refers to single device fault, for
instance, thruster failure, or a certain type of device faults resulted by
the hostile oceanic environment or internal unknown faulty factors.

(2) System-level fault: This specifically refers to the comprehensive
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fault as a consequence of sensor fault, thruster fault, communication
interruption, over-depth, timeout and other faulty aspects in the
device-level. Hence, it has a significant impact on the URV system
and onboard safety.

In recent decades, some intelligent methods have been adopted to
diagnose the device fault of the URV, especially to single onboard
thruster with a
For example, was accomplished by evaluat-
ing any significant change in the behavior of the vehicle via the
onboard (Alessandri et al., 1999).
Liu et al. proposed the fault diagnosis method based on cerebellar
model articulation controller (CMAC) neural network to
in Liu et al. (2012). Zhu et al.
achieved information fusion and fault diagnosis based on credit
assignment-based fuzzy-CMAC neural network in the OUTLAND
underwater vehicle (Zhu and Sun, 2013). An improved fractal feature
integrated with wavelet decomposition identification method was
proposed to overcome the identification error and its inconsistency
(Liu et al., 2016). Furthermore, thruster fault detection, isolation and
identification in autonomous underwater vehicle were completed based
on grey qualitative simulation (M.-J. Zhang et al., 2015).

In addition, some researchers embarked on fault diagnosis for
multiple actuators by detecting the state of each one in order to enable
fault-tolerant control. Tarun et al. considered that the thruster of ODIN
underwater vehicle has a fault if the different between the desired
output voltage and the actual one is larger than a predefined threshold.
Subsequently, the weighted pseudo-inverse method was used to
reallocate the thruster forces and achieve the fault-tolerant control
function (Podder and Sarkar, 2001). Sarkar et al. presented a redun-
dancy resolution scheme that considers the presence of an excess
number of thrusters along with any thruster fault and determines the
reference thruster forces to produce the desired motion (Sarkar et al.,
2002)). Edin et al. proposed a two-layer framework consisting of fault
diagnosis subsystem and fault accommodation subsystem. The former
monitored the state of each thruster by integration of self-organizing
maps and fuzzy logic clustering methods. The latter used information
provided by the fault diagnosis subsystem to perform control realloca-
tion (Omerdic and Roberts, 2004). In addition, fuzzy logic, sliding
mode and neural network algorithms were widely applied to fault-
tolerant control of the URV (Akmal et al., 2012; Wang et al., 2015).

Above research activities only consider the thruster fault in the
device-level, and few fault diagnosis of onboard URV system are
completed by considering both thruster and sensor faults. Takai et al.
adopt the method of artificial neural network to build the dynamics
model of Twin-Burger underwater vehicle, and used model matching
part to detect the output value of actual sensors. Yet, it was assumed
that no more than one kind of sensor or thruster fault occurred at any
time (Takai and Ura, 1999). Zhang et al. proposed a fuzzy weighted
support vector domain method that can effectively solve the problem of
low classification accuracy in the process of multi-fault pattern
classification owing to the effect of sparse density and uneven
distribution of fault samples. However, this method only diagnoses if
there occurs a fault of the thrusters or sensor, and the risk level of the
whole URV system can not be determined (Zhang et al., 2014). In
addition, Richard et al. adopted the Livingstone 2 (L2) diagnosis engine
on Autosub6000 vehicle without taking into account interactions
among components of the onboard system (Dearden and Ernits, 2013).

Hence, it can be concluded that various intelligent methods have
been developed and applied to diagnose the device-level fault of the
URV in recent research activities. However,

such as thruster fault, sensor fault, communication
interruption and other aspects,

It means that comprehensive
fault analysis in the system-level is not taken into account. In addition,
although the fault-tolerant control can be designed after fault diagnosis
in the previous research, it is
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In this

sense, besides classic onboard fault analysis,

to ensure the safety of the URV. Compared with the classic fault-
tolerant control, emergency operation is at the expense of the work
capacity of the URV to some extent, but it reduces the risk of the loss
and guarantees the safety of the URV.

Motivated by above considerations, this paper takes into account all
the state information of actuators, sensors and the running status of
the URV to build fault tree model. Subsequently, a two-layer fault
treatment system including risk analysis subsystem and intelligent
decision subsystem is proposed to evaluate the system risk of the URV,
and then render critical to ensure the safety of the URV by taking
emergency operations. In this paper, the main contributions are
fourfold as follows:

(1) The

including
actuator fault, sensor fault, communication interruption, over-depth,
power supply fault, water leakage and operation timeout.
(2) The,
[BEEVEERI (MFNN) method is proposed to identify the system risk of the
URV from device-level faults. The MFNN method is adopted to make
by
learning a small amount of samples offline, and then completes the
online rapid fuzzy inference to diagnose the system fault.
(3) The proposed

o evaluate the system risk
of the URV, and then rules to render
intelligent decision and take critical operations, in order to ensure the
safety of the URV.

(4) Numerical simulations in MATLAB and experiments of hard-
ware in loop test on the VxWorks real-time operating system (RTOS)
validate the feasibility and efficiency of the proposed two-layer fault
treatment system for the URV.

The rest of this paper is organized as follows: Section 2 briefly
present the URV prototype. Section 3 illustrates the principle of risk
analysis based on the MFNN method and the process of intelligent
decision. Numerical simulation results are presented in Section 4. The
structure of hardware in loop test platform, algorithm implementation
on the PC/104, and the experimental results are given in Section 5.
Conclusions and future work are summarized in Section 6.

2. Prototype overview

This section describes a torpedo-shaped URV prototype developed
at the lab of autonomous robotic marine system (ARMS), which aims at
performing environmental survey and surveillance task in medium
range shallow water. In addition, the section depicts the hardware and
software architecture of the URV, which inspires us to build fault tree
analysis model of the whole system in the next section.

2.1. URV prototype

Fig. 1 presents the model of a torpedo-shaped URV, which is
divided into the bow, middle and stern parts. The bow part is built as a
frame structure, where a lateral thruster and a vertical thruster are
accommodated for the horizontal and vertical motion, respectively.
There is also a network camera for underwater observation and a
ballast device for emergent recovery. The middle part of the URV is a
cylindrical pressure hull containing a lithium-ion rechargeable battery,
an embedded onboard controller, and some measurement and naviga-
tion devices. The onboard controller stack is composed of a PC/104
CPU board card, two multi-functional analog and digital I/O board
cards, and two serial communication board cards. The measurement
devices include a depth gauge and two water leakage probes. The
navigation devices include a FOSN and a Mini-AHRS that measure the
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(b) Prototype of the URV

Fig. 1. The URV developed at the ARMS lab. (a) Digital model of the URV, (b) Prototype of the URV.

position and attitude of the URV. The stern part is also built as a frame
structure, which accommodates one thruster for the horizontal motion
and another one for the vertical motion, a main propeller driven by the
DC motor, and four rudders driven by stepper motors.

This URV measures approximately 5.34 m long and 0.62 m wide,
and it weighs approximately 380 kg in air and —0.21 kg in water. In
addition, it is designed to have a maximum cruising speed of 6 knots.
The rest specifications are shown in Table 1.

2.2. Hardware architecture

The overall hardware architecture of the URV is illustrated in Fig. 2.
The underwater onboard control system based on the embedded PC/
104 controller communicates with the surface monitoring station via
fiber, fiber transceiver and ethernet switch. A MSP-8 integrated board
acquires data from the depth gauge, leakage sensor, Mini-AHRS and
FOSN. The main propeller, four vertical/lateral thrusters and two pairs
of rudders are driven by the MSP-4 board, ADT300 board and MSP-8
board via RS-485, DAC and RS232 interface, respectively. The manage-
ment unit of the Lithium-ion battery sends the status information to
the MSP-4 board via RS485. The power allocation board is controlled
via a RS-232 serial port of the MSP-8 board to switch on/off the power
supply of all the devices (Li et al., 2005). Once the fault treatment
system detects a serious fault, the onboard controller will make critical
decision to release the ballast via a DIO channel on the ADT652 board
in order guarantee the safety of the URV.

2.3. Software architecture

The overall software architecture of the URV consists of the surface
monitoring system and the underwater onboard system composed of
five units, including network communication unit, motion control unit,

Table 1
Specification of the URV prototype.

Ttem Specification

Depth rating 300 m

Propulsion Thrusters: 4xTechnodyne Model 280;
Steering rudders: 4xHSM20147A;
Main propeller: 1x840W

Sensor INS: FOSN & Mini-AHRS; Depth: MB300;
Leakage: ST003; Camera: OE14

Controller PC/104(ISA); CF(4G); ADT300(D/A,DIO);

ADT652(A/D);MSP-4 & 8(COM)
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sensor perception unit, actuator unit and fault treatment unit, as shown
in Fig. 3. According to the operation mission assigned from the surface
monitoring system and the real time position/orientation information
collected by the sensor perception unit, the motion control unit runs
online control algorithm and then sends control commands to the
actuator unit in order to accomplish underwater operation mission.
Meanwhile, the network communication unit transmits the real time
posture and running status information of the URV from underwater
onboard system to the surface monitoring system. In addition, the fault
treatment unit will be alerted once a system fault occurs.

This paper focuses on working principle and algorithm of fault
treatment unit including risk analysis subsystem and intelligent
decision subsystem. In fact, this fault treatment unit works closely
with other four onboard units as shown in Fig. 3, where the red line
represents the fault flow and the black line denotes the information and
control flow. In fact, the fault treatment system completes the acquisi-
tion and judgment of the following fault status in terms of multi-task
operations.

(1) Judge whether or not the PC/104 can regularly receive the
feedback information from the depth gauge, Mini-AHRS and FOSN,
and then acquire and analyze the feedback information of the battery
unit and leakage sensor;

(2) Judge whether or not the PC/104 can receive the acknowl-
edgement information from four vertical/lateral thrusters and two
pairs of rudders, and then acquire and analyze the feedback informa-
tion of the main propeller;

(3) Detect and judge the communication status through the feed-
back information of read function of the onboard codes;

(4) Calculate the ratio of the running time to the set time, and the
present depth to the predefined depth threshold.

After finishing fault detection of the URV onboard system, risk
analysis can be carried out by adopting the MFNN method, and then
the output information and critical decision result by applying the
maximum membership and threshold principles will be sent to the
motion control unit in order to take an emergent operation. For
example, if the decision result indicates that a serious system fault
has occurred, the ballast will be released by the motion control unit to
drive the URV to surface up rapidly in order to guarantee its safety.

3. Risk analysis and critical decision
As shown in Fig. 4, the fault tree model of the underwater onboard

system for the URV is firstly established based on the hierarchy of fault
and its causality in order to complete the judgment of device-level fault.
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Fig. 2. Hardware architecture of the URV.
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Fig. 3. Software architecture of the URV.

i Fuzzy neural network model

Subsequently, the real-time device-level fault information is sent to risk
analysis subsystem based on the MFNN model in order to diagnose the
system risk of the URV. Finally, the intelligent decision subsystem
applies the maximum membership and threshold principles to evaluate
the system risk, and then makes critical decision and takes the
corresponding emergent operation to ensure the safety of the URV.

3.1. System fault tree model

Fault tree analysis (FTA) is a top-down deductive failure analysis in
which an undesired state of a system is analyzed using Boolean logic to
combine a set of lower-level events (Lee et al., 1985). This analysis
method is mainly used in the fields of safety engineering and reliability
engineering to understand how systems can fail, to identify the best
ways to reduce risk or to determine event rates of a faulty accident or a
particular system level failure.

which is called the top event,
and then searches all the necessary or sufficient reasons resulting in the
top event as the intermediate event, until the search reaches the
which are called This logic
relationship is illustrated as a fault tree in Fig. 5, which consists of
the top event, undeveloped event, intermediate events, basic events and
the logic OR gates (Cheng et al., 2014).

——

Fig. 4. System architecture of enhanced onboard safety of the URV.
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Fig. 5. Topology of URV fault tree.

Table 2
Events of the fault tree.

Top event Undeveloped event
T Fault alarm Al Communication interruption
Intermediate event
M1 Sensor fault M2 Power supply fault
M3 Leakage alarm M4 Actuator fault
Basic event
B1 Depth gauge fault B2 Mini-AHRS fault
B3 FOSN fault B4 STO003 fault
B5 Over-depth alarm B6 SOC alarm
B7 Undervoltage alarm B8 Over temp. alarm
B9 Low temperature alarm B10 Current alarm
B11 Bow leakage B12 Stern leakage
B13 Timeout alarm B14 Propeller fault
B15 Rudder fault B16 Thruster fault

As listed in Table 2, the fault events include communication
interruption between the surface monitoring system and the under-
water onboard system, sensor fault, over-depth, power supply fault,
water leakage, operation timeout, and actuator fault. In the fault tree
model of the URV, the fault alarm is the top event and the commu-
nication interruption is the undeveloped event. Sensor fault, power
supply fault, water leakage and actuator fault are the intermediate
events. Depth gauge fault and other fifteen faults are the basic events.
All the basic events constitute the intermediate events via logic OR
gates, and then all the intermediate events render the top event by logic
OR gates.

In the fault treatment system, the principle of judging operation
timeout and over-depth is to calculate the ratio of the present value to
the set threshold, and the power supply fault and water leakage are
detected from the real-time feedback information. In addition, the rest
faults are identified based on whether or not the PC/104 can receive the
updated data from external devices or analyzed through the commu-
nication data packet.

457

Ocean Engineering 140 (2017) 453—465

3.2. Risk analysis based on MFNN

This section firstly explains why to choose the Mamdani fuzzy
neural network (MFNN) method for risk analysis subsystem, and then
describes the implementation steps of the MFNN method. Finally, the
critical decision process is presented in details.

3.2.1. Why to choose MFNN

In this paper, for all kinds of faults, the
represented by positive small (PS),
positive middle (PM) and positive big (PB), respectively. The fault
status corresponding to different fuzzy ratings and output range of the
original detection information are shown in Table 3. Obviously, it
without any
simplification. In this sense, programming implementation is arduous
since it will take a long time to look up the table, theorize and make
decisions, which further results in the poor real-time performance. In
addition, it is difficult to reduce the number of rules within an
acceptable range. Hence, the direct fuzzy logic method is not suitable
for the onboard fault inference for the URV.

Nevertheless, the fuzzy logic method is a powerful tool to deal with
uncertainty and nonlinear problems (Ramot et al., 2003; Wang and Er,
2016; Xiang et al., 2017). For instance, the fuzzy controller is adopted
to complete the diagnostics of an electrical power system for a boiling
water reactor nuclear power plant (Gmytrasiewicz et al., 1990). On the
other hand, the

(Yeh et al., 2011; Chu

etal., 2016; Peng et al., 2017. A combined artiﬁcia_

(Ruilin and Lowndes, 2010). Motivated by those considerations, the
paper builds the fault tree model and then proposes the MFNN method

The parameters of risk
analysis subsystem are set by adopting neural network to offline learn a
and
on the

then the
PC/104 can be completed, since the MFNN method is able to solve the
problems of complicated enumeration and demanded real-time re-
sponse. Therefore, the MFNN method is qualified for onboard risk
analysis of the URV with uncertainty and complexity.

3.2.2. Architecture of MFNN
By referring to Figueroa-Garcia et al. (2015), a_
is proposed, as
shown in Fig. 6, where the circle represents the node of the network
structure, and the arrow represents the relationship between the nodes
of different layers. The five layers are described as follows:

(@8] The node of this layer is directly
connected to each component of the fault input vector and represents
the fault status. All input data x, x,, ..., x, constituting a vector
X =[x, xp, ..o, x,,]T should be normalized to the interval [0, 1], where
n represents the dimension of input data. As illustrated in Table 3 and
Fig. 6, this layer has seven nodes, namely N, =n = 7.

2 This layer is used to calculate the
membership function p/i( = u f{’;(xl-)) of each component of the input
data in a fuzzy set A;, where i = 1, 2, ..., N,, and j=1,2,...,m. As
listed in Table 3, m; denotes the fuzzy partition of the ith input is equal
to 3. As each node of this layer represents a linguistic variable, its total
number is 3x7, namely N, = ZYm, = 21. As shown in Fig. 7, the
following Gaussian membership function is chosen in this layer

i=ci)’

; 2
ui=e

®
where < and oy, Tepresent the center and the width of membership

function, respectively.
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Table 3
Fault set and Fuzzy ratings.
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No. Fault type

Fuzzy rating

Detection range

X1

X2

X3

X4

X5

X6

Communication interruption

Sensor fault

Over-depth

Power supply fault

Water leakage

Timeout

Actuator fault

PS-The communication function is normal
PM- There is occasional interruption in the process of communication
PB- The communication is completely interrupted

PS - The PC/104 can receive updated data from AHRS, FOSN and MB300
PM -The PC/104 cannot receive updated data from AHRS or FOSN
PB -The PC/104 cannot receive updated data from MB300

PS-No over-depth
PM-The depth of the URV is close to the bounding depth
PB-The depth of the URV is larger than the bounding depth

PS - No alarm
PM - The undervoltage alarm or/and low temperature alarm
PB - The overvoltage alarm or/and high temperature alarm

PS -No leakage
PM - Bow leakage or stern leakage
PB - Serious bow leakage and stern leakage

PS-No timeout
PM-The total running time of the onboard system is close to the set time
PB-The total running time of the onboard system is larger than the set time

PS - No failure of all the actuators
PM - Failure of the main propeller, rudders or horizontal thrusters
PB - Failure of two vertical thrusters

0.0 ~0.25
0.25 ~0.75
0.75 ~ 1.0

0.0 ~0.25
0.25 ~0.75
0.75 ~ 1.0

20 ~ 200
200 ~ 300
300 ~ 310

0.0 ~0.25
0.25 ~0.75
0.75 ~ 1.0

0.0 ~0.25
0.25 ~0.75
0.75 ~ 1.0

0.0 ~ 6.0
6.0 ~ 8.0
8.0 ~ 10.0

0.0 ~0.25
0.25 ~0.75
0.75 ~ 1.0

(3) Each node of this layer is a [FlcHomtael

and each one uses a t-norm to compose the
intersection operation. The output of the jth node is defined as its
activation level, namely a;, which can be represented as

— 0y J
aj = lul 1/422...”nn

where

jl. ef{l,2,...m},i=1,2,..,n,j=1,2,....mm

Therefore,

from layer 3 as follows:

a = a/ a;
o) Y i E i

(5)

m;

y = o

namely N; = 3. As

shown in Fig. 7, only the linguistic variable near the center of where

membership function has large degree of membership, while the degree

[0)

for a given fault state input. Hence,

except for a few node output.

(4)_ The number of nodes in this layer is the

Layerl

b Wy Wy ... O, @,
_|” | @ @ e 0| @,

y=| o= 7 . "|a=
bA Wy W Dy a,

Fig. 6. The architecture of MFNN.
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namely N, = m = 3. This aggregation process is
by using the sum of all activation levels coming

3

This layer calculates the [ISTuZzItCaS

by using all aggregated values @ and
the connection weights @ between layer 4 and layer 5 as follows:

C))

6))
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Fig. 7. The membership function of input variables.

(9)
Dy

xlﬂq)

Fig. 8. The basic structure of single node.

Table 4
Critical decision and emergency operations.

No. Fault state Recovery operation
I Normal state Continue to work
(zo)
I Minor fault Continue to work and
(PZ) wait for the emergent coperation
I Small fault Turn off the power supply & let the
(PS) URV surface up by its own buoyancy
v Middle fault Stop the propeller & turn on the vertical
(PM) thrusters to drive the URV to surface up
A% Large fault Turn off the power supply & release
(PB) the ballast to drive the URV to surface up

In fact, the defuzzification
which can be used to evaluate the system risk and render
critical decision by taking the following learning algorithm.

3.2.3. Learning algorithm
The MFNN model in this paper:

since the fuzzy partition
of each component of input variables and the center and width of the
membership function in layer 2 have been determined. Although there
is a large amount of learning strategies which can be applied to the
learning algorithm of connection weights, the back propagation algo-
rithm is chosen as the MFNN model essentially is a multi-layer feed
forward network.

In order to derive the error back propagation algorithm, the
relationship between the input s; and the output x; of single node

Table 5
Learning samples.

Ocean Engineering 140 (2017) 453—465

No. Input: x Output: y

1 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] [0.0, 0.0, 0.0, 0.0, 0.0]
2 [0.2, 0.2, 160, 0.2, 0.2, 4.8, 0.2] [0.7, 0.5, 0.0, 0.0, 0.0]
3 [0.0, 0.0, 0.0, 0.0, 0.0, 8.4, 0.0] [0.0, 0.0, 1.0, 0.0, 0.0]
4 [0.2, 0.2, 160, 0.2, 0.2, 8.4, 0.2] [0.0, 0.9, 0.3, 0.0, 0.0]
5 [0.0, 0.5, 0.0, 0.0, 0.0, 0.0, 0.0] [0.0, 0.0, 1.0, 0.0, 0.0]
6 [0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.0] [0.0, 0.0, 1.0, 0.0, 0.0]
7 [0.0, 0.0, 0.0, 0.0, 0.0, 7.0, 0.5] [0.0, 0.0, 0.0, 1.0, 0.0]
8 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] [0.0, 0.0, 0.0, 0.0, 0.0]
9 [0.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] [0.0, 0.0, 0.0, 0.0, 1.0]
10 [0.0, 0.8, 0.0, 0.0, 0.0, 0.0, 0.0] [0.0, 0.0, 0.0, 0.0, 1.0]
11 [0.0, 0.0, 300, 0.0, 0.0, 0.0, 0.0] [0.0, 0.0, 0.0, 0.0, 1.0]
12 [0.0, 0.0, 0.0, 0.8, 0.0, 0.0, 0.0] [0.0, 0.0, 0.0, 0.0, 1.0]
13 [0.0, 0.0, 0.0, 0.0, 0.8, 0.0, 0.0] [0.0, 0.0, 0.0, 0.0, 1.0]
14 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8] [0.0, 0.0, 0.0, 0.0, 1.0]

should be described. Fig. 8 shows the basic structure of the ith node in

layer gq.

The input 5% and the output x¢ of this node are defined as:

-1 -1
si(q) =fi(q)(xl(q )’ xz(q )’ X

xl_(q) — gi(q)( Sl_(q))

g-D. (@)
g-1)° @

i1 s Dys wees O,

@)
ing— (6)

@)

For the layer 5, the input s and output x* are given as follows:

m m
G = Oy = @ _ -
$O =100 = Y ogy” = X oud
= =1

5 5 5 5
xi( ) — gi( )(S; )) — Si( ) =y

©))
C))

Taking into account r nodes in the layer 5, the_

can be calculated as:

1 r
E=o 300y =y
i=1

(10

where yg; is the desired output and y; is the actual output. Another
popular measure method is the

defined as:

2
RMSE = E?:l O =
r

The first step of this error back propagation algorithm is to calculate

the intermediate variable 6 denoted as:

5.(5) A _ oE

s

oy

OE
=X T

an

(12)

Second, the first-order gradient algorithm of the connection weights

 is derived as:

9E
owy;

oE 05
0. Si(S) wij

5),.4 —
== 070 = - Oy -7

13)

Vil e gradient descend algorithm or updatin th connection

w is designed as:
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RMSE

2 4 B 8 10 12 14 16 18 20
step

(a) RMSE of different learning rates

ec

step
(b) Error ec = yg; —yi, = 0.75

Fig. 9. Learning error of fuzzy neural network. (a) RMSE of different learning rates, (b)
Error ec =y, — 3, # = 0.75.
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Fig. 10. RMSE of different initial values.

oE
ik + 1) = w;k) — p—
’ ' d 14

where $ € [0, 1] is the learning rate. In general, smaller value of
might result in larger computing efforts, and larger value of f might
result in faster convergence of the learning algorithm with higher
deviations.

460

Table 6

Ocean Engineering 140 (2017) 453—465

Comparison of desired output and actual output.

No. Output Value
Sample 3 Desired output [0.0, 1.0, 0.0, 0.0, 0.0]
Actual output [0.013, 1.092, 0.035, 0.004, 0.003]
Shifted output [0.513, 1.592, 0.535, 0.504, 0.503]
Samplel4 Desired output [0.0, 0.0, 0.0, 0.0, 1.0]

Actual output
Shifted output

[0.007, 0.004, -0.001, —0.001, 0.999]
[0.507, 0.504, 0.499, 0.499, 1.499]

(b) Result of sample 14

Fig. 11. The decision output of two different test samples. (a) Result of sample 3, (b)
Result of sample 14.

3.3. Critical decision

This section shows the
and then describes the

3.3.1. Emergency operations

According to the risk degree of system fault, the critical decision
and corresponding emergent operations are drawn up in Table 4. The
decisions and operations are dependent on expert knowledge rules. For
instance,
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(b) Result of another random fault

Fig. 12. The decision output of two random system-level faults. (a) Result of a random
fault, (b) Result of another random fault.

according to the expert knowledge rules. If a serious system fault
occurs, the onboard system will turn off the power supply and release
the ballast to drive the URV to surface up rapidly. Decisions III, IV, and
V are intelligent because the onboard fault treatment system can
autonomously make rapid decision based on MFNN method to ensure
the safety of the URV.

3.3.2. How to make critical decision

There are two principles for the fault treatment system to make
critical decisions:

(€8] According to Table 4, the
dimension of the output vector of risk analysis subsystem should be 5,
namely r=5. As Gaussian membership functions are chosen for all the
parameters of the output vector, and y; represents the degree of
membership of decision i. If max{y,, y,, Vg Yy X5} 18 equal to y; based
on the maximum membership principle, the system-level fault is most
likely to belong to the fault classification corresponding to decision i.
Note that the maximum membership principle only considers the
relative size of degree of membership, but ignores the absolute size.
Hence, the summarized information of this principle is quite few

Ocean Engineering 140 (2017) 453—465

despite of the simplicity, which results in the one-sidedness character-
istics of making decision.

(2) Threshold principle: Taking into account the one-sidedness of
making decision dependent on maximum membership principle, a
threshold level 4 € [0, 1] is introduced in the intelligent decision

subsystem.
RSB (> < on the

fault decision ‘subsystem will
safety of the URV because a
Otherwise it will make a higher decision i + 1 to
ensure no risk at all by considering the fact that the URV is near the
water surface and relatively safe.

4. Numerical simulation

In order to validate the feasibility of the fault treatment system, the
numerical simulation in MATLAB is firstly carried out.

Subsequently, the fault treatment system including

4.1. Sample learning

As listed in Table 5, 14 data set covering all the seven types of fault
sources and five kinds of decisions are chosen as the learning sample.
Note that for an URV with different onboard sensors or actuation
configurations (i.e., fully-actuated versus under-actuated configura-
tions Xiang et al., 2016c¢), the choices of the number and distribution
for fault samples in this paper are also suitable for them except
adjusting a small quantity of specificate data. Firstly, the MFNN model
accumulates the learned knowledge into the connection weights @ with
massive parameters by learning those samples. Subsequently, for any
fault input, this risk analysis subsystem is able to adopt the MFNN
method to complete the diagnosis of system-level fault.

When the initial value of the connection weights w is set as 0 and
the learning rate is chosen as 0.25, 0.50 and 0.75, respectively, the
RMSE of neural network training is shown in Fig. 9(a), where the
RMSE converges to 0.225, 0.007 and 0.006, respectively. The number
of learning steps is 18, 16 and 12, respectively. In addition, the
individual error of five output components converges to zero rapidly
when the learning rate f is equal to 0.75, as shown in Fig. 9(b).

When the learning rate f3 is fixed as 0.75 and the initial value of the
connection weights is generated by a random function, the RMSE of
ten different initial values is depicted in Fig. 10. It is concluded that the
RMSE under different initial states converges to the same error 0.006
when the number of learning steps is 12, which suggests that the
structure of the MFNN model is feasible and the learning rate g = 0.75
is a suitable choice.

4.2. Sample test

In order to further validate the feasibility of the MFNN model, two
different sample data are chosen in the sample test, i.e., sample 3 and
sample 14 in Table 5, respectively. The input of sample 3 is
[0.0, 0.0, 0.0, 0.0, 0.0, 8.4, 0.0], which represents the URV has been
working for 8.4 h and all the status is normal. According to Table 5,
the desired output should be [0.0, 1.0, 0.0, 0.0, 0.0] that illustrates a
minor system fault occurred. The input of sample 14 is
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8], which represents the URV has a fault
in a pair of vertical thrusters and the other status is normal according
to Table 3. The desired output should be [0.0, 0.0, 0.0, 0.0, 1.0] that
illustrates a very serious system fault occurred. As listed in Table 6, the
difference between the desired output and the actual one is small,
which indicates that the proposed MFNN model completely meets the
requirement of system risk analysis for the URV.
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1 12h

Surface monitoring station

Fault simulator

Onboard controller

Sensors and battery

Simulator of Undersater Robatle Vehlcle

Seesessasiansanenans

Fig. 13. Hardware in loop test platform.

Table 7
Fuzzification.

Table 8
Fuzzy inference.

Step 1. Fuzzification in layerl and layer2
1: Input: x =[x}, Xy, X3, Xy, X5, Xg, X7], ¢(7 X 3), 6(7)
9. Normalize: x = [%. To. Ta. Tr. <. Tv. T
3: for i=1to 7 do
4: for j;=1 to 3 do
(-Yi*Ciji)z
yl-ji =e J‘/zz
: end for
: end for
: Output: u(7 X 3)

© NG

As shown in Fig. 11, a radar chart is used to reveal the intelligent
decision result rendered by the maximum membership principle and
threshold principle. Five vertices of the radar chart denote the decision I,
I, III, IV and V, respectively, and the absolute length between the center
and each vertex is 2, representing the interval [ — 0.5, 1.5]. Due to the
existence of smaller negative numbers near zero among the output vector of
the risk analysis subsystem, all the components of the output vector are
shifted with a fixed compensation 0.5. The shifted results listed in Table 6
are just the length from the colorful hollow circle to the center of the radar
chart, and the shifted threshold level 1’ represented by a red circle is set to
1, as shown in Fig. 11. In this sense, we can visually verify whether or not
the intelligent decision result meets the threshold principle. If it falls into
the shaded area of the red circle, it will not meet the threshold principle and
requests further decision.
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Step2. Fuzzy inference in layer3 and layer4

1: Input: u(7 x 3)

2: for j; = 1to 3 do
3.

4: for j, = 1to 3 do
5:a; = w27
6:j=j+1

7: end for

8: ..

9: end for

m

10: Normalize: @; = a;/ 3/

=123

11: Output: 5(37 x 1)

4.3. Random fault test

Although Fig. 11(a) and 11(b) show the test results of sample 3 and
14, Fig. 12 presents the further test results of two random fault cases
that are not included in fourteen samples in Table 5. The input of the
fault in Fig. 12(a) is taken as [0.0, 0.1, 8, 0.6, 0.0, 2.4, 0.1], which
represents that the URV has been working for 2.4 h, the present depth
is 8 m, the battery has undervoltage or low temperature, and the other
status is normal. The shifted output vector of the risk analysis
subsystem is [0.5148, 0.5285, 1.2471, 0.4994, 0.5771] and the corre-
sponding decision is III owing to:
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Table 9
Defuzzification and fault decision.

Step 3. Defuzzification in layer5 and fault decision
: Input: w(¥), @@ x 1), 4
1y = 0d

Vi = max{y, ¥p, V3, ¥ V5}
if y,; <2

make decision i

else

ifh<1

: make decision i + 1

9: else

10: make decision V'

11: end if

12: end if

13: Output: decision value

NI I

max(y) = y, = 1.2471 > 1 (15)

Hence, the URV has a small fault, and the onboard controller will turn
off the power supply and drive the URV to surface up by its own
buoyancy.

In addition, the input vector of the fault in Fig. 12(b) is taken as
[0.0, 0.1, 0.8, 0.6, 0.0, 6.2, 0.1], which represents that the URV has been
working for 6.2h, the present depth h is 0.8 m, the battery has
undervoltage or low temperature, and the other status is normal. The
shifted output vector y of fault diagnosis system is
[0.5697, 0.6486, 0.7891, 0.4947, 0.5197].  Because max(y) =y, = 0.7891 < 1 and
h=0.8 m, the intelligent decision subsystem will make decision IV
and the onboard controller will command the vertical thrusters to drive
the URV surfacing up.

5. Experimental verification

In order to validate the performance of the fault treatment system
for the URV, the hardware in loop test is carried out at the ARMS lab,
which mainly focuses on the algorithm and function tests on the
onboard PC/104 controller. This section describes the structure dia-
gram of hardware in loop test platform at first, and then illustrates the
implementation steps of the fault treatment system on the PC/104.

[ Interface i ————— N — | )
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Finally, the experimental results are presented.
5.1. Hardware in loop test platform

The hardware in loop simulation platform of fault treatment system
for the URV consists of the surface monitoring station, onboard PC/
104 controller, sensors and battery carried by the URV prototype, and
fault simulator, as shown in Fig. 13, where the functions of four parts
are described as follows:

1) Surface monitoring station: As the host of onboard PC/104
controller, it plays a role in developing, downloading, and debugging
the program code, and can also show the data collected from the power
supply, sensors and so on;

2) Fault simulator: It displays the real-time fault status of commu-
nication interruption, sensor failure, timeout and water leakage, and
presents the output vector of risk analysis subsystem and the result of
intelligent decision subsystem. In addition, it can simulate fault data of
over-depth, power supply alarm, and actuator fault that might occur
when the URV navigates in the water;

3) Onboard controller: It is a PC/104 stack, where system risk
analysis based on the MFNN method and intelligent decision by
applying the maximum membership and threshold principles are
programmed in terms of multi-task and multi-thread operations;

4) Sensors and battery: The sensors mainly detect the real-time
position and attitude of the URV, and the battery provides the power
for the PC/104 and sensors.

5.2. Algorithm implementation

Similarly to numerical simulation, the algorithm implementation
on the PC/104 platform running in the VxWorks RTOS goes through
four steps, including fuzzification, fuzzy neural inference, defuzzifica-
tion and intelligent decision by coding in C language instead of
MATLAB language.

The first step is fuzzification of the input fault data including the
layer 1 and the layer 2 in Fig. 6. First, the original fault data collected
by the PC104 is normalized to the interval [0, 1], and then it is fuzzified
by Gaussian membership function. As illustrated in Table 7, x is the
normalized vector of the original fault vector x, and the output u is a

Networt setting Simulated fault data
Protocol type

UDP v

Over depth

IP address

172.30.0.12

Portal number

Autonomous decision

Decision 1 Decision 2

Fault Simulator of Underwater Robotic Vehicle

250 0.2

Power supply fault 0.5

102 Actuator fault 0.9 ¥ater leakage 0.0
o
Timeout 4.8
Fault diagnosis
Output 1 Output 2 Output 3 Output 4 Output 5
0.2529 =0.1617 -0.0599 -0. 1842 0.8813

Decision 3

Actual fault data

Communication

interruption

Sensor fault 0.0

Decision S

Decision 4

-

Fig. 14. Fault simulator interface.
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fuzzy set that represents the degree of membership, expressed by a
matrix with seven rows and three columns.

The second step is fuzzy neural inference including the layer 3 and
the layer 4 in Fig. 6. As described in Table 8, the key is that the PC/104
calculates the activation level a through the intersection operation
based on the fuzzy set in the layer 2. The procedure in Table 8 denotes
the assignment made to j, j, j,» j;».j, successively by using for func-
tion. Finally, a is normalized to a vector @ with 3”7 elements.

The third step is defuzzification including the layer 5 of Fig. 5 to
render critical decision. Firstly, the output vector of risk analysis
subsystem is calculated, which depends on the normalized activation
level @ and the connection weights @ determined by offline sample
learning via the MFNN method. Subsequently, a critical decision is
made by intelligent decision subsystem based on the maximum
membership and threshold principles. Finally, the corresponding
emergency operation is taken to ensure the safety of the URV. In
Table 9, A and h represent the threshold level and the diving depth of
the URV, respectively.

5.3. Experimental test

Fault simulator can simulate the status of over-depth x3, power
supply fault x4 and actuator fault x,, and the other four device-level
faults are set as follows:

(1) Communication interruption x;: Pull out the fiber from the
ethernet switch.

(2) Sensor fault x,: Turn off the power supply for the depth gauge,
FOSN or Mini-AHRS.

(3) Water leakage xs: Put the detection probe of the leakage sensor
in the water.

(4) Timeout x¢: Calculate the ratio of the total running time of the
onboard system to the predefined time threshold.

In this paper, one of the fault treatment results is given in Fig. 14.
When the input of the fault status is taken as
[0.2, 0.0, 250, 0.5, 0.0, 4.8, 0.9], which represents that the communica-
tion function is normal, the PC/104 can receive the updated data from
all the sensors, the present depth is 250 m, the power supply has
undervoltage or low temperature, there is no water leakage, the URV
has been working for 4.8 h, and a fault occurs in the vertical thrusters.
By adopting the proposed MFNN method, the output vector of risk
analysis subsystem is [0.2529, — 0.1617, — 0.0599, — 0.1842, 0.6813] cor-
responding to decision V. It means that the URV has a serious fault,
and the onboard controller will turn off the power supply and release
the ballast to drive the URV surfacing up rapidly. The hardware in loop
tests run more than 140 times, and the output results of the risk
analysis and intelligent decision-making conforms to reasonable safety
operations, which indicates that the proposed fault treatment system of
the URV has satisfactory performance.

6. Conclusions

A dedicated two-layered fault treatment system including risk
analysis subsystem and intelligent decision subsystem is proposed to
enhance onboard safety of the URV in this paper. According to the fault
tree model, the device-level fault data is derived from the system status
and the feedback information between the onboard controller and all
the external devices. Subsequently, in the risk analysis subsystem, the
device-level fault data goes through fuzzification, fuzzy neural inference
and defuzzification steps in order to diagnose the risk degree of system-
level fault. In the intelligent decision subsystem, the maximum
membership and threshold principles are adopted to evaluate the
system risk of the URV, and then the critical decision and emergent
operation based on expert knowledge are rendered in order to ensure
the safety of the URV.

At present, we have completed the design and implementation of
the fault treatment system and tested many times through numerical
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simulations and hardware in loop tests. Experimental results demon-
strate that the proposed fault treatment system for the URV has
satisfactory feasibility and efficiency. In the future, we will test the
fault treatment system in the tank or open waters.
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