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Abstract—Demand Response (DR) and Time-of-Use (TOU)
pricing refer to programs which offer incentives to customers
who curtail their energy use during times of peak demand. In this
paper, we propose an integrated solution to predict and re-engi-
neer the electricity demand (e.g., peak load reduction and shift) in
a locality at a given day/time. The system presented in this paper
expands DR to residential loads by dynamically scheduling and
controlling appliances in each dwelling unit. A decision-support
system is developed to forecast electricity demand in the home and
enable the user to save energy by recommending optimal run time
schedules for appliances, given user constraints and TOU pricing
from the utility company. The schedule is communicated to the
smart appliances over a self-organizing home energy network
and executed by the appliance control interfaces developed in this
study. A predictor is developed to predict, based on the user’s life
style and other social/environmental factors, the potential sched-
ules for appliance run times. An aggregator is used to accumulate
predicted demand from residential customers.

Index Terms—Appliance scheduling, demand response, home
energy management, time-of-use pricing.

I. INTRODUCTION

N CURRENT regulated energy distribution systems, the
electricity rate is generally averaged over the entire year and
cost-of-service pricing is the norm. Though true cost of elec-
tricity varies over time, most customers pay rates based on av-
erage electricity costs [1]. With the vision to achieve seamless
delivery, generation, and end use that benefits the nation, the
concept of a'smart grid has been proposed to revolutionize the
electric system by integrating 21st century technology [2], [3].
The U.S. Energy Policy Act of 2005 mentions that each electric
power company should provide customers with time-based rates
[4]. A report submitted to the United States Congress by the De-
partment of Energy discusses benefits of Demand Response and
makes recommendations for achieving these benefits [28].
Modern buildings and houses have started incorporating dig-
ital control systems to enable users to take advantage of time-
based rates by controlling each device generating or consuming
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electricity. Direct digital controls for building heating, ventila-
tion, and cooling systems (HVAC), and dimmable ballasts [5]
are commonly available. Modern building control systems en-
able optimum start/stop, night purge, maximum load demand,
supervisory functions for lighting, sun-blind, energy metering,
and many other applications [6], [7]. Standardization of com-
munication protocols and widespread adoption of the BACnet
protocol enabled the integration of commercial building control
products and offered the connectivity among systems made by
different manufacturers [8]. BACnet is a communication pro-
tocol developed under the auspices of the American Society
of Heating, Refrigerating and Air-Conditioning Engineers for
building automation and control networks.The acceptance of
Zigbee and Powerline for connecting appliances in residential
buildings is increasing at a rapid rate. A limited number of con-
nected smart appliances which have been released by General
Electric (GE) and other manufacturers, offer time-of-use (TOU)
pricing control to a limited extent. However these do not offer
an integrated solution involving both utility company and the
residential customer.

A demand response (DR) strategy coordinates the require-
ments and needs between the energy provider and the customer
[9], [10]. It encourages the customer to reduce the peak-demand
in response to the 'incentives [11]. However, existing home
energy management systems are primarily designed to improve
the energy efficiency and comfort within single residential
home. They often do not take into account the utility data
(such as load forecasts or TOU pricing) for the scheduling
of appliances. There is also no coordination among multiple
dwelling units to simultaneously manage DR in a residential
community. We envision that aggregating the demand from
individual residential customers will enable us to expand DR
programs to residential customers. Here, DR is defined as
change in electricity usage by the end-use customers from
their normal consumption patterns in response to a change in
the price of electricity over time [5], [28]. This study demon-
strates that, with a closed loop integrated solution, customer
participation in DR programs can be increased; thus the cost of
energy production can be controlled. This study also formulates
energy management as a scheduling problem where energy
is considered as a resource shared by residential appliances,
and periods of energy consumption are considered as tasks.
An intelligent scheduling algorithm is designed in this study
to reduce the total consumption while satisfying a maximum
energy resource constraint.

Several DR schemes have appeared in the literature for sched-
uling the load. In [12], an adaptation of the static Resource Con-
straint Project Scheduling Problems (RCPSP) is presented to
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improve the management of electric heating systems while sat-
isfying the maximum power resource constraint. In [13], the au-
thors formulate an optimization model which utilizes the mixed
integer nonlinear programming (MINLP) technique for mini-
mizing the electricity cost and reduce the peak demand. In [14],
a weighted average price prediction filter is designed, which is
evaluated on a weekly basis by using the actual hourly price; a
linear programming scheme is also presented for optimal load
control of appliances. A scheduler maximizing the benefits to
the end user is presented in [15] using a co-evolutionary version
of particle swarm optimization. In [26], an appliance commit-
ment algorithm that schedules thermostatically controlled ap-
pliances based on user comfort settings and price consumption
forecasts is proposed. However, the studies cited here do not
provide an integrated solution to the DR problem space.

In this paper, we present a solution that involves both the res-
idential customer and the utility company. We present a closed
loop solution that forecasts the electricity demand of individual
residential customers, aggregates the demand from residential
customers in a neighborhood, and presents the aggregated de-
mand to the utility company. The utility company can use this
demand forecast for DR management and TOU price decisions.
Based on the TOU pricing offered by the utility company, the
residential loads are then scheduled within user comfort zones to
optimize the power consumption by the residential users. Over
time, the utility will learn the effect of varying TOU price on
user demand and will therefore be able to predict the change in
user demand as a result of TOU price. This will enable the utility
to determine the TOU price based on the predicted demand and
available power supply on a given day.

The focus of this paper is on the load forecasting in the home
as well as in a neighborhood and presenting a novel appliance
scheduling scheme which uses TOU or differential pricing.

A residential customer’s daily activities are characterized
by a list of tasks to be scheduled at preferred time intervals.
Some of these tasks are persistent, as they consume electricity
throughout the day (e.g., refrigerator), while others may be
scheduled within a defined time interval (e.g., washer/dryer
or oven). In this paper, the demand-side energy management
problem is considered as the scheduling of a customer’s daily
tasks according to user-specified constraints and the TOU
pricing offered by the utility company to achieve cost savings
and peak demand reduction. An intelligent power management
application is discussed for controlling appliances in the home
and as well as for gathering data about the past usage schedules
of the appliances. A branch and bound algorithm is formulated
to schedule the appliances as per the customer’s usage pref-
erence. A self-organizing home energy management network
is developed based on IEEE 802.15.4 to control appliances
remotely. The appliance controllers developed in this project
offer a zero configuration appliance network with no user
configuration.

The proposed system provides continuous interaction be-
tween the residential customer and the utility company by
employing an adaptive neural-fuzzy learning algorithm. The
solution presented in this paper would enable the utility to
predict and tailor the electricity demand in multiple dwelling
units in a given residential community: a) by providing suitable
incentives (such as differential or TOU pricing) to customers,

and b) by scheduling and controlling appliances to smoothen
the demand. The residential customer is offered the following
advantages: 1) improved energy efficiency for electricity usage
resulting in cost savings; ii) maximum usage of solar power
locally within the home by shifting operation of certain appli-
ances to times when solar power is available; iii) maximum
user comfort by learning from user inputs, usage patterns, and
weather conditions; and iv) effective customer education and
interaction—information can be provided to the customer about
the daily, weekly, and monthly energy consumption patterns
and advice on energy savings to meet the customer’s monthly
energy budget.

II. OVERVIEW OF THE SYSTEM ARCHITECTURE

The proposed energy management solution learns and adapts
to the residential energy usage patterns. The adaptive neuro-
fuzzy learning algorithm developed in this study makes DR de-
cisions based on the following factors: 1) peak load forecast, 2)
differential electricity prices, 3) customers usage patterns and
energy budget, 4) social and environmental factors, and 5) avail-
able solar power. The conceptual diagram capturing data and
control flow in the proposed system is shown in Fig. 1. The
system is composed of components that reside in the home and
aregional aggregator which provides connectivity between the
homes and the utility company. The aggregator accumulates the
demand and enables the utility company to engineer a TOU
pricing program to the customer. The aggregator also partici-
pates in demand bidding programs. The in-home system com-
ponents consist of an intelligent home energy controller which is
referred to as Master Controller (MC) and the appliance control
nodes forming the self-configuring home energy control net-
work. The system can be seamlessly interfaced to the utility (via
advanced metering infrastructure or AMI) as well as through the
Internet.

MC is the heart of this system and provides connectivity to
both the aggregator and to the utility company for submitting
future demands and retrieving TOU pricing information. The
MC will configure, control, and schedule the operation of all
the home appliances through individual, inexpensive wireless
appliance controllers developed as part of this study. The system
is scalable and requires zero configuration from the customer.
The MC is a cognitive and intelligent unit capable of scheduling
the operation of all the home appliances and HVAC, based on
the user and utility inputs to meet DR objectives. For example,
when a user schedules the operation of the washer/dryer, the MC
may determine that a two hour delay in starting the appliance
would result in cost savings. This information, along with the
actual savings, will be available to the user on the appliance
panel or the MC panel.

The user can either accept this advice or choose immediate
operation. When a new appliance controller node is powered
up, it registers with the MC and supplies information related
to appliance(s) operation settings, appliance make, model and
power ratings, modes of operation, etc. All the appliances in
a house are inter-connected through a self-organizing wireless
network based on IEEE 802.15.4 standard. The appliance net-
work communicates with the MC through a Bluetooth to IEEE
802.15.4 gateway developed in this project. The gateway im-
plements network management policies, address assignments,
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delivery of data to destination appliances and connects the ap-
pliance network to the external world through the MC. An ap-
pliance in this network receives all its schedules through the
gateway and the appliances report their operation status through
the same gateway.

Crossbows TelosB motes have been used to emulate the ap-
pliances in the home and host appliance controllers; a relay
module is developed and interfaced to the TelosB motes to con-
trol the household appliances. Additionally, each mote has been
programmed to emulate the behavior of an appliance and per-
form various operations when instructed to operate in a sup-
ported mode. The appliances are networked using a self-orga-
nizing cluster tree topology network; hence, they not only act
as appliances but also act as routers to forward packets from
other appliances to the gateway. In addition, the network is
self-healing; thus removal of some appliances from the network
does not affect the network.

The user’s input is limited to scheduling appliances to turn
on/off at particular times or complete a task within a specified
duration. The user also provides one time information related
to dwelling unit type and size, installed solar PV and thermal
power generation capacity, and target monthly energy budget
(presumably depending on household income). The MC contin-
uously collects data regarding usage patterns of appliances from
the user’s interaction with the system. The customer’s usage pat-
terns take into account the history of energy demand considering
the following parameters: i) time and season (time of day, day
of week, month of year effects), and ii) weather including the
effects of persistent extreme weather.

The MC interacts with the user and (generates appliance
schedules, allows the user to edit and add his/her own sched-
ules, delivers schedules to the respective appliances, monitors
and logs the operation status of the appliances over a period
of time and generates data for the predictor algorithm. It pro-
vides a final schedule to the respective appliances through a
home energy network gateway and monitors the state of each
appliance in the network.

Aggregation is the process in which energy is sold to cus-
tomers who have joined together as a group. They may also
participate in demand bidding programs instituted by the utility
company to shift peak load. We have developed a simplified
power aggregator following the OpenADR standard [2], [16] to
provide an open interface to in-home MCs and aggregate the
demand from the residential customers to close the loop in our
solution. The bulk estimated energy may be priced by the ag-
gregator accordingly to enable a shift in the peak power load
through price incentives. We must emphasize that all interac-
tions between the MC and aggregation server take place with
no user intervention. In this study, keeping the user intervention
to a minimum is a key objective. As shown in Fig. 1, the hourly
projected energy demand by the MC is used by the aggregator
(or by the utility company itself acting as aggregator) to deter-
mine the TOU prices which will be communicated to the MC to
make scheduling decisions.

III. INTELLIGENT APPLIANCE SCHEDULING

In [17] Boucher et al. developed a modular adaptive sched-
uling approach for minimum energy usage. Using the principle
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of thermodynamics and the impact of actuators on the energy
system, a simple control strategy was developed and tested on
a raised floor data center. While the results presented in [17]
are promising, the study employed very specific sensor data,
actuator models and environmental conditions. Energy manage-
ment is a complex task as the dynamics of the system of systems
are nonlinear, the compensation is naturally decentralized, and
the environment and user demands change with the time and
season. In this study, we have employed non-parametric tech-
niques for forecasting the energy demand in the home by using
the past usage patterns, solar energy production and other envi-
ronmental/social factors. First we note that learning must inte-
grate the customers’ needs, the utility provider’s requirements
and the hardware capabilities (sensors and actuators with delays
and limitations). Fig. 2 illustrates the synergy of this interaction.

Atthe local level, each customer’s MC uses a simple adaptive
neural fuzzy inference system (ANFIS) as explained below. The
inputs'to the MC include user preferences (appliance settings
and schedules), TOU and other utility data, and the outputs in-
clude the predicted energy usage which updates the utility DR
data. For this purpose, the utility may divide the 24 hour dura-
tion in one-hour time slots. Each MC communicates to the utility
(via AMI) the predicted energy demand in a home for any given
time slot. This data is aggregated at the aggregator from all the
homes being served by it.

Inputs to the utility controller include the power availability
on the grid, predicted solar power generation, and the predicted
energy demand in a residential community, together with other
energy demand data (e.g., industrial and commercial energy de-
mand), and weather. Outputs include the DR data to the cus-
tomers (e.g., cost incentives and/or differential pricing). The
utility acts on a database of residence types and the customers’
likely response (i.e., change in demand) to a change in elec-
tricity price. The change in the price of electricity will enable
the utility to further tailor the energy demand by encouraging
the customers through MCs to reschedule for more cost effec-
tive appliance operations. Note that the user influences the opti-
mization and scheduling decisions for cost vs. comfort level vs.
DR.

A. ANFIS Predictor to Model Residential Customer Profiles

The heart of the learning is the ANFIS [18], [19]. The ANFIS
algorithm is implemented in two parts: 7/) the neural network
provides the learning mechanism to identify the unknown or
changing plant, i) the fuzzification component compensates the
uncertainties or inaccuracies of the plant as well as of the envi-
ronment. As shown in Fig. 3, the first layer takes various cus-
tomer and utility inputs and fuzzifies the data. Layer 2 weighs
the different inputs according to some priority while layer 3
normalizes the resulting weighted data (layer 2 and 3 are the
neural network components). In(layer 4, the inputs are evalu-
ated according to predefined rules and, in layer 5, the rules are
combined to produce a numeric response which is the output.
Two sets of parameters need to be tuned, the premise param-
eters (in layer 1) and the consequence parameters (in layer 4).
For a system with a large number of input variables, it is nec-
essary to carefully select the input variables that are relevant to
the output. As the system is not well known, the Group Method
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Fig. 1. Data flow in the home energy management system.
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Operation execution Fig. 3. An adaptive neural fuzzy inference system (ANFIS).
direction, Optimized
Solar energy
availability energy usage . . C g . .
i) The input-output data set is divided into two groups A and
Solar Energy B.
ii) Using the two groups of data, two fuzzy models M% and
Fig. 2. Hierarchical adaptive learning control architecture. M3, are built for each group, starting with only one input
and two membership functions. At this stage, a fuzzy
for Data Handling [20], [21] with the regularity criterion (RC) model is built for each input in consideration.
is used to identify the significant input. iil) After training, the reference networks MY, and M} are
The identification data must be divided into two groups and tested using data sets A and B, respectively,
the regularity criterion is defined as: iv) Compute the RC using the relation given in (1).
ki (y A )z (P4 7‘, )2 v) The input with the minimum RC is considered as impor-
> + Z L tant variable and is fixed with that number of membership
RC = 221 5 (1) function.
< vi) In the next stage, consider all the input variables ¢ =

where k4 and kp are the number of data points in group A and
B, respectively, and y;* and yZ are the output data of group A
and B. 542 (yB4) is the model output for group A (group B)
input estimated by the model identified using group B (group
A) data. Let us consider the system with n inputs.

The identification is carried out as follows:

1,...,n. If the input variable ¢ is already fixed, incre-
ment the number of membership functions, and if the
input variable ¢ is not fixed include it, one at a time. In
this stage, a fuzzy model is built for change in each input
variable and the RC is calculated. The same process is re-
peated until the minimum value of RC increases.
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Fig. 4. Representation of differential or TOU pricing, based upon time of day
and power usage (tiers). Partitions in the time duration are used in the branch
and bound algorithm.

B. Intelligent Appliance Scheduling: The Branch and Bound
Technique

The differential or TOU pricing provides financial incentives
to customers for shifting their demand from peak to off-peak
periods. In differential pricing, the cost of electricity is charged
at different rates during different times of the day for different
power levels and it is determined using the estimated demand.
The concept of differential pricing is shown in Fig. 4, where a
day is divided in three time periods 0 — ¢; (normal demand),
t1 — ts (off-peak demand) and o — 3 (peak demand). Also,
the cost of electricity in each time interval is divided in three
tiers where tiers 1, 2, and 3 represent the low, normal and heavy
usage, in that order. Using the differential pricing, an efficient
energy management schedule can be constructed that minimizes
the demand during peak hours and higher tiers while providing
reduced costs to the residential customer. In this study we im-
plement an appliance scheduling scheme, using a branch and
bound algorithm, based on the given pricing information and
the customer’s constraints on schedulability of the tasks.

The branch and bound is a global optimization technique
used for non-convex optimization problems [22], [23], [25]. It
typically relies on a priori knowledge about the problem. The
basic concept underlying the branch and bound technique is' di-
vide and conquer. The original “large” problem is divided into
smaller and smaller sub-problems until these sub-problems can
be conquered. The approach estimates upper and lower bounds
(UB, LB) of the original problem and discards the subset if the
bound indicates that it cannot contain an optimal solution. After
the problem is divided into a set of smaller sub-problems, the al-
gorithm is applied recursively to the sub-problems. The search
proceeds until all nodes (sub-problems) have been solved or
pruned.

Assume n appliances need to be scheduled between the time
z;and7T,, (i = 1,2,...,n), where x; and T, represent the lower
and upper limit of the appliance operating time, respectively.
The cost of operating an appliance is based upon the time of
day (peak, off peak, and normal period) and the tier. The power
consumed by the appliance ¢ is ¢; and its operating duration is
d;. The problem is to find the optimum value of the appliance
switching-on time ; such that the total operating cost is min-
imum. Also the appliances need to be scheduled such that the
power required by them is less than the maximum power avail-
ability.
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Fig. 5. Region and the power availability for schedulable appliances. Typical
power consumption of the must-run appliances is lightly shaded.

Consider an appliance, labeled appliance 1, which must op-
erate between the time z; and ;. In Fig. 5, the duration between
z, and Ty is divided as [z, 2, + di], [z + di1, 25], [29, 1],
[t1,T1 —d4], and [Z1 — dy, Z1]. Between 0 and z, , the appliance
must be in the “OFF” state. During the intervals [z, z; + di],
[El + dl, QQ], [IZ tl], [tl, T — dl], and [El — dl, fl] the apph-
ance state is “ON” or “OFF.” After the time 71, the appliance is
in the “OFF” state.

If the appliance is “OFF,” the lower and upper bounds of
power is 0. For the appliance states, “ON/OFF” and “ON,” the
lower bounds are 0 and ¢;, and the upper bound is ¢; for both
the cases. The bounds of power for all the appliances are cal-
culated in the same way. The bounds of the cost are calculated
using the bounds of power for all the appliances and the cost per
kWh in different intervals of time.

The available power for the schedulable appliances is calcu-
lated by subtracting the power consumed by the must-run ser-
vices from the total available power. In Fig. 5, typical power
consumption by the must-run services is shown by the lightly
shaded region. The region above the lightly shaded region is
available for the schedulable appliances. Between the interval
2, and z,; + dy, the appliance 1 needs ¢; KW power as shown
by a dark shaded region. Let w portion of power ¢; come under
the lower power tier(tier 1) and the remaining portion (q; — w)
come under the higher power tier (tier 2). In this case, the cost
for operation of the appliance between x; and z; + d; is given
by the wey, + (g1 — w)eps, where ¢y, and ¢y, are the electricity
cost per KWh in tier 1 and tier 2, respectively. The cost for op-
eration of appliances is thus calculated for all the appliances in
all the intervals.

In any interval, if the lower bound of available power is ¢,
then the appliance is “ON” in that interval. The remaining time
of operation of the appliance is obtained by subtracting all such
interval(s) from d;. Now the remaining duration is distributed
in the intervals where the lower power bound is ¢, starting from
the interval where the cost per kWh for operation of the appli-
ance is low. The sum of the operating cost of the appliance in
all these intervals gives the lower bound of the operating cost of
appliance. The lower bound of the operating cost for all appli-
ances is calculated by adding the lower bounds of the operating
costs for all the appliances.

The upper bound of the operating cost is calculated in a sim-
ilar way. The only difference is instead of distributing the appli-
ance operating duration in the intervals with low cost per kWh, it
is distributed in the intervals where the cost is maximum. While
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calculating the lower and upper bounds, the appliances are con-
sidered to be operating with a discontinuity for each cycle. As
the branching progresses and when the interval reduces, the dis-
continuity will reduce. When the interval is close to zero, the
appliance operation will be continuous for each cycle of opera-
tion.

A branching rule is used to split the current problem into
sub-problems. The efficiency of the branch and bound algo-
rithm depends on the branching rule and the bound calculation
method.

As mentioned earlier, the duration of operation of an appli-
ance is d; (i = 1,...,n) and the bounds of the appliance
switching ON time is between z; and Z; — d;. The branching
operation is performed on the sub-problem, where the lower
bound is minimum. Next the value of ¢ needs to be found for
the branching operation. The optimization is carried out to min-
imize the cost associated with

{P((m:i —di) — =)}, @

where P(.) denotes the power associated with the time interval.
For the optimization function in (2), the constraints are the op-
erating time duration d; of each appliance and the must run ser-
vices. The decision variables are the lower and upper bounds of
each appliance operating time.

The lower and upper bounds of the new sub-problems are cal-
culated and the branching operation is stopped when the min-
imum of the lower bound is closer to the upper bound.

1=1,...n

IV. SIMULATION RESULTS

In this section, we present simulation results when using
the ANFIS predictor and a branch and bound based appliance
scheduler by using the TOU pricing for the home electricity
management system.

A. Prediction

We use the ANFIS model to predict the appliance switching
ON time and its operating duration in a home [24]. To reduce
the complexity in training, the input training data is divided into
three sets, viz., working day, weekend, and holiday data. For
each set of data two ANFIS models are built—the first model is
used to predict the appliance switching ON time and the second
model is used to predict the operating duration of the appli-
ance. For predicting the appliance ON time, the input variables
considered are the day of the week, season, room temperature
and the time interval between each operation of the appliance
during the last two days. Similarly, for prediction of appliance
operating duration, the input variables considered are day of the
week, season, room temperature and the different operating du-
ration of the appliance in the last two days. We used five weeks
of data for training and testing the ANFIS model. The first four
weeks of data was used for training the ANFIS model which
was then tested using the last one week of data.

The power profiles of different appliances were gathered in
volunteer homes using Watts Up power meters. The power pro-
files were stored in a database and used during the prediction and
scheduling of appliances. Certain appliances, such as a washing
machine, may be operated once in two to three days. Such ap-
pliances are assumed to follow a weekly pattern.

(d)

Fig. 6. Prediction result for home appliance usage for (a) air conditioner, and
(b) washing machine. Here, blue line and red line represent the patterns for gen-
erated data and the predicted results, respectively.
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Fig.7. Anexample of power availability and cost of electricity during different
times of the day used in our simulation.

The prediction results over one week period for two
schedulable home appliances—air conditioner and washing
machine—are shown in Fig. 6 to illustrate the effectiveness of
our ANFIS based prediction scheme. Here, days of the week,
beginning with Monday, are shown on the X-axis. The Y-axis
shows the appliance OFF state and ON state. The blue pulses
represent the training data from the previous week while the
red pulses represent the ANFIS prediction. In this test scenario,
Thursday was considered as a holiday. The results show that
the ANFIS model can be used to effectively predict the home
appliance usage patterns.

B. Scheduling

Assume that we want to schedule some appliances in a home.
Let the power consumed by the un-schedulable appliances be
0.1 kW during 12:00 A.M.—6:00 A.M., 0.15 kW during 6:00 A.M.
-9:00 A.M., 0.175 kW during 9:00 A.M.—9:00 P.M. and 0.125 kW
during 9:00 p.M.—12:00 A.M.. The graphical representation of
the cost of electricity and the power availability during different
periods of the day is shown in Fig. 7. The time between 07:30
P.M.—07:00 A.M., 07:00 A.M.—02:00 P.M. and 02:00 P.M.—07:30
P.M. is considered as peak, normal and off peak periods, respec-
tively. The power availability and the cost per kWh during the
off-peak period are considered to be {0.5, 0.25, 2.5} kW and
{0.1, 0.14, 0.17} $/kWh, respectively.

Similarly the power and cost during peak period are {0.4, 0.2,
2.5} kW and {0.18,0.2,0.225} $/kWh, respectively. For normal
period, these values are {0.45, 0.25, 2.5} kW and {0.14, 0.17,
0.21} $/kWh, respectively.

Assume that we want to schedule the dishwasher, washing
machine, and dryer. The lower and upper bound of the oper-
ating time is 08:30 A.M.—11:00 A.M. for the washing machine
and 09:00 A.M.—12:00 .M. for the cloth dryer. The dishwasher
needs to be scheduled twice: between 08:00 A.M.—~11:30 A.M.
and between 7:00 P.M.—10:00 P.M.. The branch and bound al-
gorithm discussed in Section III [38] was applied to this sched-
uling problem. The optimal time of operation for the appliances
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Fig. 8. Results of appliance operation when using the scheduling algorithm.

TABLE 1
COST OF APPLIANCE OPERATION WITH AND WITHOUT SCHEDULING

Appliance Cost ($) — ‘pefore Cost ($) -
scheduling after scheduling
Dishwasher 0.080 0.075
Washer 0.044 0.020
Dryer 0.063 0.045

as given by the algorithm is 08:00 A.M. for the dishwasher, 09:08
A.M. for the washing machine, 10:30 A.M. for the dryer, and
07:45 p.M. for the second operation of the dishwasher.

As another example, consider the case when a user has four
un-schedulable appliances, which must be turned on at a cer-
tain time, and three schedulable appliances that have flexible
starting times. Suppose the user decides to start these appliances
as shown in Fig. 8. Using the scheduling algorithm with a typ-
ical pricing profile, the scheduler provides an alternative set of
times, also shown in Fig. 8. The pricing differences are shown
in Table I.

The results indicate that by using a TOU pricing scheme and
an optimal scheduling algorithm the cost of electricity can be
reduced while smoothing the energy demand.

This study leads the way to offer DR solutions to residential
customers by aggregating the demand. The results we pre-
sented through simulations suggest that both customers and
utility company may benefit from demand response programs
extended to residential customers.

V. SOME REMARKS ON PRICING

In the home management system discussed in this paper,
the assumption is that the utility uses a TOU pricing scheme,
based upon DR. In this section, the pricing scheme used in
this study, is summarized, for completeness sake. Details of
the pricing scheme are provided in [27]. We note that several
pricing schemes exist and the method summarized here is just
one example of such an approach.

Consider a pricing strategy that is based on maximization of
a society’s welfare. The basic idea of this pricing method is that
the electricity price at the generation side depends on its con-
sumption and the electricity demand on the customer side is re-
lated to the price (elasticity). If the profit to the utility company
is set to zero, the cost of power generation equals the cost paid
by the customer. Assuming a quadratic power generation cost
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curve, the objective is to'maximize the consumer surplus sub-
ject to the constraint that the power generation costs should be
less than or equal to the total revenue from the consumer. This
can be written as:
24
max Z P(AP;)

=1

)

where P; is power consumption, over a 24 hour period and A P;
is the percentage change in power consumption which can be
written in terms of the elasticity and change in consumer costs.
Then the pricing problem can be formulated as an optimization
problem:

24 3 ~
nl&}/_}X Z Z PifijA/Gj

“4)
i=1 j=1
subject to
24 3 3 2
Zd.+bP1 1+Z EijABj +c Pi 1+Z EijABj
i=1 i=1 j=1
24 3
< Z Bi(1+AB)P; 1+Z i AB;
i=1 =1
P(1+AP) < PP i=1,...,24 (5)

where ¢ is elasticity coefficient, (a, b, ¢) are the coefficients in
the quadratic power generation cost curve, and /3 is the price
of electricity paid by the customer. The A terms are changes in
the respective variables. We note that if there is a built-in profit
to the utility, the left hand side of the first inequality would be
multiplied by that profit factor.

VI. CONCLUSION

This paper presented a solution to DR for residential cus-
tomers. An ANFIS-based MC was developed to forecast power
demand based on the user’s life style (i.e., usage patterns) and
environmental/social factors impacting power consumption. An
aggregator was used to gather the electricity consumption pro-
files from residential MCs to estimate the aggregated demand
for energy in a region. A self-organizing home energy network
with appliances as the end nodes was implemented. The MC
communicates with the appliance nodes via a home energy net-
work gateway node developed as part of this study. A sched-
uling algorithm was designed for managing the appliance sched-
ules based on the branch and bound algorithm. The TOU pricing
communicated to the customer is used by the MC to optimize
scheduling of the appliances. The appliance scheduling algo-
rithm is driven by the electricity price and the customer actions,
and operates within the boundaries established by the customer.
The customer can modify the appliance schedules, which may,
however, result in the customer paying a higher price for the
energy consumed. Results show that the proposed system is an
effective solution for home energy management.
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