
Towards Feasible PAC-Learning of Probabilistic
Deterministic Finite Automata ?

Jorge Castro and Ricard Gavaldà

Departament de Llenguatges i Sistemes Informàtics
LARCA Research Group

Universitat Politècnica de Catalunya, Barcelona
{castro|gavalda}@lsi.upc.edu

Abstract. We present an improvement of an algorithm due to Clark and
Thollard (Journal of Machine Learning Research, 2004) for PAC-learning
distributions generated by Probabilistic Deterministic Finite Automata
(PDFA). Our algorithm is an attempt to keep the rigorous guarantees
of the original one but use sample sizes that are not as astronomical
as predicted by the theory. We prove that indeed our algorithm PAC-
learns in a stronger sense than the Clark-Thollard. We also perform
very preliminary experiments: We show that on a few small targets (8-
10 states) it requires only hundreds of examples to identify the target.
We also test the algorithm on a web logfile recording about a hundred
thousand sessions from an ecommerce site, from which it is able to extract
some nontrivial structure in the form of a PDFA with 30-50 states. An
additional feature, in fact partly explaining the reduction in sample size,
is that our algorithm does not need as input any information about the
distinguishability of the target.

1 Introduction

1.1 Context

Probabilistic Finite-State Automata (PFA) are thoroughly studied ob-
jects, both because of its inherent theoretical interest and their applica-
tions. Probabilistic Deterministic Finite-State Automata (PDFA) are a
robust and natural subclass of PFA: See [6] for a study of the relations
among these models, as well as HMM and POMDP.

These devices generate distributions on strings, and learning to
approximate them from a sample is one of the central associated problems.
A good number of algorithms have been proposed to infer PDFA. Some of

? Research supported in part by the EU PASCAL2 Network of Excellence and by
the Spanish Ministry of Education and Science under projects MOISES-TA and
TRANGRAM.



them are only empirically evaluated while, for others, convergence in the
limit to the target PDFA can be proven; see among others [1, 4, 2, 15, 11].

In the more demanding PAC model, some evidence that learning
PDFA is hard was provided by Kearns et al. [10]. More precisely, it is
shown in [10] that assuming that noisy parities are hard to PAC-learn,
distributions generated by 2-letter PDFA cannot be PAC-learned in time
polynomial in n, 1/ε, and 1/δ, where from now on n denotes an upper
bound on the number of states in the target machine, and ε and δ are the
usual accuracy and confidence parameters in the PAC framework.

On the other hand, Ron et al. [13] gave an algorithm to PAC learn
acyclic PDFA if polynomiality is measured in an additional parameter,
the distinguishability of the target states - which we will denote as µ from
now on. This formalized the observation, present already e.g. in [2], that
one of the reasons that made some PDFA hard to learn was the presence of
states with very similar suffix distributions. Clark and Thollard [3] showed
how to extend this result to cyclic PDFA if still another parameter, the
expected length of the generated strings L is taken into account. Their
work is the culmination of a line of research, in the sense of identifying a
set of parameters that make polynomial-time learning possible. We will
state their result precisely in Section 2.

A number of papers have since presented variations or extensions of
Clark and Thollard’s algorithm (for brevity, called the C-T algorithm
from now on). The related paper [14] by the same authors presents a
more algorithmic view of the same ideas, with emphasis on the structure
identification part. Palmer and Goldberg [12] showed the analogous result
for learning with respect to the variation (L1) distance rather than the
KL-distance as C-T. Guttman et al [9] showed that the class of µ2-
distinguishable PDFA is also learnable with respect to the KL-distance;
C-T uses the easier µ∞-distinguishability measure. See also the related
results in Guttman’s thesis [8]. Denis et al [5] gave a quite deep PAC-
style result for the full class of PFA, although the parameters in which
the algorithm is polynomial are not completely identified there. Gavaldà
et al. [7] give another variation of C-T that adapts to the complexity of
the target, in the sense that it may stop earlier than the worst-case bound
if convergence is achieved.

While the Clark-Thollard result proves polynomial-time learnability
of PDFA, the actual polynomial is huge for interesting parameter values.
For example, it is in the order of 1024 for |Σ| = 2, n = L = 6, and
ε = δ = µ = 0.1. For values similar to these ones, the algorithm in [7]
uses sample sizes in the order of 105 in their experiments. On the other

2



hand, these algorithms do not look that different from other state-merging
algorithms in the literature, which often do pretty well in practice with
much smaller samples.

We believe that it is an interesting question whether these huge
numbers are unavoidable if PAC-like guarantees are required or whether
one can design algorithms with guaranteed polynomiality in well-defined
parameters that have use realistic sample sizes; or, let us say, about as
realistic as those of the algorithms which have been validated empirically
only. It is important to note that we discuss algorithms having no prior
knowledge about the structure of the state space; otherwise, the problem
is much simpler.

1.2 Our Results

Our initial intention in this work was to produce an algorithm that does
not ask for a bound on the distinguishability µ of the target PDFA. This
value is in practice very hard to guess, and basically only trial-and-error
can be used. As the work progressed, we incorporated other optimizations,
all of which can still be rigorously justified. Yet, our algorithm is as easy
to describe, if not more, than the original C-T algorithm.

We show that our algorithm PAC-learns in the same sense as that
the C-T algorithm. In fact it learns with respect to a more demanding
notion of distinguishability than the L∞-distance as C-T, which we call
prefL∞-distance. This proof is the core of the paper.

While all our improvements are technical rather than conceptual, their
combination could lead to dramatic experimental speedups. We describe
a few experiments with an implementation of our algorithm that, we
admit, are still far from being “an experimental evaluation”. We first use
the example PFAs in [7], having 10 states each, for which the algorithm
in [7] required about 4·105 examples to converge. Our algorithm identifies
the structure of the PDFAs and achieves low error with about 200-500
examples, i.e., a reduction by a factor of 1000 w.r.t. [7]. An additional
example taken from [2] produces similar results.

We perform an additional experiment on a large dataset: a weblog of
a high-traffic Spanish online travel agent, recording about 120,000 user
sessions. Each session can be modelled as a string over an alphabet of size
about 90, and average length about 12. On this dataset, our algorithm is
able to identify some nontrivial structure: it extracts PDFA with 30-50
states that are certainly quite different from trees. We are currently in
touch with the company to assess whether the patterns embodied in the
PDFA make sense to local experts.

3



To finish this section, let us remark an important difference of our
algorithm with C-T, of a high-level rather than purely technical nature:
The C-T algorithm receives a number of parameters of the target as
input, computes the worst-case number of examples required for those
parameters, and asks for the full sample of that size upfront. Rather,
we place ourselves in the more common situation where we have a given,
fixed sample and we have to extract as much information as possible from
it. Our main theorem then says that the algorithm PAC-learns provided
this sample is large enough with respect to the target’s parameters (some
of which, such as µ, are unknown; we are currently working on removing
the need to have the other parameters as inputs).

2 Preliminaries

We essentially follow notation in [3]. A PDFA A is a tuple 〈Q,Σ, τ, γ, ξ, q0〉
where Q is a finite set of states, Σ is the alphabet, τ : Q × Σ −→ Q is
the transition function, γ : Q× (Σ∪{ξ}) −→ [0, 1] defines the probability
of emitting each symbol from each state (γ(q, σ) = 0 when σ ∈ Σ and
τ(q, σ) is not defined), ξ is a special symbol not in Σ reserved to mark
the end of a string, and q0 ∈ Q is the initial state. Transition function τ
is extended to Q×Σ? in the usual way.

Given an observation string xξ = σ0 . . . σkξ emitted by a known
PDFA A, the state at each step can be tracked by starting from the
initial state q0 and following the labelled transitions according to x until
reaching last symbol ξ. Also, the probability of generating a given string
xξ from state q can be calculated recursively as follows: if x is the empty
word λ the probability is γ(q, ξ), otherwise x is a string σ0σ1 . . . σk with
k ≥ 0 and γ(q, σ0σ1 . . . σkξ) = γ(q, σ0)γ(τ(q, σ0), σ1 . . . σkξ).

The probability of state q in PDFA A is defined as the sum of values
γ(q0, xξ), where x ranges over the set of strings in Σ? that traverse q.

Assuming every state of A has non-zero probability of generating some
string, one can define for each state q a probability distribution DA

q on
Σ?: For each x, probability DA

q (x) is γ(q, xξ). The one corresponding to
the initial state DA

q0
is called the distribution defined by A, written DA

in short. When there is no ambiguity, we will omit superindex A.
Given a multiset S of strings from Σ? we denote by S(x) the

multiplicity of x in S, write |S| =
∑

x∈Σ? S(x) and for every σ ∈ Σ
define S(σ) =

∑
x∈Σ? S(σx). To resolve the ambiguity of this notation on

strings of length 1, we will always use greek letters to mean elements of
Σ, and latin letters for strings. We also denote by S(ξ) the multiplicity

4



of the empty word, S(λ). To each multiset S corresponds an empirical
distribution Ŝ defined in the usual way, Ŝ(x) = S(x)/|S|. Finally,
prefixes(S) denotes the multiset of prefixes of strings in S.

We consider several measures of divergence between distributions. Let
D1 and D2 be probability distributions on Σ?. The Kullback–Leibler
divergence, KL for short, is defined as

KL(D1, D2) =
∑
x

D1(x) log
D1(x)
D2(x)

.

The L∞ supremum distance is

L∞(D1, D2) = max
x∈Σ?

|D1(x)−D2(x)|.

Finally, we also use the supremum distance on prefixes (introduced here,
as far as we know):

prefL∞(D1, D2) = max
x∈Σ?

|D1(xΣ?)−D2(xΣ?)|.

Definition 1. We say distributions D1 and D2 are µ-distinguishable
when µ ≤ max{L∞(D1, D2),prefL∞(D1, D2)}. A PDFA A is µ-distinguishable
when for each pair of states q1 and q2 their corresponding distributions
Dq1 and Dq2 are µ-distinguishable.

Observe that prefL∞(Dq1 , Dq2) ≥ µ iff there is any x ∈ Σ? such that
|γ(q1, x)−γ(q2, x)| ≥ µ. By definition, our measure of distinguishability is
never smaller than the usual L∞-distinguishability in the literature [3, 12].

3 Description of the Algorithm

We show below a learning algorithm for PDFAs that has as input
parameters the alphabet size |Σ|, an upper bound L on the expected
length of strings emitted from any state of the target (alternatively, a
bound on the expected length of strings from the initial state and a bound
on the variance), an upper bound n on the number of states of the target,
and the confidence (δ) and precision (ε) parameters. In contrast with the
C-T algorithm, it does not need as input parameter the distinguishability
µ of the target.

According to [3], a PAC learner for the class of PDFA can be easily
obtained from a polynomial-time algorithm, so-called Learner from now
on, satisfying the requirements listed below; we follow their notation.

5



1. Learner returns (with high probability) a graph G isomorphic to a
subgraph of the target PDFA A. This means that there is a bijection
Φ from a subset of states of A to all nodes of G such that 1) Φ(q0) = v0

(where q0, v0 are the initial states of A and G, respectively) and 2) if
τG(v, σ) = w then τ(Φ−1(v), σ) = Φ−1(w).

2. The states in A whose probability is greater than ε2/(L + 1), which
we call frequent states, have a representative in G. That is Φ is defined
on frequent states.

3. If q is a frequent state in A and σ ∈ Σ is such that γ(q, σ) > ε5 (we
say (q, σ) is a frequent transition) then τG(Φ(q), σ) exists and it equals
Φ(τ(q, σ)).

4. A multiset Sv is attached to every node v in the graph. If v represents
a frequent target state q (i.e., Φ(q) = v where q is frequent), then for
every σ ∈ Σ ∪ {ξ}, it holds |Sv(σ)/|Sv| − γ(q, σ)| < ε1. A multiset
holding this property is said to be ε1-good.

Numbers ε1, ε2 and ε5 above and auxiliar quantities ε0 and δ0 that we use
later are defined as follows. Note that they do not depend on µ.

ε1 =
ε2

16(|Σ|+ 1)(L + 1)2

ε2 =
ε

4n(n + 1)L(L + 1) log(4(L + 1)(|Σ|+ 1)/ε)

ε5 =
ε

4|Σ|(n + 1)L(L + 1) log(4(L + 1)(|Σ|+ 1)/ε)

ε0 =
ε2ε5

n|Σ|(L + 1)

δ0 =
δ

n2|Σ|+ 3n|Σ|+ n

From a such graph G a PDFA hypothesis H can be easily built having
a small KL divergence with respect to A. This is described in the
paragraphs “Completing the Graph” and “Estimating Probabilities”
in [3], page 480. Basically, it is enough to complete the graph when
necessary by introducing a new node, the ground node, representing all
the low frequency states and new transitions to the ground node. Finally,
a smoothing scheme is performed in order to estimate the transition
probabilities.

The proof that an algorithm Learner with these properties, plus this
additional graph completion and probability estimation step, is a PAC-
learner is essentially the contents of Sections 4.3, 4.4 and 5 in [3]. It does

6



not involve distinguishability at all, so we can apply it in our setting even
if we have changed our measure of distinguishability.

Our learning algorithm takes as inputs the parameters listed above
and a sample from the target machine containing N examples. Learner
performs at most n|Σ| + 1 learning stages, each one making a pass over
all training examples and guaranteed to add one transition to the graph
G it is building.

At the beginning of each stage, Learner has a graph G that
summarizes our current knowledge of the target A. Nodes and edges in G
represent, respectively, states and transitions of the target A. We call safe
nodes the nodes of G, as they are inductively guaranteed (with probability
at least 1 − δ0) as stand for distinct states of A, with transitions among
them as in A. Safe nodes are denoted by strings in Σ?.

Attached to each safe node v there is a multiset Sv that keeps
information about the distribution on the target state represented by
v. The algorithm starts with a trivial graph G consisting of a single node
v0 = λ representing the initial state q0 of the target, whose attached
multiset is formed by all the available examples.

When a new stage starts, the learner adds a candidate node u = vuσ
for each (safe) node vu of G and each σ ∈ Σ such that τG(vu, σ) is
undefined. Candidate nodes gather information about transitions of A
leading from states that have already a safe representative in G but not
having yet an edge counterpart in G. Attached to each candidate node u
there is also a multiset Su, initially empty. The learner also keeps, for
each candidate node u, a list Lu of safe nodes that have not been yet
distinguished (proved different) from u. Initially Lu contains all nodes
in G.

For each training example xξ = σ0 . . . σi−1σiσi+1 . . . σkξ in the
dataset, Learner traverses the graph matching each observation σi to
a state until either (1) all observations in x have been exhausted or (2) a
transition to a candidate node is reached. This occurs when all transitions
up to σi−1 are defined and lead to a safe node w, but there is no edge out
of w labeled by σi. In this case, we add the suffix σi+1 . . . σk to the multiset
Su of candidate node u = wσi and, before processing a new example, we
consider all pairs (u, v) where safe node v belongs to Lu. For each such
pair, we call function Test Distinct(u, v) described in Figure 1. If the
test returns “distinct”, we assume that u and v reach distinct states in
the target and we remove v from Lu.

A candidate node becomes important when |Su| exceeds ε0N/2. Every
time that there is an important candidate node u = vuσ whose associated

7



set Lu is empty, u is promoted to a new safe node (G gets a new node
labelled with u), u is not anymore a candidate node, and an edge from vu

to u labeled by σ is added to G. The multiset Su is attached to the new
safe node, u is included in the list Lu′ of all remaining candidate nodes
u′, and the phase continues.

If all training examples are processed without the condition above oc-
curring, the algorithm checks whether there are any important candidate
nodes left. If none remains, Learner returns G and stops. Otherwise, it
closes the phase as follows: It chooses the important candidate u = vuσ
and the safe node v ∈ Lu having smallest distinguishability on the empir-
ical distributions (samples), and identifies them, by adding to G an edge
from vu to v labeled by σ.

Finally, the phase ends by erasing all the candidate nodes and another
phase starts.

function Test Distinct(u, v)
//u is a candidate node; v is safe
mu ← |Su|; su ← |prefixes(Su)|;
mv ← |Sv|; su ← |prefixes(Sv)|;

tu,v ←
(

2
min(mu,mv) ln 4m2

u(su+sv)π2

3δ0

)1/2

d← max
(
L∞(Ŝu, Ŝv),prefL∞(Ŝu, Ŝv)

)
if d > tu,v then return “distinct”

else return “not clear”

Fig. 1. The state-distinctness test

4 Analysis

In this section we show that algorithm Learner satisfies conditions (1)-(4)
before, and therefore can be turned into a PAC-learner for PDFA.

The following two lemmas describe the behavior of Test Distinct.
Here Du (respectively, Dv) denotes the target distribution on state
q = τ(q0, u) (q = τ(q0, v)).

Lemma 2. If Du = Dv function Test Distinct(u, v) returns “not
clear” with probability 1− 6δ0/(π2m2

u).

8



Proof. Let D = Du(= Dv). Function Test Distinct returns “different”
when there exists a string x such that |Ŝu(xΣ?) − Ŝv(xΣ?)| > tu,v or
|Ŝu(x) − Ŝv(x)| > tu,v. First, we bound the probability of the event
prefL∞(Ŝu, Ŝv) > tu,v. To avoid summing over infinitely many x, consider
Su∪Sv ordered, say lexicographically. Then the event above is equivalently
to saying “there is an index i in this ordering such that some prefix
of the ith string in Su ∪ Sv in this ordering, call it x, satisfies the
condition above”. (This is another way of saying that only x’s appearing
in prefixes(Su ∪ Sv) can make the inequality true, since all others have
Ŝu(xΣ?) = Ŝv(xΣ?) = 0.) Therefore, its probability is bounded above
by the maximum of (su + sv) Pr[ |Ŝu(xΣ?) − Ŝv(xΣ?)| > tu,v] over all
strings x. By the triangle inequality, this is at most

(su+sv)
(
Pr[ |Ŝu(xΣ?)−D(xΣ?)| > tu,v/2] + Pr[|Ŝv(x)−D(xΣ?)| > tu,v/2]

)
.

Since E[Ŝu(xΣ?)] = E[Ŝv(xΣ?)] = D(xΣ?), by Hoeffding’s inequality
this is at most

(su + sv)(2 exp(−2(t2u,v/4) mu) + 2 exp(−2(t2u,v/4) mu))

≤ 4(su + sv) exp(−(t2u,v/2) min(mu,mv)),

which is 3δ0/(π2m2
u) by definition of tu,v.

A similar reasoning also shows that the probability of the event
L∞(Ŝu, Ŝv) > tu,v is at most 3δ0/(π2m2

u) and we are done.

Lemma 3. If Du and Dv are µ-distinguishable and min(mu,mv) ≥
8
µ2 ln 8(mu+mv)m2

uLπ2

3δ2
0

then Test Distinct(u, v) returns “different” with
probability 1− δ0.

Proof. We first bound the size of prefixes(Su ∪ Sv). Clearly, its expected
size is at most L|Su∪Sv|. Then, by Markov’s inequality, Pr[|prefixes(Su∪
Sv)| ≥ 2

δ0
·L|Su∪Sv|] is less than δ0/2. Therefore, we have with probability

at least 1− δ0/2 that su + sv ≤ 2(mu + mv)L/δ0.
Now assume there is a string x witnessing that prefL∞(Du, Dv) > µ

(otherwise some x is a witness for L∞(Du, Dv) > µ and we argue in
a similar way), i.e. a string such that |Du(xΣ?) − Dv(xΣ?)| > µ. If
min(mu,mv) ≥ 8

µ2 ln 8(mu+mv)m2
uLπ2

3δ2
0

, by the argument above with high
probability we have tu,v ≤ µ/2 and the probability of returning “different”
is at least the probability of the event |Ŝu(xΣ?) − Ŝv(xΣ?)| > µ/2.
The hypothesis on x and the triangle inequality shows that probability
of the complementary event |Ŝu(xΣ?) − Ŝv(xΣ?)| ≤ µ/2 is at most

9



Pr[ |Ŝu(xΣ?) −Du(xΣ?)| > µ/4] + Pr[ |Ŝv(xΣ?) −Dv(xΣ?)| > µ/4]. By
the Hoeffding bound, this sum is less than δ0/2, and we are done.

Lemmas 4–8 below share the hypothesis the current G is isomorphic
to a subgraph of A and deal with one fixed stage of the learning algorithm.
Probabilities are taken over samples.

Lemma 4. Let u be a candidate node. If u is promoted to safe (in this
stage) then, with probability 1 − δ0, node u corresponds to a new target
state, i.e., one not represented in the current graph G.

Proof. We show that a candidate node u representing the same target
state than a safe state v has very small probability of being promoted.
By Lemma 2 at any specific call to Test Distinct(u, v), the function
returns the wrong value “different” with probability at most 6δ0/(π2m2

u).
The test is called once for every example included in Su, so the value of
mu increases by 1 at each consecutive call within the stage. Therefore,
the probability that safe node v is ruled out from Lu is at most∑

mu≥1

6δ0/(π2 m2
u) = δ0

Lemma 5. Let u be a candidate node, and let µ be the distinguishability
of the target. If N is greater than 16

ε0µ2 (3e ln 48
ε0µ2 +ln 16Lπ2

3δ2
0

) with probability
1− nδ0, if candidate node u is merged with a safe node v then, strings u
and v end in the same state in the target.

Proof. Assume candidate u is merged with safe node v. Necessarily u is
important and N ≥ mu > ε0N/2. As v is safe it also holds mv > ε0N/2.
It is also clear that mu +mv ≤ 2N . From these values of mu, mv and the
hypothesis on N , it can be checked that min(mu,mv) satisfies requirement
in Lemma 3. So, if they were representatives of different target states, safe
v would remain in Lu with probability at most δ0.

Lemma 6. Assume that, after processing all examples, graph G has no
safe node v representing a frequent state q of A. If N > 8(L+1)

ε2
ln 1

δ0
then,

with probability 1− δ0, the learner will not finish yet.

Lemma 7. Assume that, after processing all examples, graph G has no
edge representing a frequent transition (q, σ) in A. If N > 8(L+1)

ε2ε5
ln 1

δ0
then with probability 1− δ0, some candidate is important and the learner
will not finish yet.

10



Fig. 2. Example PFAs from [7]

Lemma 8. Let u be a candidate node. If the number N of training
examples is greater than 1

ε0ε21
ln 2(|Σ|+1)

δ0
and u is promoted to safe then,

with probability 1− δ0, multiset Su is ε1-good.

Let N0 be max
(

16
ε0µ2 (3e ln 48

ε0µ2 + ln 16Lπ2

3δ2
0

), 8
ε0ε21

ln 2(|Σ|+1)
δ0

)
. A straight-

forward induction shows the main theorem:

Theorem 9. If N > N0, with probability 1−δ Learner returns a graph G
satisfying requirements (1)–(4) listed above.

As explained already, the second phase of the learning algorithm takes
the graph G, completes it if necessary, and sets the transition probabilities
according to their empirical distribution. An additional smoothing is
performed, as described in [3]. We do not describe it here, but state that
the resulting PDFA will approximate the target in the KL distance, as
can be deduced from the proof in [3].

5 Experiments

5.1 Small Targets

Our first experiments used the two automata tested by Gavaldà et
al. [7], shown in Figure 2. The one on the left is a (nondeterministic)
HMM repeatedly generating strings in {abb, aaa, bba} with different
probabilities. The one on the right is the “cheese maze”: at each state
(or square), an observation (a letter in {1, 2, 3}) indicates the number of
walls around that state, with the exception of s10 where the automaton
terminates. They have thus 10 states each. We have additionally used the

11



Fig. 3. The Reber grammar; plot taken from [2]

Reber grammar automaton, with 8 states, discussed in [2] and shown in
Figure 3.

For each of these automata, and different values of N , we generated
10 examples of size N from the target, and run our algorithm on these
examples. In all experiments we used δ = 0.05 and the (known) number
of target states for n. For the Reber grammar, the full structure of
the automaton was identified about half the times with N = 100,
but systematically identified when N = 200, at which point transition
probabilities were correct within (absolute) 5%. For N = 1000, transition
probabilities were correct within 1%. For the cheese maze automaton,
at N = 300 the structure was found 9 out of 10 times, with transition
probabilities correct up to 2%. For N = 1000, the structure was correctly
found in all trials. Interestingly, when the program was changed to use
only L∞-, rather than prefL∞-distinguishability, the point at which the
structure is identified more than 50% of the times was around N = 1300.
That is, using prefL∞ did help in this case. Results were similar for the
HMM on the left of Figure 2.

5.2 An Experiment with a Real, Large Dataset

As a larger test, we used a web logfile recording sessions from a
high-traffic Spanish online travel agency, selling flights, hotel stays,
car rentals, and theater tickets. Each entry in the logfile records a
user request to the company’s web to initiate some action. The local
experts distinguish 91 types of requests or tags; some examples could be
“search flight”, “search hotel”, “book flight”, “credit card info”, “home”,
“register”, “help”, etc. We preprocessed the logfile transforming each
request into a tag identifier and grouping clicks from the same user into

12



sessions. Therefore each session can be viewed as a string over a 91-
letter alphabet. The median and average of session length are 4 and 11.9,
excluding 1-click sessions, and we had 120,000 sessions to work with.

We ran our algorithm on subsets of several sizes N of this dataset.
Since human web users cannot be perfectly modelled by PDFA, one should
not expect high accuracy. Still, there are certainly patterns that users tend
to follow, so it was worth checking whether any structure is found.

We tried N = 40, 000 to N = 100, 000 in multiples of 10, 000. Figure 4
presents, for each N , the size of the resulting PDFA and the L1-distance
from the dataset to a randomly generated sample of size 100, 000 from
the output machine.

Sample # states L1 distance

40k 35 .582
50k 36 .546
60k 39 .518
70k 42 .516
80k 45 .480
100k 54 .439

Fig. 4. Results on the online travel agency dataset

Note that the L1 distance can have value up to 2. (In fact, we tried
generating several independent samples of size 100k from the PDFA
obtained with the 100k sample and computing their L1 mutual distance.
The results were around 0.39 even though they came from the same
machine, so this value is really the baseline once sample size has been
fixed to 100k.) The table shows that convergence to a fixed machine
did not occur, which is no surprise. On the other hand, the resulting
machines were not at all tree-like PDFAs that occur when no states can
be merged: most safe states did absorb candidate states at some point.
Given the alphabet size (91) and number of states (≥ 30), depicting and
understanding them is not immediate.

Note that we have not discussed the values of ε and L used in the
experiments. In fact, our implementation does not use them: they are used
only to determine when a state is important. In particular, observe that
ε and L are not used in the state distinctness test. The implementation
keeps merging candidate states as long as there is any left at the end of
the stage, hence every candidate state is eventually merged. We believe
that it is possible to prove that this variant is still a PAC learner, since

13



non-important states, after smoothing, by definition do not contribute
much to the KL distance. We believe it is also possible to remove the
need for an upper bound on n without significantly increasing sample
size in practice; this would give a PAC-learning whose only parameter is
the confidence δ.

6 Conclusions

We believe that these first experiments, as preliminary as they are,
show that maybe one cannot rule out the existence of a provably-PAC
learner that has reasonable sample sizes in practice. More systematic
experimentation, as well as improving of our slow, quick-and-dirty
implementation, is work in progress.

References

[1] R. C. Carrasco and J. Oncina. Learning stochastic regular grammars by means
of a state merging method. In ICGI, pages 139–152, 1994.

[2] R. C. Carrasco and J. Oncina. Learning deterministic regular grammars from
stochastic samples in polynomial time. ITA, 33(1):1–20, 1999.

[3] A. Clark and F. Thollard. PAC-learnability of probabilistic deterministic finite
state automata. Journal of Machine Learning Research, 5:473–497, 2004.

[4] C. de la Higuera, J. Oncina, and E. Vidal. Identification of DFA: data-dependent
vs data-independent algorithms. In ICGI, pages 313–325, 1996.

[5] F. Denis, Y. Esposito, and A. Habrard. Learning rational stochastic languages.
In COLT, pages 274–288, 2006.

[6] P. Dupont, F. Denis, and Y. Esposito. Links between probabilistic automata and
hidden Markov models: probability distributions, learning models and induction
algorithms. Pattern Recognition, 38:1349–1371, 2005.

[7] R. Gavaldà, P. W. Keller, J. Pineau, and D. Precup. PAC-learning of Markov
models with hidden state. In ECML, pages 150–161, 2006.

[8] O. Guttman. Probabilistic Automata Distributions over Sequences. Ph.D. thesis,
The Australian National University, September 2006.

[9] O. Guttman, S. V. N. Vishwanathan, and R. C. Williamson. Learnability of
probabilistic automata via oracles. In ALT, pages 171–182, 2005.

[10] M. J. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R. E. Schapire, and L. Sellie.
On the learnability of discrete distributions. In STOC, pages 273–282, 1994.

[11] C. Kermorvant and P. Dupont. Stochastic grammatical inference with multino-
mial tests. In ICGI, pages 149–160, 2002.

[12] N. Palmer and P. W. Goldberg. PAC-learnability of probabilistic deterministic
finite state automata in terms of variation distance. In ALT, pages 157–170, 2005.

[13] D. Ron, Y. Singer, and N. Tishby. On the learnability and usage of acyclic
probabilistic finite automata. J. Comput. Syst. Sci., 56(2):133–152, 1998.

[14] F. Thollard and A. Clark. Learning stochastic deterministic regular languages.
In ICGI, pages 248–259, 2004.

[15] F. Thollard, P. Dupont, and C. de la Higuera. Probabilistic DFA inference using
Kullback-Leibler divergence and minimality. In ICML, pages 975–982, 2000.

14


