
Online Techniques for Dealing with
Concept Drift in Process Mining

Josep Carmona and Ricard Gavaldà

Universitat Politècnica de Catalunya
Barcelona, Spain

Abstract. Concept drift is an important concern for any data analysis
scenario involving temporally ordered data. In the last decade Process
mining arose as a discipline that uses the logs of information systems in
order to mine, analyze and enhance the process dimension. There is very
little work dealing with concept drift in process mining. In this paper we
present the first online mechanism for detecting and managing concept
drift, which is based on abstract interpretation and sequential sampling,
together with recent learning techniques on data streams.

1 Introduction

Process Mining is a relatively novel discipline which has received a lot of atten-
tion in the last decade [16]. Although it shares many features with Data Mining,
it has originated from different concerns and communities, has a set of distinctive
techniques, and produces slightly different outcomes. Historically, process min-
ing arises from the observation that many organizations record their activities
into logs which describe, among others, the real ordering of activities of a given
process, in a particular implementation. Software engineering techniques have
mainly focused on the specification part of the processes within an information
system. In reality, this may cause a big gap between a system specification’s and
the final implementation, hampering the use of the models that specify the main
processes of an information system. As another example, designers of hardware
or embedded, concurrent systems, need to compare behavior and specifications;
typically they can passively or actively generate large amounts of logs from their
target system and/or their prototypes, so a logical approach is to use these logs
for the verification task.

By using the logs as source of information, process mining techniques are
meant to discover, analyze, and enhance formal process models of an infor-
mation system [17]. Process discovery is probably the main and most chal-
lenging discipline within process mining: to discover a formal process model
(a Petri net [15], an automaton, etc.) that adequately represents the traces
in the log. Several process discovery algorithms exist in the literature (the
reader can find a good summary in [17]). In this paper, we concentrate on
the control-flow part, i.e., the causal relations between the events of a pro-
cess. Let us use an example to illustrate control-flow discovery. The exam-
ple shown in Figure 1 is taken from [18] and considers the process of han-

1 r,s,sb,p,ac,ap,c

2 r,sb,em,p,ac,ap,c

3 r,sb,p,em,ac,rj,rs,c

4 r,em,sb,p,ac,ap,c

5 r,sb,s,p,ac,rj,rs,c

6 r,sb,p,s,ac,ap,c

7 r,sb,p,em,ac,ap,c

 8 r,em,s,sb,p,ac,ap,c

 9 r,sb,em,s,p,ac,ap,c

12 r,em,sb,s,p,ac,rj,rs,c

13 r,em,sb,p,s,ac,ap,c

14 r,sb,p,em,s,ac,ap,c

11 r,em,sb,p,s,ac,ap,c

(a)

10 r,sb,em,s,p,ac,rj,rs,c

s

p
rj rs

sb

em ac

ap

c
r

(b)

Fig. 1. Control-flow process discovery: (a) log containing a drift from trace 8 on, (b)
Petri net discovered from part of the log (traces 1 to 7).

dling customer orders. In the example, the log contains the following activi-
ties: r=register, s=ship, sb=send bill, p=payment, ac=accounting, ap=approved,
c=close, em=express mail, rj=rejected, and rs=resolve. The goal of process dis-
covery is to obtain a formal model such as the Petri net shown in Figure 1(b)1.

The problem of concept drift is well known and well studied in the data
mining and machine learning communities, but hardly addressed so far in process
mining, where it has important particularities. Three main problems regarding
concept drift can be identified in the context of process mining [5]:

1. Change Detection: detect when a process change happens. This is the most
fundamental problem to solve.

2. Change Localization and Characterization: characterize the nature of one
particular change, and identify the region(s) of change in a process.

3. Unraveling Process Evolution: discover the evolution of process change over-
all, and how change affects the model over time.

Current process discovery algorithms behave poorly when a log incorporates a
drift: causal relations between events may appear and disappear, or even reverse,
and therefore cannot be resolved. For instance, in the example of Figure 1, in
the first part of the log (traces 1–7) activities em and s are in conflict, i.e., only
one of them can be observed in a process execution. However, from trace 8 on,
both activities occur with em always preceding s. Thus, the whole log contains
both behaviors and therefore process discovery techniques fail at determining the
causal relationship between em and s. In that case, no arcs connecting activities
s and em with the rest of activities in the model are discovered.

This paper presents an online technique to detect concept drift by sequential
monitoring of the logs of a system. It is a multi-stage technique that uses the

1 For the reader not familiar with Petri nets: a transition (box) is enabled if every
input place (circle) holds a token (black dot). If enabled, the transition can fire,
removing tokens from its input places and adding tokens to its output places.

theory of abstract interpretation [10] to learn an internal representation (in terms
of a polyhedron or an octagon), that is afterwards used to estimate the faithfulness
of the representation in including the traces in the log. For the estimation and
concept drift detection, we use an adaptive window technique [1] which has been
proved to be very effective for similar purposes [2–4]. Remarkably, the techniques
presented in this paper are automatic by nature, e.g., no user-intervention is
required.

To our knowledge, the only work in the literature that addresses concept drift
in process mining is [5], where statistical hypothesis testing is applied to detect
post-mortem the drifts present in a log. Our approach, by contrast, is intended
detect and react to changes in an online, almost real-time way. The technique
may be used in different scenarios, such as: (i) for an a posteriori analysis, as
in [5]; ii) as a preprocessor in an online setting, to segment the log and apply
process discovery techniques separately to drift-free segments; (iii) to monitor a
system in order to detect deviations from the expected behavior (embodied in
an existing model).

2 Background

Given a set of activities T , an event log over T is a multiset L : T ∗ → IN . A
sequence σ ∈ T ∗ is a called trace. A trace σ is contained in a log if L(σ) ≥ 1.
Given a trace σ = t1, t2, . . . , tn, and a natural number 1 ≤ k ≤ n, the sequence
t1, t2, . . . , tk is called the prefix of length k in σ. Given a log L, we denote by
Pref(L) the set of all prefixes of traces in L. Finally, #(σ, e) is the number of
times that activity e occurs in sequence σ.

2.1 Abstract Interpretation

Intuitively, abstract interpretation defines a procedure to compute an upper
approximation for a given behavior of a system that still suffices for reasoning
about the behavior itself. An important decision is the choice of the kind of
upper approximation to be used, which is called the abstract domain. For a given
problem, there are typically several abstract domains available. Each abstract
domain provides a different trade-off between precision (closeness to the exact
result) and computational efficiency.

There are many problems where abstract interpretation can be applied,
several of them oriented towards the compile-time detection of run-time errors
in software. For example, some analysis based on abstract interpretation can
discover numeric invariants among the variables of a program. Several abstract
domains can be used to describe the invariants: intervals [9], octagons [14],
convex polyhedra [11], among others. These abstract domains provide different
ways to approximate sets of values of numeric variables. For example, Figure 2
shows how these abstract domains can represent the set of values of a pair of
variables x and y. For space reasons, we focus on the abstract domain of convex
polyhedra. In the experiments, the domain of octagons is also used.

y

x

y

x

y

x

y

x

(0,0)

(1,1)

(2,4)

Exact set Interval Octagon Convex

polyhedron

Interval Octagon Convex
polyhedron

0 ≤ x ≤ 2 0 ≤ x ≤ 2 y − x ≥ 0
0 ≤ y ≤ 4 0 ≤ y − x ≤ 2 x− 2y ≥ 0

3x− y ≤ 2

Fig. 2. Approximating a set of values (left) with several abstract domains

Convex Polyhedra This domain can be described as the sets of solutions of
a set of linear inequality constraints with rational (Q) coefficients. Let P be a
polyhedron over Qn; then it can be represented as the solution to some system
of m inequalities P = {X|AX ≤ B} where A ∈ Qm×n and B ∈ Qm.

The domain of convex polyhedra provides the operations required in abstract
interpretation. In this paper, we will mainly use the following two operations:

y

x

P QP Q

Meet (∩): Given convex polyhedra P
and Q, their meet is the intersection
P ∩ Q. Notice that this operation is ex-
act, e.g., the meet or intersection of two
convex polyhedra is always a convex polyhe-
dron.

y

x

P Q

P

Q

Join (∪): Given convex polyhedra P and Q, we
would like to compute the union of P and Q. Unfor-
tunately the union of convex polyhedra is not nec-
essarily a convex polyhedron. Therefore, the union
of two convex polyhedra is approximated by the
convex hull, the smallest convex polyhedron that
includes both operands, denoted by P ∪Q. The ex-

ample on the left shows P ∪Q in gray.

2.2 Estimation, Drift, and Change Detection

In a stream setting one receives a potentially infinite stream of objects X1, X2,
. . .Xt . . . to be analyzed, where object Xt becomes available only at time step
t. The underlying assumption is that there is some distribution D on the set of

all objects generating the Xi’s, often together with the assumption that some
degree of independence among the draws exist. The concept drift problem occurs
when the distribution D cannot be assumed to be stationary, but there is in fact
a distribution Dt for every t, which change gradually or abruptly over time.

There are two common strategies for dealing with concept drift: in the sliding
window approach, one keeps a window of the last W elements, and the change
detection approach, where one estimates or monitors some statistics of the Xi’s
and when some large enough deviation from past behavior is detected, change
is declared. These two strategies can, of course, be combined too.

In this paper we will use for estimation and change detection the ADWIN
(ADaptive WINdowing) method proposed in [1]. This choice is not the essential
to the paper, and other methods (such as CUSUM or Page-Hinkley). Roughly
speaking, ADWIN reads a real number Xt at each time step t, outputs an esti-
mation of the current average of E[Xt] in Dt, and also outputs a bit indicating
whether drift has been detected in the recent observations. Internally, it keeps
a window of the most recent Xt’s whose length varies adaptively. It requires no
parameters such as window length, delivering the user from the difficult tradeoff
in such choices, and is efficient in the sense that it simulates a window of length
W using O(logW) memory (rather than the obvious O(W)) and amortized O(1)
time per item. Furthermore, unlike most methods which are heuristics, ADWIN
has rigorous guarantees (theorems) on its change detection performance. See [1]
and the extended version of this paper for details2.

3 Concept Drift Detection via Abstract Interpretation

This section describes the technique for concept drift detection in process mining.
It first learns a process model using abstract interpretation (Section 3.1), which
will be the main actor for the concept drift detection method in Section 3.2.

3.1 Learning via Abstract Interpretation

We now introduce the element to link traces from a log and abstract interpreta-
tion, which was initially presented in [7]:

Definition 1 (Parikh vector). Given a trace σ ∈ {t1, t2, . . . , tn}∗, the Parikh
vector of σ is defined as σ̂ = (#(σ, t1),#(σ, t2), . . . ,#(σ, tn)).

Any component of a Parikh vector can be seen as a constraint for the n-
dimensional point that it defines. Hence, the Parikh vector defined by σ̂ =
(#(σ, t1),#(σ, t2), . . . ,#(σ, tn)), a point, can be seen as the polyhedron Pσ̂ =⋂n
i=1(xi = #(σ, ti)), where each variable xi denotes the number of occurrences

of activity ti in σ, i.e., xi = #(σ, ti)
3. For each prefix σ of a trace in L, a poly-

hedron Pσ̂ can be obtained. Given all possible prefixes σ1, σ2, . . . , σm of traces

2 Extended version of the paper: http://www.lsi.upc.edu/∼jcarmona/ida2012ext.pdf.
3 Hence a point σ̂ is represented as the polyhedron Pσ̂ that defines it.

in L, the polyhedra Pσ̂1
, Pσ̂2

, . . . , Pσ̂k
can be found4. Finally, the polyhedron

P =
⋃
i∈{1...m} Pσ̂i

can be learned as the convex-hull of the points represented
by the polyhedra Pσ̂1

, Pσ̂2
, . . . , Pσ̂m

, and taken as the representation of the log.
Computing the convex hull of a large set of points

may be expensive, so subsampling has been suggested
[7] as a way to speed-up the process. The figure on the
right shows an example: when the polyhedra of all the
points are united, it may derive a polyhedron that cov-
ers large areas void of real points. If instead, a ran-
dom sample of five points is used (denoted by points
with white background), a smaller polyhedron is de-
rived which, although not including the complete set of
Parikh vectors from the log, represents a significant part
of it and therefore the percentage of areas void of real points may be reduced.
The mass of the polyhedron is the probability that a Parikh vector from the log
belongs to the polyhedron; obviously, mass close to 1 is desired.

3.2 Online algorithm for concept drift detection

The technique is described as Algorithm 1. The input of the algorithm is the
sequence of points or Parikh vectors produced from the traces received. The
algorithm is divided into three stages: Learn (lines 2-8), Mean estimation (lines 9-
15) and Mean monitoring (lines 16-25). Notice that the algorithm iterates over
these three stages each time a drift is detected (Line 23).

In the learning stage, a set of m points is collected for training. The larger the
m, the less biased the sampling is to a particular behavior, since the distribution
of points will be more diverse. The outcome of the learning stage is a polyhedron
P̂ that represents the concept underlying the set of points from the input.

In the mean estimation stage, the mass (fraction of points) belonging to P̂ is
estimated using an ADWIN instance W . This process is iterated until a conver-
gence criteria is met, e.g., the mean is stabilized to a given value. Notice that in
this stage the algorithm, as written, may not converge to a stationary value if
change keeps occurring. One could prevent this problem by using e.g. Chernoff
bounds to bound on the number of iterations to reach a given approximation, as-
suming stationariness. In the monitoring stage, the same estimation is continued,
but now with the possibility to detect a drift by detecting a change in the mass
of P̂ . In the simplest version, when a drift is detected, the three-stage technique
is re-started from scratch; better strategies will be discussed in Section 5.

As explained in Section 2.2, an ADWIN instance W can be used to mon-
itor a data sequence in order to determine drifts. In our setting, the data se-
quence will be produced by the outcome of the following question performed
on each point from the traces in the log: does the learned polyhedron include
the point? If it does, we will update W with a 1, and otherwise with a 0.

4 Here k is in practice significantly smaller than
∑
σ∈L |σ| since many prefixes of

different traces in L share the same Parikh vector.

Algorithm 1: Concept Drift Detection algorithm

Input: Sequence of Parikh vectors σ̂1, σ̂2, . . .
begin1

Select appropriate training size n;2

Collect a random sample of m vectors out of the first n;3

// m < n if required for efficiency

// Stage 1: Learning the current concept P̂

P̂ = ”empty domain” ;4

for j ← 1 to m do5

let σ̂j be the jth randomly selected vector; compute Pσ̂j ;6

P̂ = P̂ ∪ Pσ̂j ;7

end8

// Stage 2: Estimating the average of points included in P̂
W =InitADWIN;9

i = m+ 1;10

repeat11

if σ̂i ∈ P̂ then W = W ∪ {1};12

else W = W ∪ {0};13

i = i+ 1;14

until convergence criteria on W estimation ;15

// Stage 3: Monitoring the average of points included in P̂
while true do16

if σ̂i ∈ P̂ then W = W ∪ {1};17

else W = W ∪ {0};18

i = i+ 1;19

if Drift detected on W then20

Declare “drift!”;21

Throw away the current set of points;22

Jump to line 2;23

end24

end25

end26

After the driftBefore the drift

µ̂′

P̂

σ̂m+1 . . .σ̂1 . . . σ̂m

µ̂

P̂

This way, W will estimate the mass of
current polyhedron, denoted µ̂. The fig-
ure next illustrates the approach: a polyhe-
dron P̂ which (maybe partially) represents
the Parikh vectors of the traces in the log is
learned, and we estimate µ̂, the fraction of
the points falling into the polygon. When
a change occurs (in the figure, more points
are added), chances are that this quantity

changes to a new value µ̂′ (this assumption
will be discussed in Section 5).

3.3 Rigorous Guarantees

Using the rigorous guarantees of ADWIN given in [1], one can give a rigorous
statement on the ability of the method above to detect drift in its input. The
proof can be found in the extended version.

Theorem 1. Suppose that for a sufficiently long time T0 . . . T1 the input dis-
tribution has remained stable, and that the learn phase has built a polyhedron

P̂ , with mass µ1. Suppose that by time T2 (> T1) the input distribution has

changed so that the mass of P̂ is µ2 from then on. Then by time at most
T2+O(ln(T2−T0)/(µ2−µ1)2) the method will have detected change and restarted.

Note that the case of abrupt change is when T2 = T1+1, and that larger changes
in the mass of the current polyhedron imply shorter reaction times.

4 Experiments on concept drift detection

To test the detection technique of Section 3, a set of models (in our case, Petri
nets) have been used. For each model M , a log has been created by simulating
M . The first six models in Table 1 are taken from [8], and represent typical
behaviors in a concurrent system. Model Cycles(X,Y) represents a workflow
of overlayed cyclic processes. Finally, the models a12f0n00 ... t32f0n00 are
originated from well-known benchmarks in the area of process mining.

To derive logs that contain a drift, each model has been slightly modified in
four different dimensions:

– Flip: the ordering of two events of the model has been reversed.
– Rem: one event of the model has been removed
– Conc: two sequential events have been put in parallel
– Conf: two sequential or concurrent events have been put in conflict

These transformations represent a wide spectra of drifts for control-flow models.
Each transformation leads to a new model, which can be simulated to derive
the corresponding log5. An assumption of this work, which is inherited from the
use of the techniques in [7], is that a drift causes a modification in the spectra
of Parikh vectors representing a model. Although this assumption is very likely
in most practical cases, it does not cover the drifts which neither incorporate
nor remove Parikh vectors to the current spectra. However, using an alternative
technique to [7] in Algorithm 1 which is sensitive to this type of drifts can be
the cure for this particular problem. Notice that only a single transformation is
applied to a model to introduce drift. In general, however, drift may arise from
several transformations, either simultaneous or spaced out in time. However, if
the technique is able to identify drift from a single transformation, it should also
be able to detect these more drastic drifts.

5 All the models and logs used in this paper can be obtained at the following url:
http://www.lsi.upc.edu/∼jcarmona/benchsIDA2012.tar.

benchmark |Σ| |Places| |L1| Flip Rem Conc Conf
SharedRes(6) 24 25 4000 115 54 183 37
SharedRes(8) 32 33 4000 165 73 381 83
ProdCons(8) 41 42 4000 337 550 262 266
ProdCons(9) 46 47 4000 256 136 323 489
WeightMG(9) 9 16 4000 101 16 75 16
WeightMG(10) 10 18 4000 147 28 53 18
Cycles(4,2) 14 11 4000 563 23 664 22
Cycles(5,2) 20 16 4000 554 22 845 21
a12f0n00 12 11 620 83 76 117 15
a22f0n00 22 19 2132 340 56 99 198
a32f0n00 32 32 2483 67 79 258 162
a42f0n00 42 46 3308 178 41 185 37
t32f0n00 33 31 3766 143 28 394 36

Table 1. Concept drift detection: number of points to detect the drift.

The experiment performed is to use the concatenation of two logs L1, L2
with different distribution, so that abrupt change occurs at the transition from
L1 to L2. Using the Apron library [13], an octagon/polyhedra P is obtained
from L1 by sampling a few points, and an ADWIN is then created to estimate
the fraction of points in the input (still from L1) that are covered by P . When
the estimation converges, the input is switched to points from L2. If the drift
is not sporadic, the fraction of points covered by P will change, ADWIN will
detect change in this quantity, and drift will be declared.

In Table 1 the results of the experiment are provided. The second column
in the table reports the number of different events (which also represents the
number of transitions in the Petri net), and the third column reports the number
of places. Column |L1| provides the number of points used in the stages 1 and
2 of the algorithm (we have set a maximum of four thousand points in the
simulation)6. The following columns denote the logs corresponding to the models
with each one of the aforementioned transformations. In each cell from column
five on we provide the number of points needed to sample in order to detect a
drift. For instance, for the SharedRes(8) benchmark, it only needs to sample
73 points in order to detect a drift when a single event is removed, and needs
to sample 381 points to detect that two events became concurrent. In terms of
CPU time, all drifts have been detected in few seconds7.

A second experiment was performed on a log with another kind of drift. The
detailed description can be found in [6]. It is a real log containing the processing
of copy/scan jobs on a digital copier. The log contains 1050 traces and 35 event
classes, with a drift introduced after 750 traces, consisting in the addition of
a new functionality to the copier (zooming function for image processing). For
the first part of the log (traces 1 – 750), there are 34.427 points, whereas for

6 |L2| is particular to each drift. In general it is of the same magnitude as |L1|.
7 In the experiments the domain of octagons has been used when |Σ| > 20, to bound

the time and memory requirements in the learning stage.

the second part (traces 751 – 1050), 13.635 points. The technique of this paper
identifies the drift by sampling only 504 points.

5 Change Location and Unraveling Process Evolution

So far, we have focused into explaining how to apply the theory of abstract
interpretation together with estimation and change detection in order to detect
concept drifts in the area of process mining. In this section we will briefly address
the two other problems highlighted in [5]: change location and characterization,
and unravel process evolution; this is ongoing work.

Change location and characterization. A polyhedron P is the solution to
the system of m inequalities P = {X|AX ≤ B} where A ∈ Qm×n and B ∈ Qm
(see Section 2.1). A subset C of these inequalities called causal constraints can
be used to derive the corresponding process model (see [7] for details). A causal
constraint satisfies particular conditions that makes it possible to be converted
into a process model element, e.g., a place and its corresponding arcs in a Petri
net. Since the adaptive windowing technique described in Section 2.2 requires
few resources, one can use one adaptive window for monitoring each causal
constraint in C. Thus, after the learning stage of Algorithm 1, |C| instances
of ADWIN are used to estimate the average satisfaction for each constraint.
Finally, in stage three these ADWIN’s can detect drift at each of the constraints.
When global or partial drift occurs, its location is exactly characterized by
the causal constraints that have experienced drift, which can be mapped to
the corresponding places in the process model. Remarkably, this provides a
fine-grain concept drift detection version of the technique presented in Section 3.

Unraveling process evolution. After change has been localized and charac-
terized as above, the new process model can be then produced. This is crucial
to unravel the process evolution [5]. Two sets of causal constraints will be used
to derive the new process model: i) the causal constraints which still are valid
after the drift, and ii) the new set of causal constraints that may appear in the
new polyhedron learned by revisiting stage one of Algorithm 1. For the former
set, both drifting and non-drifting causal constraints detected in the previous
iteration of Algorithm 1 will be considered. For drifting causal constraints, a
threshold value may be defined to determine when drift is strong enough to in-
validate it. As for the complexity of the model revision, for example the method
in [7] for deriving Petri nets from polyhedra is well-behaved in the sense that
a change in some of the inequalities can be translated to a local change in the
Petri net, with proportional computational cost.

The same idea can be used to alleviate a problem with the change detection
strategy described in Section 3. Recall that there we were only detecting changes
where new points appeared in regions outside the learned polyhedron. Drift may
also mean that points previously in the log, or in its convex hull, do no longer
appear (e.g., if some behaviors disappear and the polygon becomes larger than
necessary). We can detect many such changes by monitoring many aspects of

the stream of points, instead of just the mass of the learned polyhedron. For
example, we could use an array of ADWIN instances to monitor the average
distance among points, distance to their centroid or set of designated points,
distance to each constraint, projection to a set of random hyperplanes, etc.

6 Conclusions and Future Work

Concept drift is an important concern for any data analysis scenario involving
temporally ordered data. Surprisingly, there is very little work (in fact, possibly
only [5]) in dealing with concept drift within process mining techniques.

In this paper we have presented the first online mechanism for detecting
and managing concept drift, combined with the process mining approach in [7]
based on abstract interpretation and Petri net models. Our experiments on pro-
cess mining benchmark data twisted to incorporate drift show that our method
detects abrupt changes quickly and accurately. We have also described how to
apply the mechanism for a richer set of tasks: characterizing and locating change,
unraveling the process change, and revising the mined models.

Future work includes experimenting with different forms of change, partic-
ularly, gradual, long term changes and those discussed at the end of Section 5;
implementing the fine-grain detection mechanisms for change location and un-
raveling; and using our approach in a real scenario with a high volume of data,
so sampling becomes essential, and with strong requirements on time and mem-
ory. Also, investigating tailored techniques that can deal with logs that contain
noise is an interesting future research direction. A possibility will be to adapt
Algorithm 1 to use some of the few process discovery techniques that can handle
noise in the log [19, 12, 20].

Acknowledgements

We would like to thank R. P. Jagadeesh Chandra Bose and W. M. P. van der
Aalst for the providing some of the logs of the experiments. This work is par-
tially supported by BASMATI MICINN project (TIN2011-27479-C04-03), by the
SGR2009-1428 (LARCA), by the EU PASCAL2 Network of Excellence (FP7-
ICT-216886), by the FORMALISM project (TIN2007-66523) and by the project
TIN2011-22484.

References

1. A. Bifet and R. Gavaldà. Learning from time-changing data with adaptive win-
dowing. In SDM. SIAM, 2007.

2. A. Bifet and R. Gavaldà. Adaptive learning from evolving data streams. In Niall M.
Adams, Céline Robardet, Arno Siebes, and Jean-François Boulicaut, editors, IDA,
volume 5772 of Lecture Notes in Computer Science, pages 249–260. Springer, 2009.

3. A. Bifet and R. Gavaldà. Mining frequent closed trees in evolving data streams.
Intell. Data Anal., 15(1):29–48, 2011.

4. A. Bifet, G. Holmes, B. Pfahringer, and R. Gavaldà. Mining frequent closed graphs
on evolving data streams. In Chid Apté, Joydeep Ghosh, and Padhraic Smyth,
editors, KDD, pages 591–599. ACM, 2011.

5. R. P. Jagadeesh Chandra Bose, W. M. P. van der Aalst, I. Zliobaite, and M. Pech-
enizkiy. Handling concept drift in process mining. In Haralambos Mouratidis
and Colette Rolland, editors, CAiSE, volume 6741 of Lecture Notes in Computer
Science, pages 391–405. Springer, 2011.

6. R.P. Jagadeesh Chandra Bose. Process Mining in the Large: Preprocessing, Dis-
covery, and Diagnostics. PhD thesis, Eindhoven University of Technology, 2012.

7. J. Carmona and J. Cortadella. Process mining meets abstract interpretation. In
European Conference on Machine Learning and Knowledge Discovery in Databases
ECML PKDD, Lecture Notes in Computer Science, pages 184–199. Springer, 2010.

8. J. Carmona, J. Cortadella, and M. Kishinevsky. New region-based algorithms for
deriving bounded Petri nets. IEEE Trans. on Computers, 59(3):371–384, 2009.

9. P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
In 2nd Int. Symposium on Programming, pages 106–130. Paris, France, 1976.

10. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proc.
ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages, pages
238–252. ACM Press, 1977.

11. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Proc. ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages, pages 84–97. ACM Press, New York, 1978.

12. Christian W. Günther and Wil M. P. van der Aalst. Fuzzy mining - adaptive
process simplification based on multi-perspective metrics. In Gustavo Alonso, Peter
Dadam, and Michael Rosemann, editors, BPM, volume 4714 of Lecture Notes in
Computer Science, pages 328–343. Springer, 2007.

13. B. Jeannet and A. Miné. Apron: A library of numerical abstract domains for
static analysis. In Ahmed Bouajjani and Oded Maler, editors, CAV, volume 5643
of Lecture Notes in Computer Science, pages 661–667. Springer, 2009.

14. A. Miné. The octagon abstract domain. In Analysis, Slicing and Tranformation,
IEEE, pages 310–319. IEEE CS Press, October 2001.

15. T. Murata. Petri nets: Properties, analysis and applications. Proc. of the IEEE,
77(4), 1989.

16. IEEE Task Force on Process Mining. Process mining manifesto. In Florian Daniel,
Kamel Barkaoui, and Schahram Dustdar, editors, Business Process Management
Workshops (1), volume 99 of Lecture Notes in Business Information Processing,
pages 169–194. Springer, 2011.

17. W. M. P. van der Aalst. Process Mining - Discovery, Conformance and Enhance-
ment of Business Processes. Springer, 2011.

18. W. M. P. van der Aalst and C. W. Günther. Finding structure in unstructured
processes: The case for process mining. In Twan Basten, Gabriel Juhás, and
Sandeep K. Shukla, editors, ACSD, pages 3–12. IEEE Computer Society, 2007.

19. Wil M. P. van der Aalst, Ana Karla A. de Medeiros, and A. J. M. M. Weijters.
Genetic process mining. In Applications and Theory of Petri Nets 2005, 26th Inter-
national Conference, ICATPN 2005, Miami, USA, June 20-25, 2005, Proceedings,
volume 3536 of Lecture Notes in Computer Science, pages 48–69. Springer, 2005.

20. A. J. M. M. Weijters and J. T. S. Ribeiro. Flexible heuristics miner (FHM). In
CIDM, pages 310–317, 2011.

