The Data Stream Model: Sketches and Probability Tools

Ricard Gavaldà
Universitat Politècnica de Catalunya, Barcelona

ECML PKDD 2015 Summer School:
Data Sciences for Big Data - Resource Aware Data Mining
Porto, September 2nd, 2015
http://www.cs.upc.edu/~gavalda
Massive data requires new kind of **algorithmics**

Often, **approximate** answers are OK. That helps!

Focus of this talk:
- (Mostly) Streaming data
- Sketches
- Counting problems
Data streams everywhere

- Telcos - phone calls
- Satellite, radar, sensor data
- Computer systems and network monitoring
- Search logs, access logs
- RSS feeds, social network activity
- Websites, clickstreams, query streams
- E-commerce
- ...

...
Data streams: Concept

- Data arrives as sequence of items
- At high speed
- Forever
- Can’t store them all
- Can’t go back; or too slow
- Evolving, non-stationary reality
The Data stream axioms

Five Data Stream Axioms:

1. Only one pass; t-th item available at time t only
2. Small processing time per item
3. Small memory, certainly sublinear in stream length; sketches or summaries
4. Able to provide answers at any time
5. The stream evolves over time
Assumptions & Requirements

- Worst-case, adversarial, input distribution
- Difference with probabilistic assumption:
 - Items are generated probabilistically (often independently), following a probability distribution that may evolve over time
 - Implicit in Data Stream Mining and Machine Learning: Generalization!
- Randomness is in the algorithm
 - Different runs may give different answers
 - But in most runs answer is approximately correct
The Item Counting Problem

How many items have we read so far in the data stream?

To count up to \(t \) elements \textit{exactly}, \(\log t \) bits are \textit{necessary}

Approximate solution using \(\log \log t \) bits
Approximate counting, v1

Init: \(c \leftarrow 0 \)

Update:

\[
\text{draw a random number } x \in [0, 1] \\
\text{if } (x \leq 1/2) \quad c \leftarrow c + 1
\]

Query: return \(2c \)

\[
E[2c] = t, \quad \sigma \approx \sqrt{t/2}
\]

Space \(\log(t/2) = \log t - 1 \rightarrow \text{we saved 1 bit!} \)
Approximate counting, v2

Init: $c \leftarrow 0$

Update:
 draw a random number $x \in [0, 1]$
 if ($x \leq 2^{-k}$) $c \leftarrow c + 1$

Query: return $2^k c$

$E[c] = t/2^k, \quad \sigma \approx \sqrt{t/2^k}$

Memory log $t - k \rightarrow$ we saved k bits!

$x \leq 2^{-k}$: AND of k random bits, log k memory
Approximate counting: Morris’ counter

Morris’ counter [Morris77]

Init: $c \leftarrow 0$

Update:
- draw a random number $x \in [0, 1]$
 - if $(x \leq 2^{-c})$ $c \leftarrow c + 1$

Query: return $2^c - 2$

$E[c] \approx \log t$, $E[2^c - 2] = t$, $\sigma \approx t/\sqrt{2}$

Memory = bits used to hold $c = \log c = \log \log t$ bits
Morris’ approximate counter

- Can count up to 1 billion with $\log \log 10^9 = 5$ bits

- Problem: large variance, $\sigma \simeq 0.7 t$
Use basis $b < 2$ instead of basis 2:

- Places t in the series $1, b, b^2, \ldots, b^i, \ldots$ (“resolution” b)
- $E[b^c] \sim t$, $\sigma \sim \sqrt{(b - 1)/2 \cdot t}$
- Space $\log \log t - \log \log b$ ($> \log \log t$, because $b < 2$)
- For $b = 1.08$, 3 extra bits, $\sigma \sim 0.2 \cdot t$
Run r parallel, independent copies of the algorithm

On Query, average their estimates

$E[\text{Query}] \approx t$, $\sigma \approx t/\sqrt{2r}$ (why?)

Space $r \log \log t$

Time per item multiplied by r

Worse performance, but more generic technique
Morris’ counter: A non-streaming application

In [VanDurme+09]

- Counting k-grams in a large text corpus
- Number of k-grams grows exponentially with k
- Highly diverse frequencies
- Should fit in RAM
- Use Morris’ counters (5 bits) instead of standard counters
2. Approximation. Large Deviation Bounds
Reducing the variance, general method

- Variance: \(\text{Var}(X) = E[(X - E[X])^2] = E[X^2] - E[X]^2 \)
- \(\text{Var}(\alpha \cdot X + \beta) = \alpha^2 \cdot \text{Var}(X) \)
- If \(X \) and \(Y \) independent, \(\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y) \)
- In general, if \(X_i \) are all independent and \(\text{Var}(X_i) = \sigma^2 \),
 \[
 \text{Var}
 \left(\frac{1}{n} \sum_{i=1}^{n} X_i \right) = \frac{1}{n^2} (n \sigma^2) = \frac{\sigma^2}{n}
 \]
 Equivalently,
 \[
 \sigma \left(\frac{1}{n} \sum_{i=1}^{n} X_i \right) = \frac{\sigma}{\sqrt{n}}.
 \]
Deviation Bounds

Random variables often described by expectation + variance

Suppose

\[E[\text{algorithm output}] = \text{desired result}, \quad \text{Var}(\text{algorithm output}) = \sigma^2 \]

We usually want instead

\[|\text{algorithm output} - \text{desired result}| \leq \text{something} \]
(ε, δ)-approximation

A randomized algorithm \(A(\varepsilon, \delta) \)-approximates a function \(f : X \to \mathbb{R} \) iff for every \(x \in X \), with probability \(\geq 1 - \delta \)

- (absolute approximation) \(|A(x) - f(x)| \leq \varepsilon \)
- (relative approximation) \(|A(x) - f(x)| \leq \varepsilon f(x) \)

\(\varepsilon = \text{accuracy}; \quad \delta = \text{confidence} \)
Often \(\varepsilon, \delta \) given as extra inputs to \(A \)
Markov’s inequality

For a non-negative random variable X and every k

$$\Pr[X \geq k \mathbb{E}[X]] \leq 1/k$$

Proof:

$$\mathbb{E}[X] = \sum_x \Pr[X = x] \cdot x \geq \sum_{x \geq k} \Pr[X = x] \cdot x \geq \sum_{x \geq k} \Pr[X = x] \cdot k = k \Pr[X \geq k]$$
Deviation Bounds

Chebyshev’s inequality

For every \(X \) and every \(k \)

\[
\Pr[|X - \mathbb{E}[X]| \geq k] \leq \frac{\text{Var}(X)}{k^2}
\]

Equivalently,

\[
\Pr[|X - \mathbb{E}[X]| \geq k \sigma(X)] \leq \frac{1}{k^2}
\]

Proof:

\[
\Pr[|X - \mathbb{E}[X]| > k] = \Pr[(X - \mathbb{E}[X])^2 > k^2] \leq (\text{Markov}) \\
\leq \frac{\mathbb{E}[(X - \mathbb{E}[X])^2]}{k^2} = \frac{\text{Var}(X)}{k^2}
\]
Chebyshev gives \((\varepsilon, \delta)\)-approximations

Let algorithm \(A\) be such that \(E[A(x)] = f(x), \ Var(A(x)) \leq \sigma^2\)

Algorithm \(B(x)\) averages \(b\) independent copies of \(A(x)\)

We have \(E[B(x)] = f(x), \ Var(B(x)) \leq \sigma^2/b\)

\[
\Pr[|B(x) - f(x)| > \varepsilon] \leq \frac{\text{Var}(B(x))}{\varepsilon^2} \leq \frac{\sigma^2}{b\varepsilon^2} \leq \delta
\]

if we choose \(b = \sigma^2 \frac{1}{\varepsilon^2} \frac{1}{\delta}\)
Chebyshev gives \((\varepsilon, \delta)\)-approximations

\[
\Pr[|X - E[X]| > k\sigma]
\]

<table>
<thead>
<tr>
<th>(k = 1)</th>
<th>(k = 2)</th>
<th>(k = 3)</th>
<th>(k = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\leq 1)</td>
<td>(\leq 0.25)</td>
<td>(\leq 0.11)</td>
<td>(\leq 0.07)</td>
</tr>
</tbody>
</table>

But if \(X\) is normally distributed,

<table>
<thead>
<tr>
<th>(k = 1)</th>
<th>(k = 2)</th>
<th>(k = 3)</th>
<th>(k = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\leq 0.32)</td>
<td>(\leq 0.05)</td>
<td>(\leq 0.003)</td>
<td>(\leq 3 \cdot 10^{-5})</td>
</tr>
</tbody>
</table>
Sums of Independent Variables

\[\exp(-x^2) \text{ vs. } 1/x^2: \]
Suppose $X = \sum_{i=1}^{n} X_i$, $E[X_i] = p$, $\text{Var}(X_i) = \sigma^2$, all X_i independent and bounded.

By the Central Limit Theorem, $Z_n = (X - np)/\sqrt{n\sigma^2}$ tends to normal $N(0, 1)$ as $n \to \infty$.

And approximating by the normal gives

$$\Pr[Z_n \geq \alpha] \approx \exp(-\alpha^2/2)$$

Chebyshev only gives

$$\Pr[Z_n \geq \alpha] \leq \frac{1}{\alpha^2}$$
Chernoff-Hoeffding bounds

- $X_1, X_2, \ldots X_n$ be independent random variables,
- $X_i \in [0, 1]$, $E[X_i] = \rho$,
- $X = \sum_{i=1}^{n} X_i$, so $E[X] = \rho n$

Hoeffding bound (absolute deviation)

$$\Pr[X - \rho n > \varepsilon n] < \exp(-2\varepsilon^2 n)$$
$$\Pr[X - \rho n < -\varepsilon n] < \exp(-2\varepsilon^2 n)$$

Chernoff bound (relative deviation)

For $\varepsilon \in [0, 1]$,

$$\Pr[X - \rho n > \varepsilon \rho n] < \exp(-\varepsilon^2 \rho n / 3)$$
$$\Pr[X - \rho n < -\varepsilon \rho n] < \exp(-\varepsilon^2 \rho n / 2)$$

Note: *Bernstein’s inequality* is more general and (in essence) subsumes both
Example: Approximating the Mean

Input: ε, δ, random variable $X \in [0,1]$ (Important: bounded)
Output: (ε, δ)-approximation of $E[X]$

Algorithm $A(\varepsilon, \delta)$

- Draw $n = \frac{1}{2\varepsilon^2} \ln \frac{2}{\delta}$ copies of X
- Output their average Y
Example: Approximating the Mean

- Let X_i be ith copy of X
- Then $Y = \frac{1}{n} \sum_{i=1}^{n} X_i$, and $E[Y] = E[X]$
- By Hoeffding,

$$\Pr[|Y - E[X]| > \varepsilon] = \Pr[\sum_{i=1}^{n} X_i - E[\sum_{i=1}^{n} X_i] > \varepsilon n]$$

$$< 2 \exp(-2\varepsilon^2 n) = 2 \exp(-\ln(2/\delta)) = \delta$$

- A different, sequential, algorithm gets (ε, δ) relative approximation using

$$O\left(\frac{1}{\varepsilon^2 E[X]} \ln \frac{1}{\delta}\right)$$

samples of X

[Dagum-Karp-Luby-Ross 95, Lipton-Naughton 95]
Example: Approximating the Median

Input: ε, δ, set S of real numbers (Note: no bound assumed)
Output: some $s \in S$ whose rank in S is $(1/2 \pm \varepsilon)|S|$

Algorithm $A(\varepsilon, \delta)$
- Draw $n = \frac{1}{2\varepsilon^2} \ln \frac{2}{\delta}$ random elements from S
- Output the median of these n elements
Example: Approximating the Median

- Let X_i be 1 if ith sample has rank $\leq (1/2 - \varepsilon)|S|$, 0 otherwise.
- $E[X_i] = 1/2 - \varepsilon$
- By Hoeffding,

$$\Pr[\geq n/2 \text{ draws give elements with rank } \leq (1/2 - \varepsilon)|S|]$$

$$\leq \Pr[\sum_{i=1}^{n} X_i \geq n/2] = \Pr[\sum_{i=1}^{n} X_i \geq E[\sum_{i=1}^{n} X_i] + \varepsilon n]$$

$$\leq \exp(-2\varepsilon^2 n) = \delta/2$$

- Therefore, with probability $< \delta/2$ we draw $\geq n/2$ elements of rank $\leq (1/2 - \varepsilon)|S|$. Implies median of sample $> (1/2 - \varepsilon)|S|$
- Similarly the other side
Example use in Data Streams: Sampling rate

- Suppose items arrive at so high speed that we have to skip some
- Sample randomly:
 - Choose to process each element with probability α
 - Ignore each element with prob. $1 - \alpha$
- At any time t, if queried for the median, return the median of the elements chosen so far

Exercise.

Given α, δ, determine the probability ε_t such that at time t the output of the algorithm above is an (ε_t, δ)-approximation of the median on the first t elements of the stream
Improved (ε, δ)-approximation: $1/\delta$ to $\ln(1/\delta)$

Let algorithm A be such that $E[A(x)] = f(x)$, $\text{Var}(A(x)) \leq \sigma^2$
(Note: no bound assumed)

B: Run b independent copies of A and average results
With $b = 6\sigma^2/\varepsilon^2$ we have

$$\Pr[|B(x) - f(x)| \geq \varepsilon] < 1/6$$

C: Run c independent copies of B and take median
With $c = \frac{1}{2(1/2 - 1/6)^2} \ln \frac{2}{\delta}$ we have (Exercise: check!)

$$\Pr[|C(x) - f(x)| > \varepsilon] \leq \delta$$

Memory and runtime blowup is $b \cdot c = 27\sigma^2 \frac{1}{\varepsilon^2} \ln \frac{2}{\delta}$

A better analysis reduces constant 27 to about 4
3. Counting distinct elements

The Distinct Element Counting Problem

How many *distinct* elements have we seen so far in the data stream?
Item spaces and # distinct elements can be large

- I’m a web searcher. How many different queries did I get?
- I’m a router. How many pairs (sourceIP,destinationIP) have I seen?
 - itemspace: potentially 2^{128} in IPv6
- I’m a text message service. How many distinct messages have I seen?
 - itemspace: essentially infinite
- I’m an streaming classifier builder. How many distinct values have I seen for this attribute x?
Item space I, cardinality n, identified with range $[n]$

$f_{i,t} = \#$ occurrences of $i \in I$ among first t stream elements

$d_t = \text{number of } i\text{'s for which } f_{i,t} > 0$

Often omit subindex t

Solving exactly requires $O(d)$ memory

Approximate solutions using $O(d)$, $O(\log d)$ and $O(\log \log d)$ bits
Linear counting \cite{Whang+90} \sim Bloom filters

\begin{itemize}
 \item Init(d_{max}, ρ):
 \begin{itemize}
 \item upper bound $d_{\text{max}} \geq d$
 \item $\rho < 1$, load factor
 \item build a bit vector B of size $s = \rho \cdot d_{\text{max}}$
 \item choose a hash function $f : [n] \rightarrow s$
 \end{itemize}
 \item Update(x): $B[f(x)] \leftarrow 1$
 \item Query:
 \begin{itemize}
 \item $w = \text{the fraction of 0's in } B$
 \item return $s \cdot \ln(1/w)$
 \end{itemize}
\end{itemize}
Linear counting \cite{Whang90} \simeq Bloom filters

\[
\begin{align*}
w &= \Pr[\text{bucket } i \text{ after } d \text{ distinct elements}] = (1 - 1/s)^d \simeq \exp(-d/s) \\
E[\text{Query}] &\simeq d, \quad \sigma(\text{Query}) = \text{small!}
\end{align*}
\]

Issue: What is a “good” hash function?

- \(f(i) \) uniformly distributed, even given all other values of \(f \)
- “Reproducibly random”
- How to get one: Later!
Cohen’s algorithm [Cohen97]

\[E[\text{gap between two 1's in } B] = \frac{s - d}{d + 1} \approx \frac{s}{d} \]

Query: return \(s / (\text{size of first gap in B}) \)
Cohen’s algorithm [Cohen97]

Trick: Don’t store B, remember smallest key inserted in B

Init: $\text{posmin} = s$; choose hash function $f : [n] \rightarrow s$

Update(x): if ($f(x) < \text{posmin}$) $\text{posmin} \leftarrow f(x)$

Query: return s/posmin
Cohen’s algorithm [Cohen97]

\[E[\text{posmin}] \approx \frac{s}{d} \quad \sigma(\text{posmin}) \approx \frac{s}{d} \]

Memory = (bits to store posmin) =
\[\log(\text{posmin}) \leq \log s = O(\log d_{\text{max}}) \]
Bloom filter. But: Observe values of hash function $f(i)$, in binary

Idea: To see $f(i) = 0^{k-1}1 \ldots$, about 2^k distinct values inserted

And we don’t need to store B, just the smallest k
Flajolet-Martin probabilistic counter

Init: $p \leftarrow 0$

Update(x):
- let b be the position of the leftmost 1 bit of $f(x)$
- if ($b > p$) $p \leftarrow b$

Query: return 2^p

$E[2^p] = d/\varphi$, for a constant $\varphi = 0.77\ldots$

Memory = (bits to store p) = $\log p = \log \log d_{\max}$ bits
Solution 1: Use c independent copies, average

- Problem 1: runtime multiplied by c
- Problem 2: independent runs = generate *independent* hash functions
- And we don’t know how to generate several independent hash functions
Solution 2:

- Divide stream into \(c = O(\varepsilon^{-2}) \) substreams
- Use first bits of \(f(x) \) to decide substream for \(x \)
- Track \(p \) separately for each substream
- Same \(f \) can be used for all copies
- One sketch update per item

Memory = \(O(c \log \log d_{\text{max}}) = O(\varepsilon^{-2} \log \log d_{\text{max}}) \)
Improving the leading constants

- Original [Flajolet-Martin 85]: Geometric average of estimations
- SuperLogLog [Durand+03]: Remove top 30%, then geometric average
- HyperLogLog [Flajolet+07]: Harmonic average

Standard deviation is $\simeq 1.03/\sqrt{c}$ for HyperLogLog

HyperLogLog: “cardinalities up to 10^9 can be approximated within say 2% with 1.5 Kbytes of memory”

Implementation aspects: [Heule+13]
Linear or logarithmic?

[Metwaly+08]

- “Why go logarithmic when we can go linear”
- Describe an application where extreme accuracy needed
 - e.g., 10^{-4}
- For this range, linear counting uses less memory
- My take: I have ML/DM in mind; low accuracy is ok, *and* we will need to maintain *many* counts
4. Finding Frequent Elements

Heavy Hitters, Elephants, Hotlist analysis, Iceberg queries
Finding Frequent Elements

The Heavy Hitter Problem

Given a sequence S of t elements, threshold θ, find all elements with frequency $> \theta t$ - the heavy hitters

Interesting for skewed distributions

There are at most $\left\lfloor 1/\theta \right\rfloor$ heavy hitters

Good sources: [Berinde+09], [Cormode+08]
1. Sampling: Output the heavy hitters computed in a sample
 - Uniform sample can be kept with reservoir sampling technique
 - Doable with sample size $O(1/\theta^2)$ (Hoeffding)

Solutions with memory $O(1/\theta)$:

2. Count based. We cover SpaceSaving Sketch

3. Hash based: Count-Min Sketch
The SpaceSaving sketch [Metwally+05]

- One of many counter-based methods: Karp-Shenker-Papadimitriou, Lossy Counter, Frequent, Sticky Sampling, GroupTest, . . .
- Memory $O(1/\theta)$. Best possible
- Good update time
- Guarantee on count error
- No false negatives; but has false positives
The SpaceSaving sketch

Init(θ): Create

\[k \leftarrow \lceil 1/\theta \rceil \]

set of keys \(K \leftarrow \emptyset \)

vector \(count \), indexed by \(K \)

Update(\(x \)):

if \(x \) is in \(K \) then \(count[x]++ \)

else, if \(|K| < k\), add \(x \) to \(K \) and set \(count[x] = 1 \)

else, replace an item with lowest count with \(x \) and increase its count by 1

Query:

return the set \(K \)
Why Does This Work?

Claims:
Let \min_t be the minimum value of a counter at time $t > 0$. Then

1. $\min_t \leq t/k$
2. If $f_{x,t} > \min_t$, then $x \in K$ at time t
3. For every $x \in K$, $f_{x,t} \leq \text{count}_t[x] \leq f_{x,t} + \min_t$

In particular, all items with frequency over t/k are in K

Proof: By joint induction on t. Exercise: prove it!
More on SpaceSaving

Efficient implementation: StreamSummary data structure

Exercise
Without looking into the paper, propose an efficient data structure for SpaceSaving. Aim for $O(1)$ update time and $O(k) = O(1/\theta)$ items, counts, pointers, etc.
The Count-Min Sketch

[Cormode-Muthukrishnan 04]
Like SpaceSaving:

- Provides an approximation f'_x to f_x, for every x
- Can be used (less directly) to find θ-heavy hitters
- Uses memory $O(1/\theta)$

Unlike SpaceSaving:

- It is randomized - hash functions instead of counters
- Supports additions and deletions
- Supports (not trivially) Heavy Hitters
- Can be used as basis for several other queries
The Count-Min Sketch

- Vector $F[n]$. Assumes $F[i] \geq 0$ for all i, at all times

- Provides estimations F' of F such that
 1. $F[i] \leq F'[i]$ for all i
 2. For every $i \in I$, $F'[i] \leq F[i] + \varepsilon |F|_1$ with probability $\geq 1 - \delta$

 where $|F|_1 = \sum_i F[i]$

- Note: $|F|_1$ may be \ll stream length, if subtractions allowed

- Uses $O\left(\frac{1}{\varepsilon} \ln \frac{1}{\delta}\right)$ memory words, $O(\ln \frac{1}{\delta})$ update time
source: A. Bifet,
The Count-Min Sketch

- d independent hash functions $h_1 \ldots h_d : [1..n] \rightarrow [1..w]$
- one “memory cell” for each $h_j(i)$
- On instruction “$F[i] += v$”, do $h_j(i) += v$ for all $j \in 1 \ldots d$
- Estimation:
 \[F'[i] = \min \{ h_j(i) \mid j = 1..d \} \]
The Count-Min Sketch

\[F'[i] = \min\{ h_j(i) \mid j = 1..d \} \]

- \(F'[i] \geq F[i] \)

 For each instruction involving \(i \), we update all counts \(h_j(i) \)

 \(F[i] \geq 0 \) at all times for all \(i \)

- \(F'[i] = F[i] ? \)

 No: cell \(h_j(i) \) is also incremented by \(k \neq i \) if \(h_j(k) = h_j(i) \)

 But it is unlikely that this occurs very often

- \(\min \) instead of average → Markov instead of Chebyshev or Hoeffding
Fix j. Define random variable $l_{ijk} = 1$ if $h_j(i) = h_j(k)$, 0 otherwise.

If h is a good hash function

$$E[l_{ijk}] \leq \frac{1}{\text{range}(h_j)} = \frac{1}{w}$$

Define $X_{ij} = \sum_k l_{ijk} F[k]$. Then

$$E[X_{ij}] = \sum_k E[l_{ijk}] F[k] \leq |F|_1 / w$$
The Count-Min Sketch: Proof of main bound (2)

Then by Markov’s inequality and pairwise independence:

$$\Pr[X_{ij} \geq \varepsilon | F_1] \leq E[X_{ij}]/(\varepsilon | F_1) \leq (|F_1|/w)/(\varepsilon | F_1|) \leq 1/2$$

if $w = 2/\varepsilon$. Then:

$$\Pr[F'[i] \geq F[i] + \varepsilon | F_1] = \Pr[\forall j : F[i] + X_{ij} \geq F[i] + \varepsilon | F_1] = \Pr[\forall j : X_{ij} \geq \varepsilon | F_1] \leq (1/2)^d = \delta \quad \text{if } d = \log(1/\delta)$$

for one fixed i. To have good estimates for all i simultaneously, use $d = \log(n/\delta)$ and use union bound.
The Count-Min Sketch: Summary

- Memory is $\frac{2}{\varepsilon} \log \frac{1}{\delta}$ words
- Update time $O(\log \frac{1}{\delta})$
- Replace $\log(1/\delta)$ with $\log(n/\delta)$ if the bound needs to hold for all i simultaneously

 “Pr[for all $i, \ldots] \leq \delta”$ instead of “for all i, Pr[\ldots] \leq \delta”

- Error for $F[i]$ is ε relative to $|F|_1$, not to $F[i]$
Back to Heavy Hitters

- i is a θ-heavy hitter if $F[i] \geq \theta t$
- The CM-sketch with width θ guarantees

$$F[i] \leq F'[i] \leq F[i] + \theta t$$

- So: If we output all i s.t. $F'[i] \geq \theta t$, we output all heavy hitters; no false negatives

But we can’t cycle through all n candidates one by one!
Range-sum query

Given a, b, return $\sum_{i=a}^{b} F[i]$

Example: how many packets received came from the IP range 172.16.xxx.xxx?

We show:

- A variant of CM-sketch supports range-sum queries efficiently
- Answering range-sum queries efficiently \rightarrow finding heavy hitters efficiently
For $p = 0 \ldots \log n$, for each $j = \ldots$, keep the value of
\[
\text{sum}(j2^p \ldots (j+1)2^p - 1)
\]
Any interval $[a, b]$ is the sum of $O(\log n)$ such values. Check it
Keep one CM-sketch for each 2^p to store $\sum(j2^p \ldots (j+1)2^p - 1)$ for each j
From CM-sketch to range-sum queries

When receiving \(i \), update the counts for ranges where \(i \) lies = ancestors of \(i \) in the tree

When queried \(\text{sum}(a..b) \), decompose \([a..b]\) as sum of such intervals, retrieve and add their sums
Adaptively search for heavy hitters in the tree
if a node has count \(< \theta t\), do not explore its children: no heavy hitters below
if a node has count \(\geq \theta t\), explore both children
when reaching a leaf, we know whether it’s a heavy hitter

the sum of counts at any one level of the tree is \(t\)
no more than \(1/\theta\) of them may have frequency \(\geq \theta t\)
Efficiency: no more than \(1/\theta\) nodes of each level are expanded
Exercise
Formalize the algorithms above:

- For computing range-sum queries given CM-sketch
- Form finding all heavy hitters using range-sum queries

and tell their memory usage and update time
Other uses of CM-Sketch - Range-Sum queries

- Quantile computation: Given i, θ, find for all k the $q(k)$ such that

$$
q(k) \sum_{i=1}^{n} F[i] = k \theta \sum_{i=1}^{n} F[i]
$$

- Reverse, histogram computation: Given f, how many i’s have frequency f?

- Inner product of two streams

- ...
5. Counting in Sliding Windows

- Only last n items matter
- Clear way to bound memory
- Natural in applications: emphasizes most recent data
- Data that is too old does not affect our decisions

Examples:
- Study network packets in the last day
- Detect top-10 queries in search engine in last month
- Analyze phone calls in last hours
Statistics on Sliding Windows

- Want to maintain mean, variance, histograms, frequency moments, hash tables, . . .
- SQL on streams. Extension of relational algebra
- Want quick answers to queries at all times
Basic Problem: Counting 1’s

Obvious algorithm, memory n:

- Keep window explicitly
- At each time t, add new bit b to head, remove oldest bit b' from tail,
- Add b and subtract b' from count

Fact:

$\Omega(n)$ memory bits are necessary to solve this problem exactly
Theorem: Estimating number of 1’s in a window of length n with multiplicative error ε is possible with $O\left(\frac{1}{\varepsilon} \log n\right)$ counters

$= O\left(\frac{1}{\varepsilon}(\log n)^2\right)$ bits of memory

Example:

- $n = 10^6; \varepsilon = 0.1 \rightarrow 200$ counters, 4000 bits
Idea: Exponential Histograms

Each bit has a timestamp - time at which it arrived
At time t, bits with timestamp $\leq t - n$ are expired
We have up to k buckets of capacity 1, 2, 4, 8, ...
Each bucket contains the number of 1s in a subwindow, up to its capacity
Errors: expired bits in the last bucket
1’s in last bucket \leq (1’s in previous buckets) / k
Exponential Histograms

Init: Create empty set of buckets

Query: Return total number of bits in buckets - last bucket / 2
Exponential Histograms

Insert rule(bit \(b \)):

- If \(b \) is a 0, ignore it. Otherwise, if it’s a 1:
- Add a bucket with 1 bit and current timestamp \(t \) to the front
- for \(i = 0, 1, \ldots \)
 - If more than \(k \) buckets of capacity \(2^i \),
 - merge two oldest as newest bucket of capacity \(2^{i+1} \),
 with timestamp of the older one
- if oldest bucket timestamp \(< t - n \), drop it (all expired)
Memory Estimate

- Largest bucket needed: $k \sum_{i=0}^{C} 2^i \approx n \rightarrow C \approx \log(n/k)$
- Total number of buckets: $k \cdot (C + 1) \approx k \log(n/k)$
- Each bucket contains a timestamp only (perhaps its capacity, dep. on implementation)
- Timestamps are in $t - n \ldots t$: recycle timestamps mod n
- Memory is $O(k \log(n/k) \log n)$ bits; take $k = 1/2\epsilon$
Generalizations

Applies also to other natural aggregates:

- Variance
- Distinct elements (using Flajolet-Martin)
- Max, min
- Histograms
- Hash tables
- Frequency moments

and can be combined with CM-sketch
6. Distributed Sketching

Setting:
- Many sources generating streams concurrently
- No synchrony assumption
- Want to compute global statistics
- Streams can send short summaries to central
Merging sketches

Send the sketches, not the whole stream
Merging sketches

Mergeability

A sketch algorithm is **mergeable** if

- given two sketches S_1 and S_2 generated by the algorithm on two data streams D_1 and D_2,
- one can compute a sketch S that answers queries correctly with respect to the concatenation of D_1 and D_2

Note: For frequency problems,

"for the concatenation" = "for all interleavings"
Merging sketches

All sketches we’ve seen are mergeable efficiently

- Bloom filters, Cohen, Flajolet-Martin, HyperLogLog
- SpaceSaving
- CM-sketch
- Exponential Histograms (though order dependent problem)

May require sites to use common random bits or hash functions
Perfect hash function: $f(i)$ cannot be guessed at all even from all other values of f

Storing $f : A \rightarrow B$ unfeasible for large A
Wrapping up. Hash functions (2)

- Cryptographic hash functions (MD5, SHA1, SHA256, or MurmurHash) should work well, but are costly.
- Even simpler functions like linear congruential may work well in practice if not in theory — but don’t use 32 bit integers if you plan to count billions!
- $O(\log n)$ bits to store such a function for $|A| = |B| = n$
- But we can’t “generate many of them”, e.g., to reduce variance

- Sometimes, analysis reveals that weaker notions of “good hash function” suffices
- E.g., pairwise independence suffices for CM-sketch: $f(i)$ independent of any other single $f(j)$
- (In general, will work if you use only Chebyshev or Markov)
- We can generate mutually independent, pairwise independent functions
- One can be stored with $O(\log n)$ bits
Wrapping up. Some stuff I left out

- Detecting duplicate documents
- Detecting near duplicates (LSH), minwise hashing, . . .
- Sketches for geometric problems. Clustering
- Graph sketches. Counting subgraphs
- Using HyperLogLog to estimate neighborhood functions of graphs
- Sketches that are linear projections. Metric embeddings. Dimensionality reduction
- Linear algebra. PCA. Singular Value Decomposition
Wrapping up. Last words

Approximation helps

Randomness helps

Some more tools in your toolbox

http://www.cs.upc.edu/~gavalda
8. References and resources

With apologies to all missing papers

General Surveys on Stream Algorithmics:

- **Survey by Liberty and Nelson:** http://www.cs.yale.edu/homes/el327/papers/streaming_data_mining.pdf
- **A very general bibliography by K. Tufte:** http://web.cecs.pdx.edu/~tufte/410-510DS/readings.htm
- **Lecture notes by A. Chakrabarti:** http://www.cs.dartmouth.edu/~ac/Teach/CS85-Fall09/Notes/lecnotes.pdf
- **Survey by G. Cormode:** http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf
Approximate counting

- The original Morris77 paper: http://dl.acm.org/citation.cfm?id=359627 also available here: http://www.inf.ed.ac.uk/teaching/courses/exc/reading/morris.pdf

- The application of Morris’ counters to counting n-grams, by Van Durme and Lall: http://www.cs.jhu.edu/~vandurme/papers/VanDurmeLallIJCAI09.pdf
8. References and resources

Large deviation bounds

- C. Shalizi list of references (much beyond the scope of this course): http://bactra.org/notebooks/large-deviations.html
Counting distinct elements

- Good general survey of distinct element counting up to 2008: Ahmed Metwally, Divyakant Agrawal, Amr El Abbadi: Why go logarithmic if we can go linear?: Towards effective distinct counting of search traffic. EDBT 2008: 618-629.

- Also general discussion on distinct element counting: http://highscalability.com/blog/2012/4/5/big-data-counting-how-to-count-a-billion-distinct-objects-.html

- Presentation including some sketches I didn’t mention: http://www.cs.upc.edu/~conrado/research/talks/aofa2012.pdf

8. References and resources

HyperLogLog and related for distinct element counting

- Flajolet’s contributions explained beautifully by J. Lumbroso: http://www.stat.purdue.edu/~mdw/ChapterIntroductions/ApproxCountingLumbroso.pdf
8. References and resources

HyperLogLog and related for distinct element counting (2)

- **A live demo of hyperloglog at the web above:** http://content.research.neustar.biz/blog/hll.html

- **Important optimizations that I'd like to try:**
 http://druid.io/blog/2014/02/18/hyperloglog-optimizations-for-real-world-systems.html. Also here:
8. References and resources

Heavy hitters - count-based approaches

- Good survey of heavy hitter algorithms. Radu Berinde, Graham Cormode, Piotr Indyk, Martin J. Strauss. Space-optimal Heavy Hitters with Strong Error Bounds

- Also very good survey: Graham Cormode, Marios Hadjieleftheriou. Finding Frequent Items in Data Streams. Proc. VLDB Endowment, 2008

8. References and resources

Count-Min sketch and related

- On Frugal Streaming, a neat sketch for estimating quantiles which I did not cover in the course:
 http://research.neustar.biz/2013/09/16/sketch-of-the-day-frugal-streaming/

- https://sites.google.com/site/countminsketch/

- https://tech.shareaholic.com/2012/12/03/the-count-min-sketch-how-to-count-over-large-keyspaces
Counting in Sliding Windows

Mergeability

- Discussions on mergeability are a bit all over. This is sort of an overview: http://research.microsoft.com/en-us/events/bda2013/mergeable-long.pptx
8. References and resources

Others (personal 1-slide selection)

- Computing SVD on streams, this will be important in streaming ML: Mina Ghashami, Edo Liberty, Jeff M. Phillips, David P. Woodruff, Frequent Directions: Simple and Deterministic Matrix Sketching. http://arxiv.org/abs/1501.01711
- This will also be important in streaming ML: Christos Boutsidis, Dan Garber, Zohar Karnin, Edo Liberty: Online Principal Component Analysis, SODA 2015. http://www.cs.yale.edu/homes/el327/papers/opca.pdf
8. References and resources

Resources

- Webgraph. Analysis of large graphs, contains the HyperANF and related code used for the Four-degrees-of-separation paper: http://webgraph.di.unimi.it/
8. References and resources

Resources

I have not used the following, so no guarantees of any kind (including that they still exist)

- **Python**: https://pypi.python.org/pypi/hyperloglog/0.0.8
- **Ruby**: https://rubygems.org/gems/hyperloglog
- **Perl**: http://search.cpan.org/~hideakio/Algorithm-HyperLogLog-0.20/lib/Algorithm/HyperLogLog.pm
- **JavaScript**: http://cnpmjs.org/package/hyperloglog
- **node.js**: https://www.npmjs.org/package/streamcount
- **https://github.com/eclesh/hyperloglog/blob/master/hyperloglog.go**