Proof of Theorem 1.

Take some time $T_3 > T_2$, and assume that the window has not been cut since T_0 . We have three segments in the log represented in the window:

- before $T_0...T_1$, with P having stable mass μ_1 .
- from $T_2..T_3$ onwards, with P having stable mass mass μ_2
- between $T_1..T_2$, where we have no information about how the mass (it may be changing wildly). But let's say the average mass in this segment is μ .

Say to simplify cases that $\mu_2 > \mu_1$. Now one of two happens: either $\mu \leq (\mu_2 + \mu_1)/2$ or $\mu \geq (\mu_2 + \mu_1)/2$. Say we are in the first case (the second case is symmetrical), then $\mu_2 - \mu \geq (\mu_2 - \mu_1)/2$.

Now, we can split ADWIN's window at time T_3 into two parts: a subwindow of length $T_2 - T_0$ and another one of length $T_3 - T_2$. The expected average in the second segment is μ_1 , and by the above the expected average in the first segment is in somewhere between μ_1 and μ , which by the above is less than $\mu_2 - (\mu_2 - \mu_1)/2$. So the difference in their averages is at least $(\mu_2 - \mu_1)/2$ in expectation. By theorem 3.1 in BifetG07, part (b), ADWIN with confidence parameter δ will detect change with probability at least $1 - \delta$ if

$$(\mu_2 - \mu_1)/2 \ge 2\epsilon_{cut} = 2\sqrt{\left(\frac{1}{T_2 + T_0} + \frac{1}{T_3 - T_2}\right)\ln\frac{4(T_3 - T_0)}{\delta}}$$

which is true if

$$\frac{(\mu_2 - \mu_1)^2}{16\ln(4(T_3 - T_0)/\delta)} \ge \frac{1}{T_2 - T_0} + \frac{1}{T_3 - T_2}.$$

If $T_1 - T_0 (< T_2 - T_0)$ is sufficiently large, the first term on the right hand side can be ignored or subsumed by the second, and the above is true if

$$T_3 \ge T_2 + \frac{16\ln(4(T_3 - T_0)/\delta)}{(\mu_2 - \mu_1)^2}$$

and approximating T_3 by T_2 inside the logarithm at the expense of a somewhat larger constant c, this is true for

$$T_3 \ge T_2 + \frac{c\ln(4(T_2 - T_0)/\delta)}{(\mu_2 - \mu_1)^2}$$

which is the statement of the theorem, for fixed parameter δ .