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ABSTRACT
Graph mining is a challenging task by itself, and even more
so when processing data streams which evolve in real-time.
Data stream mining faces hard constraints regarding time
and space for processing, and also needs to provide for con-
cept drift detection. In this paper we present a framework
for studying graph pattern mining on time-varying streams.
Three new methods for mining frequent closed subgraphs
are presented. All methods work on coresets of closed sub-
graphs, compressed representations of graph sets, and main-
tain these sets in a batch-incremental manner, but use dif-
ferent approaches to address potential concept drift. An
evaluation study on datasets comprising up to four million
graphs explores the strength and limitations of the proposed
methods. To the best of our knowledge this is the first work
on mining frequent closed subgraphs in non-stationary data
streams.

Categories and Subject Descriptors
H.2.8 [Database applications]: Database Applications—
Data Mining

General Terms
Algorithms

Keywords
Data streams, closed mining, graphs, concept drift

1. INTRODUCTION
Graph mining is a challenging task that extracts novel

and useful knowledge from graph data [19, 4]. Due to novel
applications in social networks, chemical informatics, bioin-
formatics, communication networks, computer vision, video
indexing and the Web [21], more and more large-scale graphs
and sets of graphs are becoming available for analysis. Fre-
quent pattern mining on graphs is one of the ways to obtain
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useful patterns, e.g. for discriminating graphs in classifica-
tion and clustering tasks.

Conventional graph mining methods assume that the amount
of data is limited and that it is therefore possible to store
all data in memory or local secondary storage. There is no
limitation on processing time, either. In the Data Stream
model, we have space and time restrictions. Fundamentally,
these restrictions imply the use of incremental techniques.
Furthermore, as the data source is not necessarily station-
ary, methods must be able to adapt to changes over time in
the data as well.

As the number of possible subgraphs is exponential, we
propose to use coresets or compressed representations of the
graphs based on closed patterns. Closed patterns are power-
ful representatives of frequent patterns, since they eliminate
redundant information. A frequent pattern is closed for a
dataset if none of its proper superpatterns has the same
support as itself. Other possible definitions of a frequent
closed pattern are the following:

• a frequent pattern is closed if it is one of the intersec-
tions of all transactions that contain it.

• a frequent pattern is closed if no superpattern is con-
tained in exactly the same transactions as itself.

Generally, there are many fewer frequent closed graphs
than frequent ones. In fact, we can obtain all frequent sub-
graphs with their support from the set of frequent closed
subgraphs with their support. So, the set of frequent closed
subgraphs maintains the same information as the set of all
frequent subgraphs.

There are many methods for computing frequent closed
itemsets (see [21]), frequent closed sequences [31, 28], and
trees [18, 6, 26, 5], but only two for frequent closed graphs [30,
13], and none for frequent closed graphs on data streams.

We propose the first general methodology to identify closed
graphs in a data stream. We develop three closed graph algo-
rithms: IncGraphMiner, an incremental closed graph min-
ing algorithm; WinGraphMiner, a sliding window-based
closed graph mining algorithm; and finally AdaGraphMiner,
an adaptive closed graph mining algorithm. “Adaptive”means
that the model maintains at all times the closed graphs that
are frequent in the current state of the data stream, that is,
since the latest change in distribution was detected.

The rest of the paper is organised as follows. Sections 2
and 3 give background and present the novel weighted fre-
quent closed pattern setting. Section 4 introduces a new
coreset structure and its properties. Section 5 details the
handling of concept drift and Section 6 introduces the gen-



eral mining framework. Experimental results are given in
Section 7, and conclusions are drawn in Section 8.

1.1 Related Work
There is a large body of work on itemset mining from

data streams; see the survey [23] and the references therein.
We can divide these data stream methods into two differ-
ent classes depending on whether they use a landmark win-
dow, containing all the examples seen so far, or a sliding
window. Only a small fraction of these methods deal with
frequent closed mining. Moment [17], CFI-Stream [24] and
IncMine [22] are state-of-the-art algorithms for mining fre-
quent closed itemsets over a sliding window. CFI-Stream
stores only closed itemsets in memory, but maintains all
closed itemsets as it does not apply a minimum support
threshold, with the corresponding memory penalty. Moment
stores much more information besides the current frequent
closed itemsets, but it has a minimum support threshold
to reduce the number of patterns found. IncMine proposes
a notion of semi-FCIs that increases the minimum support
threshold for an itemset as it is retained longer in the win-
dow.

For trees, the work in [8] shows a general methodology
to identify closed patterns in a data stream, using Galois
Lattice Theory. This approach is based on an efficient rep-
resentation of trees and a low complexity notion of relaxed
closed trees, and presents an online strategy and an adap-
tive sliding window technique for dealing with changes over
time. The approach is different to the one presented in this
paper, as it does not use coresets, or weighted frequent min-
ing techniques.

In terms of graphs, two main algorithms exist for mining
frequent closed graphs:

• CloseGraph [30]: based on gSpan [29], a miner for
finding frequent subgraphs, based on depth-first search
(DFS)

• MoSS [13]: an extension to MoFa [11] based on breadth-
first search (BFS).

Aggarwal et al. [3] present a mining methodology to find
frequent and dense patterns in graph streams. Their no-
tion of density is based both on node-occurrence and edge
density, and they present an approach based on finding an
approximation of the exact method with the use of a min-
hash approach.

To the best of our knowledge the work presented here is
the first work dealing with mining frequent closed graphs in
streaming data that evolve with time.

2. PRELIMINARIES
We are interested in (possibly infinite) sets of graphs, en-

dowed with a partial order relation � among these graphs.
The set of all graphs will be denoted by G, but actually
all our developments will proceed in some finite subset of G
which will act as our universe of discourse.

Given two graphs g and g′, we say that g is a subgraph of
g′, or g′ is a super-graph of g, if g � g′. Two graphs g, g′

are said to be comparable if g � g′ or g′ � g. Otherwise,
they are incomparable. Also we write g ≺ g′ if g is a proper
subgraph of g′ (that is, g � g′ and g 6= g′).

The input to our data mining process is a dataset D of
weighted transactions, where each transaction s ∈ D consists

Transaction Id Graph Weight

1

C C S N

O

O 1

2

C C S N

O

C 1

3

C S N

O

C 1

4 C C S N

N

1

5 C S N

N

1

6 C S O

N

1

Table 1: Example of graph weighted transaction
dataset.

of a transaction identifier tid, and a graph. The dataset is a
finite set in the standard setting, and a potentially infinite
sequence in the data stream setting. Tids are supposed to
run sequentially from 1 to the size of D.

Following standard usage, we say that a transaction s sup-
ports a graph g if g is a subgraph of the graph in transaction
s. The number of transactions in the dataset D that support
g is called the support of the graph g. A subgraph g is called
frequent if its support is greater than or equal to a given
threshold min sup. The frequent subgraph mining problem
is to find all frequent subgraphs in a given dataset. Any
subgraph of a frequent graph is also frequent and, therefore,
any supergraph of a infrequent graph is also infrequent (the
antimonotonicity property).

We define a graph g to be closed (implicitly, w.r.t. to D)
if none of its proper supergraphs has the same support as g
has in D.

In this paper we focus our examples and experiments on
molecular graphs, but our approach is general enough to be
applied to any type of graph.

3. FREQUENT CLOSED WEIGHTED
GRAPH MINING

In this section we introduce an extension to the frequent
closed graph mining problem which enables the use of com-
pressed graph representations in our adaptive methods: the
frequent weighted closed graph mining problem. This prob-
lem differs from standard frequent closed graph mining in
that each input graph has a weight, and this weight is used
to compute its weighted support.

The input into the data mining process is a dataset D of
weighted transactions, where each transaction s ∈ D consists
of a transaction identifier, tid, a graph, and a weight value.



Graph Relative Support Support

N -2 6

C S -3 6

C C S N 3 3

C S N

O

3 3

C S

N

3 3

C S O 1 4

C S N -1 5

Table 2: Example of a coreset with minimum sup-
port 50% and δ = 0 for the transaction dataset of
Table 1.

Table 1 shows an example of a weighted dataset with six
molecule graphs [11].

The sum of the weights of transactions in the dataset D
that supports g is called the weighted support of the graph
g. For brevity, weighted support will be abbreviated to just
support. A subgraph g is called frequent if its weighted sup-
port is greater than or equal to a given threshold min sup.

We define a graph g to be closed if none of its proper su-
pergraphs has the same weighted support as it has. A graph
g is maximal if none of its proper supergraphs is frequent.
All maximal graphs are closed but not necessarily otherwise.
We define a graph g to be δ-tolerance closed [16, 25] if none
of its proper frequent supergraphs has a weighted support
larger than or equal to (1 − δ) · support(g). Note that a
maximal graph is a 1-tolerance closed graph, and a closed
graph is a 0-tolerance closed graph. Note that, from [8] we
have the following propositions:

Proposition 1. Adding a transaction with pattern g to
a dataset of patterns D where g is closed does not modify the
number of closed patterns for D.

Proposition 2. Deleting a pattern transaction that is re-
peated in a dataset of patterns D does not modify the number
of closed patterns for D.

Using these propositions we can observe that when adding
to or removing from the weights of transactions, we are not
modifying the number of closed patterns provided they re-
main frequent.

4. CORESETS OF CLOSED GRAPHS
A coreset [2] of a set P with respect to some problem is

a small subset that approximates the original set P , in the
sense that solving the problem for the coreset provides an
approximate solution for the problem on the original set P .
This notion was introduced in computational geometry to
denote a small subset of points that can be used to obtain
approximate solutions with theoretical guarantees.

For example, for clustering [1], a coreset for a set is a small
set, such that for any set of cluster centers the clustering cost
of the coreset is an approximation for the clustering cost of
the original set with small relative error.

Graph Relative Support Support

C C S N 3 3

C S N

O

3 3

C S

N

3 3

Table 3: Example of a coreset with minimum sup-
port 50% and δ = 1 for the graph dataset of Table 1.

The main advantage of coresets is that we can apply any
fast approximation algorithm on the usually much smaller
coreset to compute an approximate solution for the original
set more efficiently.

Here we use the set of frequent closed subgraphs as a
smaller subset of the frequent subgraphs maintaining the
same information but using less space. We define the rel-
ative support of a closed graph as the support of a graph
minus the relative support of its closed supergraphs. We
define the relative support in this way to exploit the fact
that the sum of the closed supergraphs’ relative supports of
a graph is equal to its own support.

We define a (s, δ)-coreset for the problem of computing
closed graphs as a weighted multiset of frequent δ-tolerance
closed graphs with minimum support s using their relative
support as a weight. Table 2 shows a (50%,0)-coreset for the
dataset in Table 1 and Table 3 shows a (50%,1)-coreset for
the same dataset.

Note that given a graph dataset D, its (s, 0)-coreset is the
set of frequent closed graphs, and its (s, 1)-coreset contains
the frequent maximal graphs. As the set of maximal graphs
is contained in the set of closed graphs for a minimum sup-
port s, the set of graphs in the (s, 1)-coreset is also a subset
of the graphs in the (s, 0)-coreset. For example, the set of
graphs in the (50%,1)-coreset of Table 3 is a subset of the
graphs in the (50%,0)-coreset of Table 2.

For two minimum supports sL and sH where sL < sH , the
set of graphs in its (sH , δ)-coreset is a subset of the graphs
in the (sL, δ)-coreset.

A coreset is a “compressed representation” of the original
dataset. This compression is two-dimensional:

• Minimum support excludes infrequent graphs

• δ-tolerance excludes supergraphs with very similar sup-
port

In this paper we focus only on (s, 0)-coresets, i.e., frequent
closed graphs, as they are the only coresets that can guar-
antee the recovery of all frequent and frequent closed graphs
with minimum support s. To show that this (s, 0)-coreset
outputs all the frequent subgraphs with minimum support
s, we need the following proposition.

Proposition 3. Let D1 and D2 be two datasets of graphs.
Let C1 and C2 be the (s, 0)-coresets of closed graphs for D1
and D2. The set of closed graphs of C1 ∪ C2 is exactly the
set of closed graphs of D1 ∪ D2.

First, we note that the support of a graph in C1 and C2
is the same support of a graph in D1 and D2, due to the



fact that the support of a graph in C1 and C2 is the sum
of all relative supports. As the support of a closed graph in
D1 and D2 is the same support as in C1 and C2, we can
obtain from them the same closed subgraphs, using relative
support instead of support.

Proposition 4. Let D1 and D2 be two datasets of graphs.
Let C1 and C2 be the (s, 0)-coresets of closed graphs for D1
and D2. The set of frequent graphs of C1∪C2 is exactly the
set of frequent graphs of D1 ∪ D2.

To show that we can also obtain the frequent ones, we
see that the frequent non-closed graphs have the support of
their closure, so we obtain the same frequent graphs.

Proposition 5. Let D1, D2 and D be three datasets of
graphs with D = D1 ∪ D2. Let C1, C2 and C be the (s, 0)-
coresets of closed graphs for D1,D2 and D. The set of fre-
quent graphs for C1 = C\C2 = C ∪C2 obtained using rela-
tive support for C1 and negative relative support for C2, is
exactly the set of frequent graphs for D1 = D\D2.

As the support of a graph in C1 is the support of the
graph in C minus its support in C2, we can obtain the
closed graphs in C1 by adding the closed graphs in C2, with
negated relative support, to C.

In general terms, using (s, 0)-coresets we can obtain all
frequent, closed and maximal graphs with minimum sup-
port s without losing any information. Using (s, δ)-coresets
we get more compact representations of the original dataset,
and we can still obtain the maximal graphs, but we cannot
completely recover all frequent closed graphs of minimum
support s.

5. ESTIMATING FREQUENCIES
ADAPTIVELY

To deal with concept drift, our methods have to be able
to adapt to changes in the input distribution. Keeping a
sliding window of recent elements is an option, however, it
has the cost of maintaining it in memory. In this paper, we
propose to use ADWIN to estimate frequencies of graphs with
theoretical guarantees.
ADWIN (ADaptive sliding WINdow) [7] is a change detector

and estimation algorithm. It solves, in a well-specified way,
the problem of tracking the average of a stream of bits or
real-valued numbers. ADWIN keeps a variable-length window
of recently seen items, with the property that the window
has the maximal length statistically consistent with the hy-
pothesis “there has been no change in the average value in-
side the window”.

More precisely, an older fragment of the window is dropped
if and only if there is enough evidence that its average value
differs from that of the rest of the window. This has two
consequences: one, change is reliably detected whenever the
window shrinks; and two, at any time the average over the
existing window can be used as a reliable estimate of the cur-
rent average in the stream (barring a very small or recent
change that is not yet statistically significant).

The inputs to ADWIN are a confidence value δ ∈ (0, 1) and
a (possibly infinite) sequence of real values x1, x2, x3, . . . ,
xt, . . . The value of xt is available only at time t. Each xt is
generated according to some distribution Dt, independently
for every t. We denote with µt the expected value of xt when

it is drawn according to Dt. We assume that xt is always
in [0, 1]; rescaling deals with cases where a ≤ xt ≤ b. No
further assumption is being made about the distribution Dt;
in particular, µt is unknown for all t.
ADWIN is parameter- and assumption-free in the sense that

it automatically detects and adapts to the current rate of
change. Its only parameter is a confidence bound δ, indicat-
ing how confident we want to be in the algorithm’s output,
inherent to all algorithms dealing with random processes.

It is important to note that ADWIN does not maintain the
window explicitly, but compresses it using a variant of the
exponential histogram technique [20]. This means that it
keeps a window of length W using only O(logW ) mem-
ory and O(logW ) processing time per item, rather than the
O(W ) one expects from a näıve implementation.

The main technical result in [7] about the performance of
ADWIN is the following theorem, that provides bounds on the
rate of false positives and false negatives:

Theorem 1. With εcut defined as

εcut =

√
1

2m
· ln 4|W |

δ

where for some partition of W in two parts W0W1 (where
W1 contains the most recent items), and m is the harmonic
mean of |W0| and |W1|, at every time step we have:

1. (False positive rate bound). If µt has remained con-
stant within W , the probability that ADWIN shrinks the
window at this step is at most δ.

2. (False negative rate bound). Suppose that for some
partition of W in two parts W0W1 we have |µW0 −
µW1 | > 2εcut. Then with probability 1−δ ADWIN shrinks
W to W1, or shorter.

6. FREQUENT GRAPH MINING ON DATA
STREAMS

In this section we present new graph mining methods for
data streams using the results discussed in previous sec-
tions. We start by reviewing non-incremental basic methods,
and then present the incremental miner IncGraphMiner,
the sliding-window based miner WinGraphMiner, and the
adaptive miner AdaGraphMiner.

6.1 Non-Incremental Graph Mining
[29, 30] presents two algorithms for computing frequent

and closed graphs from a dataset of graphs, in a non in-
cremental way. They represent the potential subgraphs to
be checked for, being frequent and closed on the dataset, in
such a way that extending them by one single node, in all
possible ways, corresponds to a clear and simple operation
on the representation. The completeness of the procedure
is assured, that is, all graphs can be obtained in this way.
This allows them to avoid extending graphs that have al-
ready been found to be infrequent.

The pseudocode of CloseGraph is presented in Figure 1.
Note that the first line of the algorithm is a canonical rep-
resentative check. Such checks are used frequently in tree
and graph mining. The use of the right-most extension ap-
proach in CloseGraph, based on depth-first search, guar-
antees that all possible graphs are reached, but reduces the
generation of duplicate graphs. CloseGraph selects the



minimum DFS code based on a DFS lexicographical order
as the canonical representative.

In MoSS [12], Borgelt et al. present a different method
to perform frequent closed graph mining using breadth-first
search instead of using the right-most extension approach.

CloseGraph(g,D,min sup, S)

Input: A graph g, a graph dataset D, min sup.
Output: The frequent graph set S.

1 if g 6= Canonical Representative(g)
2 then return S
3 isClosed← true
4 C ← ∅
5 for each g′ that is a one step right-most

extension of g
6 do if support(g′) ≥ min sup
7 then insert g′ into C
8 if support(g′) = support(g)
9 then isClosed← false

10 if isClosed = true
11 then insert g into S
12 for each g′ in C
13 do S ← CloseGraph(g′, D,min sup, S)
14 return S

Figure 1: The CloseGraph algorithm

IncGraphMiner(D,min sup)

Input: A graph dataset D, and min sup.
Output: The frequent graph set G.

1 G← ∅
2 for every batch bt of graphs in D
3 do C ← Coreset(bt,min sup)
4 G← Coreset(G ∪ C,min sup)
5 return G

Coreset(bt,min sup)

Input: A graph dataset bt, and min sup.
Output: The coreset C.

1 C ← CloseGraph(bt,min sup)
2 C ← Compute Relative Support(C)
3 return C

Figure 2: The IncGraphMiner algorithm

6.2 Incremental Mining
The incremental setting is different. Suppose that the

data arrives in batches of graphs. We consider every batch of
graphs bt as a small finite dataset Db of transactions, where
each transaction s ∈ Db consists of a transaction identifier,
tid, a graph and a weight value. We maintain a set of graphs
G and we update this set every time a new batch of graphs
Db arrives. We compute the coreset of the batch bt, and
then we use it to update the graph set G.

Note that using this methodology we can transform non-
incremental methods into incremental ones by extending
them to use weights and coresets of graphs. Figure 2 shows
the pseudocode of IncGraphMiner.

WinGraphMiner(D,W,min sup)

Input: A graph dataset D, a size window W and min sup.
Output: The frequent graph set G.

1 G← ∅
2 for every batch bt of graphs in D
3 do C ← Coreset(bt,min sup)
4 Store C in sliding window
5 if sliding window is full
6 then R← Oldest C stored in sliding window,

negate all support values
7 else R← ∅
8 G← Coreset(G ∪ C ∪R,min sup)
9 return G

Figure 3: The WinGraphMiner algorithm

6.3 Erroneous omission or inclusion bounds
When working on batches of graphs at a time, there is a

possibility that the current batch does not contain enough
occurrences of a frequent pattern, and it might also contain
more than min sup occurrences of an otherwise infrequent
pattern. The probabilities for these two types of errors, er-
roneous omission or inclusion, can be bounded in the follow-
ing way. Given a fixed batch size n, every min sup value
is equivalent to a probability p of finding a specific pattern
in any given graph. Then, if the global true probability for
some pattern is p+ ∆, and if we approximate the binomial
distribution with the normal distribution N(n ∗ (p+ ∆), n ∗
(p+ ∆) ∗ (1− p−∆), the following bound can be derived:

pdiscard(∆, n) ≤ 1√
2π
·
∫ −2∆

√
n

−∞
e−

t2

2 dt (1)

If ∆ = 0, then half of the patterns will be missed, but
reasonably small values for ∆ will already result in accept-
able probabilities: if n = 10000, then ∆ = 0.01 results in less
than 5% erroneous omissions or inclusions, and for ∆ = 0.02
this percentage is already very close to zero.

This type of argument is a heuristic that can be made
formal (at the expense of worse figures) by the use of rigorous
Hoeffding bounds, which underlie e.g. the ADWIN algorithm.

6.4 Mining with a Sliding Window
We present WinGraphMiner as a learner that maintains

a sliding window. Its main important parameter is the size
of the window W . The difference to IncGraphMiner lies
in the management of the items in the sliding window. We
update the recent frequent closed graphs, using the coresets
of the new batches that arrive. When the window is full, we
delete the oldest batch on the sliding window using negative
relative support (Proposition 5).

Figure 3 shows the pseudocode of WinGraphMiner. When
a new batch bt arrives, the method performs as IncGraph-
Miner, while the sliding window is not full. Once the win-



dow is full, the oldest coreset C is removed. The new coreset
for G is computed in one step from the coresets of G and bt,
and C with negated relative support.

AdaGraphMiner(D,Mode,min sup)

Input: A graph dataset D, mode Mode and min sup.
Output: The frequent graph set G.

1 G← ∅
2 Init ADWIN

3 for every batch bt of graphs in D
4 do C ← Coreset(bt,min sup)
5 R← ∅
6 if Mode is Sliding Window
7 then Store C in sliding window
8 if ADWIN detected change
9 then R← Batches to remove

in sliding window
with negative support

10 G← Coreset(G ∪ C ∪R,min sup)
11 if Mode is Sliding Window
12 then Insert # closed graphs into ADWIN

13 else for every g in G update g’s ADWIN

14 return G

Figure 4: The AdaGraphMiner algorithm

6.5 Adaptive Mining
Finally, we present AdaGraphMiner, an extension to

the previous methods that is able to adapt to changes on
the stream, maintaining only the currently frequent closed
graphs.

We present two versions of this method. One uses an
adaptive sliding window to maintain the batches of graphs.
The other uses a separate ADWIN instance for managing the
support of every single frequent closed subgraph.

Figure 4 shows the pseudocode of AdaGraphMiner, where
the Sliding Window test distinguishes between the two meth-
ods.

Assume a scenario where at each time t the t-th element
of the stream is a graph taken independently from a distri-
bution Dt over a fixed universe G of graphs. Then, changes
in the Dt’s over time t are modelling the evolution in the
stream. In particular, we say that “the stream is stationary
between times t1 and t2” (for t1 < t2) if

Dt1 = Dt1+1 = · · · = Dt2−1 = · · · = Dt2.

For a graph g, let ft(g) be the probability of g under distri-

bution Dt, and f̂t(g) the observed probability of g at time
t (the number of times g has appeared in the window at

time t divided by the length of the window). Since f̂t(g) is
our estimate of the current support of t, we would like it
to be close enough to ft(g) to reliably decide whether g is
frequent.

We can prove the following theorem:

Theorem 2. Suppose the ADWIN’s in Algorithm AdaGraph-
Miner are initialized with parameter δ. For every time step
t1, t2 such that t1 < t2, if the stream is stationary between

t1 and t2, then for every g ∈ G we have with probability at
least 1− 2δ

|ft2(g)− f̂t2(g)| ≤
√

1

t2− t1 ln
4W

δ

That is, if the stream remains stationary for T steps, the
estimates of graph frequencies tend to the their value at
a rate of roughly O(1/

√
T ), which tends to 0 as T → ∞.

Observe that this is the best convergence rate obtainable
by sampling even on a totally stationary stream. That is,
the algorithm is able to effectively forget previous history,
and converge at an optimal rate on stationary periods. Note
that, if instead of ADWIN, we keep a simple sliding window
of fixed size W the approximation will not tend to zero,
but remain at about 1/

√
W . The dependence on ln(W ) in

the theorem is to a large extent an artifact of the proof of
ADWIN’s guarantees, and in practice, slightly increasing the
leading constant in the bound suffices for accurate results.

Proof. (Note: this proof uses both the definition of the
ADWIN algorithm as well as Theorem 1 stating false positive
and false negative ratios; see [7]).

Fix t1 < t2. We will show the following statement: For
every fixed graph g ∈ G, with probability at least 1− 2δ we
have

|ft2(g)− f̂t2(g)| ≤
√

1

t2− t1 ln
4W

δ
. (2)

Now also fix a graph g ∈ G. If g is not present in the set
G kept by the algorithm, then f̂t2(g) = 0 and an application
of the Hoeffding bound shows that (2) holds for g. Other-
wise, g is in the set G, so it has an associated instance of
ADWIN, A. Say that, at time t2, A keeps a window of size
W . Because the stream is stationary between t1 and t2, by
Theorem 1, part (1), we know that W ≥ t2−t1 (i.e., the ele-
ment gathered at t1 has not been cut out from A’s window)
with probability at least 1− δ.

Let t0 be the oldest element present in the window, so that
t0 = t2 −W ≤ t1. Now let µ̂0 (resp., µ̂1) be the observed
frequence of g in the window [t0..t1−1] (resp., in the window
[t1..t2]); observe that E[µ1] = ft2(g). Observe also that by
the definition of ADWIN, if the interval [t0..t1−1] has not been
cut out from the window, we must have |µ̂0 − µ̂1| ≤ εcut,
where

εcut =

√
1

2

(
1

t2− t1 +
1

t1− t0

)
ln

4W

δ
.

The estimate produced by A at time t2 is the average of
the elements in the window of length W , which is

f̂t2(g) = µ̂1 ·
t2− t1
W

+ µ̂0 ·
t1− t0
W

= µ̂1 ·
t2− t1
W

+ (µ̂1 ± εcut) ·
t1− t0
W

= µ̂1 ± εcut ·
t1− t0
W

.

Now using W = t2− t0 and some simple algebra one can see

εcut ·
t1− t0
W

≤

√
t1− t0

2(t2− t1)(t2− t0)
ln

4W

δ

≤

√
1

2(t2− t1)
ln

4W

δ
.
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Figure 5: Memory and time used on Open NCI
database with minimal support of 40%.

and by the Hoeffding bound and E[µ1] = ft2(g) we have

Pr

[
|µ̂1 − ft2(g)| ≤

√
1

2(t2− t1)
ln

2

δ

]
≤ δ.

Putting all of this together we conclude that, with probabil-
ity at least 1− 2δ,

|ft2(g)− f̂t2(g)| ≤

√
1

2(t2− t1)
ln

4W

δ
+√

1

2(t2− t1)
ln

2

δ

≤
√

1

t2− t1 ln
4W

δ
.

as was to be proved. 2

7. EXPERIMENTAL EVALUATION
We tested our algorithms on synthetic and real datasets.

First, we compare our new incremental strategy with close-
Graph and MoSS as non incremental methods to show the
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Figure 6: Memory and time used on ChemDB
dataset with minimal support of 40%.

benefits in memory and time. Second, we perform experi-
ments on data streams with synthetic concept drift to show
the performance of our adaptive strategy.

We run our experiments extending MOA [10] using MoSS [12].
All experiments were performed on a 2.66 GHz Core 2 Duo
machine with 64 GB of memory main memory, running Cen-
tOS 5.5.

Massive Online Analysis (MOA) [10] is a framework for
online learning from continuous supplies of examples, such
as data streams. It comprises online classification and clus-
tering methods as well as tools for both offline and online
evaluation.

MoSS is a batch framework for finding frequent molecular
substructures and discriminative fragments in a database of
molecule descriptions. MoSS is not restricted to molecu-
lar data sets, it can mine arbitrary data sets of attributed
graphs. Apart from the default MoSS/MoFa algorithm, this
framework also contains the gSpan [29] and CloseGraph [30]
algorithms as special processing modes.

For our experiments we use the following real datasets:

ChemDB dataset ChemDB [14, 15] is a public dataset of
approximately 4 million molecules built using the digi-
tal catalogs of over a hundred vendors and other public



Figure 7: Number of graphs in (40%, δ) for NCI.

sources. It is annotated with information derived from
these sources as well as from computational methods,
such as predicted solubility and 3D structure. It sup-
ports multiple molecular formats and is periodically
updated, automatically whenever possible. It is main-
tained by the Institute for Genomics and Bioinformat-
ics at the University of California, Irvine.

Open NCI Database The open National Cancer Institute
(NCI) dataset [27] consists of approximately 250,000
structures. It is based on a large NCI database, built
using samples from organic synthesis submitted to NCI
for testing. While about half of the NCI database is
not accessible, the other half of the structural data is
free of any disclosure and usage restrictions and there-
fore termed “open”. This data is public domain and
often referred to as the “Open NCI Database”.

First, we compare the runtime and memory usage of the
incremental method IncGraphMiner to the non-incremental
ones. As all methods are implemented in Java, the memory
shown is the memory allocated by the Java Virtual Machine.

The results of our experiments using batches of 10, 000
instances, minimum support of 40%, δ = 0, and 50 Giga-
bytes of maximum memory are shown in Figures 5 and 6.
We test two incremental methods, IncGraphMiner based
on MoSS, and IncGraphMiner-C based on closeGraph as
batch learners. For the Open NCI database, which is the
smaller dataset, we see that our new incremental methods
need more time but less memory. However, for the larger
ChemDB dataset, the non-incremental methods can only
process about 110,000 instances before running out of mem-
ory (50 Gigabytes). Surprisingly, the incremental methods
also outperform the non-incremental ones both in terms of
runtime and memory usage for smaller subsets of ChemDB.
Note that in Figure 6 there is a sudden bump in time used,
since the graphs in this part of the stream are much larger.

Figure 7 shows the size of the coreset (40%, δ) on the Open
NCI database. For δ = 0 there are 649 frequent closed
graphs, and for δ = 1 there are 140 frequent maximal graphs.

The next experiment shows how the new methods are able
to adapt to changes in the distribution of graphs in an evolv-
ing stream scenario. Figure 8 shows the number of closed
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Figure 8: Number of frequent closed graphs on Open
NCI database with minimal support of 40% with
artificial concept drift.

graphs detected using the incremental method IncGraph-
Miner, and the two adaptive methods. AdaGraphMiner-
Window uses a sliding window monitored only by one ADWIN

instance, and AdaGraphMiner uses one ADWIN instance
for each graph to monitor its support. In this experiment,
the data stream exhibits artificial concept drift, as it is
a concatenation of parts of two different streams. One is
the Open NCI database and the other is an artificial data
stream with exactly 15 frequent closed graphs generated ar-
tificially. Concept drift occurs three times, after 250,000,
500,000, and 750,000 examples, respectively. We follow the
methodology in [9] to combine two data streams into one in
order to create artificial drift. We observe that the incre-
mental method is the slowest to adapt, as it does not have
any forgetting mechanism. Comparing the adaptive ones,
we see that AdaGraphMiner-Window, which only main-
tains one global ADWIN instance for change detection, shows
a slower response to concept change. AdaGraphMiner,
on the hand, can detect and respond to change faster, as it
maintains a separate ADWIN instance for each graph.

8. CONCLUSIONS
We have presented the first efficient algorithms for mining

frequent closed graphs on evolving data streams.
If the distribution of the graph dataset is stationary, the

best method to use is IncGraphMiner, as no past transac-
tions need to be forgotten. If the distribution evolves, then a
sliding window method is more appropriate. If the right size
of the sliding window is known in advance, then WinGraph-
Mineris the method of choice, otherwise AdaGraphMiner
is the preferred option.

Future work will analyze the impact of the size of batches
and apply these new adaptive frequent mining techniques
to discriminative graph feature generation for classification
and clustering. Another ambitious direction for future work
would be going beyond batch-incremental methods of graph
mining, to develop methods that are fully instance-incremental.
It is currently unclear how this could be done efficiently.
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