
Adaptive XML Tree Classification on evolving
data streams

Albert Bifet and Ricard Gavaldà

Universitat Politècnica de Catalunya, Barcelona, Spain
{abifet,gavalda}@lsi.upc.edu

Abstract. We propose a new method to classify patterns, using closed
and maximal frequent patterns as features. Generally, classification re-
quires a previous mapping from the patterns to classify to vectors of
features, and frequent patterns have been used as features in the past.
Closed patterns maintain the same information as frequent patterns us-
ing less space and maximal patterns maintain approximate information.
We use them to reduce the number of classification features. We present
a new framework for XML tree stream classification. For the first compo-
nent of our classification framework, we use closed tree mining algorithms
for evolving data streams. For the second component, we use state of the
art classification methods for data streams. To the best of our knowledge
this is the first work on tree classification in streaming data varying with
time. We give a first experimental evaluation of the proposed classifica-
tion method.

1 Introduction

Pattern classification and frequent pattern discovery have been important tasks
over the last decade. Nowadays, they are becoming harder, as the size of the pat-
tern datasets is increasing, data often comes from sequential, streaming sources,
and we cannot assume that data has been generated from a static distribution.
If we want accuracy in the results of our algorithms, we have to consider that the
distribution that generates data may vary over time, often in an unpredictable
and drastic way.

Tree Mining is becoming an important field of research due to the fact that
XML patterns are tree patterns and that XML is becoming a standard for in-
formation representation and exchange over the Internet. XML data is growing
and it will soon constitute one of the largest collection of human knowledge.
Other applications of tree mining appear in chemical informatics, computer vi-
sion, text retrieval, bioinformatics, and Web analysis. XML tree classification
has been done traditionally using information retrieval techniques considering
the labels of nodes as bags of words. With the development of frequent tree min-
ers, classification methods using frequent trees appeared [21, 14, 8, 12]. Recently,
closed frequent miners were proposed [7, 18, 1], and using them for classification
tasks is the next natural step.

Closure-based mining on relational data has recently provided some inter-
esting algorithmic developments. In this paper we use closure-based mining to
reduce drastically the number of attributes in tree classification tasks. Moreover,
we show how to use maximal frequent trees to reduce even more the number of
attributes needed in tree classification, in many cases without loosing accuracy.

We propose a general framework to classify XML trees based on subtree
occurrence. It is composed of a Tree XML Closed Frequent Miner, and a classifier
algorithm. We propose specific methods for dealing with adaptive data streams.
In [5] a new approach was proposed for mining closed patterns adaptively from
data streams that change over time, and it was used for closed unlabeled rooted
trees. In this work, we use the extension to the more challenging case of labeled
rooted trees.

The rest of the paper is organized as follows. We discuss related work in Sec-
tion 2. Section 3 gives background and Section 4 introduces our closure operator
and its properties needed for our classification algorithm. Section 5 shows the
tree classification framework and it introduces the adaptive closed frequent min-
ing method. Experimental results are given in Section 6, and some conclusions
in Section 7.

2 Related Work

Zaki and Aggarwal presented XRules in [21]. Their classification method mines
frequent trees in order to create classification rules. They do not use closed
frequent trees, only frequent trees. XRules is cost-sensitive and uses Bayesian
rule based class decision making. They also proposed methods for effective rule
prioritization and testing.

Kudo and Matsumoto presented a boosting method for tree classification
in [14]. Their method consists of decision stumps that uses significant frequent
subtrees as features and a Boosting algorithm which employs the subtree-based
decision stumps as weak learners. With Maeda they extended this classification
method to graphs in [13].

Other works use SVMs defining tree Kernels [8, 12]. Tree kernel is one of
the convolutions kernels, and maps the example represented in a labeled ordered
tree into all subtree spaces. The feature space uses frequent trees and not closed
trees.

Garriga et al. [10] showed that when considering labeled itemsets, closed sets
can be adapted for classification and discrimination purposes by conveniently
contrasting covering properties on positive and negative examples. They formally
proved that these sets characterize the space of relevant combinations of features
for discriminating the target class.

Chi et al. proposed CMTreeMiner [7], the first algorithm to discover all closed
and maximal frequent labeled induced subtrees without first discovering all fre-
quent subtrees. CMTreeMiner shares many features with CloseGraph [19]. Ter-
mier et al. proposed DryadeParent [18], based on the hooking principle first
introduced in Dryade. They claim that the branching factor and depth of the

frequent patterns to find are key factors in the complexity of tree mining algo-
rithm and that DryadeParent outperforms CMTreeMiner, on datasets where the
frequent patterns have a high branching factor.

In [5], we proposed a new approach for mining closed frequent patterns adap-
tively from data streams that change over time, and we applied it to unlabelled
frequent tree mining.

To the best of our knowledge this is the first work defined for classifying trees
and mining labeled closed frequent trees in streaming data that evolve with time,
and the first one in using closed and maximal frequent trees for feature reduction.

3 Preliminaries

Following Formal Concept Analysis usage, we are interested in (possibly infinite)
sets endowed with a partial order relation. Elements of these sets are generically
called patterns.

The set of all patterns will be denoted with T , but actually all our develop-
ments will proceed in some finite subset of T which will act as our universe of
discourse.

Given two patterns t and t′, we say that t is a subpattern of t′, or t′ is a
super-pattern of t, if t � t′. Two patterns t, t′ are said to be comparable if t � t′
or t′ � t. Otherwise, they are incomparable. Also we write t ≺ t′ if t is a proper
subpattern of t′ (that is, t � t′ and t 6= t′).

The input to our data mining process is a dataset D of transactions, where
each transaction s ∈ D consists of a transaction identifier, tid, and a transaction
pattern. The dataset is a finite set in the standard setting, and a potentially
infinite sequence in the data stream setting. Tids are supposed to run sequentially
from 1 to the size of D. From that dataset, our universe of discourse U is the set
of all patterns that appear as subpattern of some pattern in D.

Figure 1 shows a finite dataset example of trees.
As is standard, we say that a transaction s supports a pattern t if t is a

subpattern of the pattern in transaction s. The number of transactions in the
dataset D that support t is called the support of the pattern t. A subpattern
t is called frequent if its support is greater than or equal to a given threshold
min sup. The frequent subpattern mining problem is to find all frequent subpat-
terns in a given dataset. Any subpattern of a frequent pattern is also frequent
and, therefore, any superpattern of a nonfrequent pattern is also nonfrequent
(the antimonotonicity property).

3.1 Frequent Pattern Compression

We define a frequent pattern t to be closed if none of its proper superpatterns
has the same support as it has. Generally, there are much fewer closed patterns
than frequent ones. In fact, we can obtain all frequent subpatterns with their
support from the set of frequent closed subpatterns with their supports. So, the

D

D

B

C

A

C

D

B

C

B

D

B

C C

B

D

B

C

A

B

Class1 Class2 Class1 Class2

Class Trees

Class1 ((0, D), (1, B), (2, C), (3, A), (2, C))
Class2 ((0, D), (1, B), (2, C), (1, B))
Class1 ((0, D), (1, B), (2, C), (2, C), (1, B))
Class2 ((0, D), (1, B), (2, C), (3, A), (1, B))

Fig. 1. A dataset example of 4 tree transactions

set of frequent closed subpatterns maintains the same information as the set of
all frequent subpatterns.

The closed trees for the dataset of Figure 1 are shown in the Galois lattice
of Figure 2.

We define a frequent pattern t to be maximal if none of t’s proper superpat-
terns is frequent. All maximal patterns are closed, but not all closed patterns
are maximal, so there are more closed patterns than maximal. Note that we can
obtain all frequent subpatterns from the set of maximal frequent subpatterns,
but not their support. So, the set of maximal frequent subpatterns maintains
approximately the same information as the set of all frequent subpatterns.

4 Classification using Compressed Frequent Patterns

The pattern classification problem is defined as follows. A set of examples of the
form (t, y) is given, where y is a discrete class label and t is a pattern. The goal
is to produce from these examples a model ŷ = f(t) that will predict the classes
y of future pattern examples with high accuracy.

We use the following approach: we convert the pattern classification problem
into a vector classification learning task, transforming patterns into vectors of
attributes. Attributes will be frequent subpatterns, or a subset of these frequent
subpatterns.

D

B

C

A

C

D

B

C C

B

D

B

C

A

B

D

B

C C

D

B

C

A

D

B

C

B

D

B

C

1 3 4

13
14

234

1234

Fig. 2. Example of Galois Lattice of Closed trees

Suppose D has d frequent subpatterns denoted by t1, t2, . . . , td. We map any
pattern t to a vector x of d attributes: x = (x1, ..., xd) such that for each attribute
i, xi = 1 if ti � t or xi = 0 otherwise.

As the number of frequent subpatterns is huge, we perform a feature selec-
tion process, selecting a subset of these frequent subpatterns, maintaining the
same information, or approximate. Figures 3 and 4 show frequent trees and its
conversion to vectors of attributes. Note that closed trees have the same infor-
mation as frequent trees, but maximal trees loose some support information, as
mentioned in Section 3.1.

4.1 Closed Frequent Patterns

Recall that if X is a set with a partial order ≤, a closure operator on X is a
function C : X → X that satisfies the following for all x in X: x ≤ C(X), C(x) =

Tree Trans.

Closed Freq. not Closed Trees 1 2 3 4

c1

D

B

C C

B

C C 1 0 1 0

c2

D

B

C

A

B

C

A

C

A

A

1 0 0 1

c3

D

B

C

B D

B B 0 1 1 1

c4

D

B

C

D

B

D B

C

B C

1 1 1 1

Fig. 3. Frequent trees from dataset example (min sup = 30%), and their corresponding
attribute vectors.

C(C(x)), for all y ∈ X, x ≤ y implies C(x) ≤ C(y). A Galois connection
is provided by two functions, relating two lattices in a certain way. Here our
lattices are not only plane power sets of the transactions but also plain power
sets of the corresponding solutions. On the basis of the binary relation t � t′,
the following definition and proposition are rather standard.

Definition 1. The Galois connection pair is defined by:

– For finite A ⊆ D, σ(A) = {t ∈ T
∣∣ ∀ t′ ∈ A (t � t′)}

– For finite B ⊂ T , not necessarily in D, τD(B) = {t′ ∈ D
∣∣ ∀ t ∈ B (t � t′)}

Proposition 1. The composition ΓD = σ ◦ τD is a closure operator on the
subsets of D.

Theorem 1. A pattern t is closed for D if and only if it is maximal in ΓD({t}).

Frequent Trees
c1 c2 c3 c4

Id c1 f1
1 c2 f1

2 f2
2 f3

2 c3 f1
3 c4 f1

4 f2
4 f3

4 f4
4 f5

4

1 1 1 1 1 1 1 0 0 1 1 1 1 1 1
2 0 0 0 0 0 0 1 1 1 1 1 1 1 1
3 1 1 0 0 0 0 1 1 1 1 1 1 1 1
4 0 0 1 1 1 1 1 1 1 1 1 1 1 1

Closed Maximal
Trees Trees

Id Tree c1 c2 c3 c4 c1 c2 c3 Class

1 1 1 0 1 1 1 0 Class1
2 0 0 1 1 0 0 1 Class2
3 1 0 1 1 1 0 1 Class1
4 0 1 1 1 0 1 1 Class2

Fig. 4. Closed and maximal frequent trees from dataset example (min sup = 30%),
and their corresponding attribute vectors.

In other words, Theorem 1 states each closed set is uniquely defined through
its maximal elements. On this basis, our algorithms can avoid duplicating calcu-
lations and redundant information by just storing the maximal patterns of each
closed set. We denote ∆(t) as the set of maximal patterns of each closed set of
ΓD({t}).

We can relate the closure operator to the notion of closure based on support,
as previously defined, as follows: t is closed for D if and only if: ∆D({t}) = {t}.

Following the standard usage on Galois lattices, we consider now implications
of the form A→ B for sets of patterns A and B from U . Specifically, we consider
the following set of rules: A→ ΓD(A). Alternatively, we can split the consequents
into {A→ t

∣∣ t ∈ ΓD(A)}.
It is easy to see that D obeys all these rules: for each A, any pattern of D that

has as subpatterns all the patterns of A has also as subpatterns all the patterns
of ΓD(A).

Proposition 2. Let ti be a frequent pattern for D. A transaction pattern t sat-
isfies ti � t, if and only if it satisfies ∆D(ti) � t.

We use Proposition 2 to reduce the number of attributes on our classification
task, using only closed frequent patterns, as they keep the same information.
The attribute vector of a frequent pattern will be the same as its closed pattern
attribute vector. Figure 4 shows the attribute vectors for the dataset of Figure 1.

4.2 Maximal Frequent Patterns

Maximal patterns are patterns that do not have any frequent superpattern. All
maximal patterns are closed patterns. If min sup is zero, then maximal patterns
are transaction patterns. We denote by M1(t),M2(t), . . . ,Mm(t) the maximal
superpatterns of a pattern t. We are interested in the implications of the form
tc → (M1(t) ∨M2(t) ∨ . . . ∨Mm(t)) where tc is a closed pattern.

Proposition 3. Let tc be a closed non-maximal frequent pattern for D. Let
M1(tc),M2(tc), . . . ,Mm(tc) be the maximal superpatterns of pattern tc. A trans-
action pattern t satisfies tc ≺ t, if and only if at least one of the maximals
superpattern Mi(tc) of pattern tc satisfies Mi(tc) � t.

Proof. Suppose that pattern tc satisfies tc ≺ t but no maximal superpattern
Mi(tc) satisfiesMi(tc) � t. Then, pattern tc has no frequent superpattern. There-
fore, it is maximal, contradicting the assumption.

Suppose, for the other direction, that a maximal superpattern Mi(tc) of tc
satisfies Mi(tc) � t. Then, as tc is a Mi(tc) subpattern, tc �Mi(tc), and it holds
that tc �Mi(tc) � t.

For non-maximal closed patterns, the following set of rules holds if tc is not
a transaction pattern:

tc →
∨
Mi(tc)

Note that for a transaction pattern tc that it is closed and non-maximal,
there is no maximal superpattern Mi(tc) of pattern tc that satisfies Mi(tc) � tc.
If there are no closed non-maximal transaction patterns, we do not need to use all
closed patterns as attributes, since non-maximal closed patterns may be derived
from maximal patterns.

Using Proposition 3, we may reduce the number of attributes on our classi-
fication task, using only maximal frequent patterns, as they keep much of the
information as closed frequent patterns.

5 XML Tree Classification framework on data streams

In this section we specialize the previous approach to the case of labelled trees,
such as XML trees.

Trees are connected acyclic graphs, rooted trees are trees with a vertex singled
out as the root, and unranked trees are trees with unbounded arity. We say that
t1, . . . , tk are the components of tree t if t is made of a node (the root) joined to the
roots of all the ti’s. We can distinguish between the cases where the components
at each node form a sequence (ordered trees) or just a set (unordered trees). We
will deal with rooted, unranked trees. We assume the presence of labels on the
nodes.

An induced subtree of a tree t is any connected subgraph rooted at some
node v of t that its vertices and edges are subsets of those of t. An embedded
subtree of a tree t is any connected subgraph rooted at some node v of t that

does not break the ancestor-descendant relationship among the vertices of t. We
are interested in induced subtrees. Formally, let s be a rooted tree with vertex
set V ′ and edge set E′, and t a rooted tree t with vertex set V and edge set
E. Tree s is an induced subtree (or simply a subtree) of t (written t′ � t) if and
only if 1) V ′ ⊆ V , 2) E′ ⊆ E, and 3) the labeling of V ′ is preserved in t. This
notation can be extended to sets of trees A � B: for all t ∈ A, there is some
t′ ∈ B for which t � t′.

Our XML Tree Classification Framework has two components:

– An XML closed frequent tree miner, for which we could use any incremental
algorithm that maintains a set of closed frequent trees.

– A Data stream classifier algorithm, which we will feed with tuples to be
classified online. Attributes in these tuples represent the occurrence of the
current closed trees in the originating tree, although the classifier algorithm
need not be aware of this.

In this section, we describe the two components of the framework, the XML
closed frequent tree miner, and the data stream classifier.

5.1 Adaptive Tree Mining on evolving data
streams

Using a methodology based on Galois Lattice Theory, we use three closed tree
mining algorithms: an increment IncTreeMiner, a sliding-window based one,
WinTreeMiner, and an algorithm that mines closed trees adaptively from data
streams. It is basically an adaptation of the theoretical framework developed
in [5], which deals with quite general notion of pattern and subpattern, to the
case of labeled rooted trees.

For maximal frequent trees, the following properties hold:

– adding a tree transaction to a dataset of trees D, may increase or decrease
the number of maximal trees for D.

– adding a transaction with a closed tree to a dataset of trees D, may modify
the number of maximal trees for D.

– deleting a tree transaction from a dataset of trees D, may increase or decrease
the number of maximal trees for D.

– deleting a tree transaction that is repeated in a dataset of trees D from it,
may modify the number of maximal trees for D.

– a non maximal closed tree may become maximal if
• it was not frequent and now its support increases to a value higher or

equal to min sup
• all of its maximal supertrees become non-frequent

– a maximal tree may become a non maximal tree if
• its support decreases below min sup
• a non-frequent closed supertree becomes frequent

We could check if a closed tree becomes maximal when

– removing closed trees because they do not have enough support
– adding a new closed tree to the dataset
– deleting a closed tree from the dataset

We use three tree mining algorithms adapting the general framework for
patterns presented in [5]:

– IncTreeMiner, an incremental closed tree mining algorithm,
– WinTreeMiner, a sliding window closed tree mining algorithm
– AdaTreeMiner, an adaptive closed tree mining algorithm

The batches are processed using the non-incremental algorithm explained
in [3]. AdaTreeMiner is a new tree mining method for dealing with concept
drift, using ADWIN [4], an algorithm for detecting change and dynamically ad-
justing the length of a data window. ADWIN is parameter- and assumption-free in
the sense that it automatically detects and adapts to the current rate of change.
Its only parameter is a confidence bound δ, indicating how confident we want
to be in the algorithm’s output, inherent to all algorithms dealing with random
processes.

Also important for our purposes, ADWIN does not maintain the window ex-
plicitly, but compresses it using a variant of the exponential histogram technique
in [9]. This means that it keeps a window of length W using only O(logW) mem-
ory and O(logW) processing time per item, rather than the O(W) one expects
from a näıve implementation. When windows tend to be large, this usually re-
sults in substantial memory savings.

We propose two strategies to deal with concept drift:

– AdaTreeMiner1: Using a sliding window, with an ADWIN estimator decid-
ing the size of the window

– AdaTreeMiner2: Maintaining an ADWIN estimator for each closed set in
the lattice structure.

In the second strategy, we do not delete transactions. Instead, each ADWIN
monitors the support of a closed pattern. When it detects a change, we can
conclude reliably that the support of this pattern seems to be changing in the
data stream in recent times.

5.2 Data Stream Classifier

The second component of the framework is based on MOA. Massive Online
Analysis (MOA) [11, 6] is a framework for online learning from continuous sup-
plies of examples, such as data streams. It is closely related to the well-known
WEKA project, and it includes a collection of offline and online as well as tools
for evaluation. In particular, it implements boosting, bagging, and Hoeffding
Trees, both with and without Näıve Bayes classifiers at the leaves.

We use bagging and boosting of decision trees, because these ensemble meth-
ods are considered the state-of-the-art classification methods.

6 Experimental evaluation

We tested our algorithms on synthetic and real data. All experiments were per-
formed on a 2.0 GHz Intel Core Duo PC machine with 2 Gigabyte main memory,
running Ubuntu 8.10.

6.1 Tree Classification

We evaluate our approach to tree classification on both real and synthetic clas-
sification data sets.

For synthetic classification, we use the tree generation program of Zaki [20],
available from his web page. We generate two mother trees, one for each class.
The first mother tree is generated with the following parameters: the number of
distinct node labels N = 200, the total number of nodes in the tree M = 1, 000,
the maximal depth of the tree D = 10 and the maximum fanout F = 10. The
second one has the following parameters: the number of distinct node labels
N = 5, the total number of nodes in the tree M = 100, the maximal depth of
the tree D = 10 and the maximum fanout F = 10.

A stream is generated by mixing the subtrees created from these mother trees.
In our experiments, we set the total number of trees in the dataset to be T =
1, 000, 000. We added artificial drift changing labels of the trees every 250, 000
samples, so closed and maximal frequent trees evolve over time. We use bagging
of 10 Hoeffding Trees enhanced with adaptive Näıve Bayes leaf predictions, as
classification method. This adaptive Näıve Bayes prediction method monitors the
error rate of majority class and Näıve Bayes decisions in every leaf, and chooses
to employ Näıve Bayes decisions only where they have been more accurate in
past cases.

Table 1 shows classification results. We observe that AdaTreeMiner1 is
the most accurate method, and that the accuracy of WinTreeMiner depends
on the size of the window.

For real datasets, we use the Log Markup Language (LOGML) dataset from
Zaki et al. [16, 21], that describes log reports at their CS department website.
LOGML provides a XML vocabulary to structurally express the contents of
the log file information in a compact manner. Each user session is expressed in
LOGML as a graph, and includes both structure and content.

The real CSLOG data set spans 3 weeks worth of such XML user-sessions.
To convert this into a classification data set they chose to categorize each user-
session into one of two class labels: edu corresponds to users from an ”edu“
domain, while other class corresponds to all users visiting the CS department
from any other domain. They separate each week’s logs into a different data
set (CSLOGx, where x stands for the week; CSLOG12 is the combined data for
weeks 1 and 2). Notice that the edu class has much lower frequency rate than
other.

Table 2 shows the results on bagging and boosting using 10 Hoeffding Trees
enhanced with adaptive Näıve Bayes leaf predictions. The results are very similar
for the two ensemble learning methods. Using maximals and closed frequent

Bagging Time Acc. Mem.

AdaTreeMiner1 161.61 80.06 4.93
AdaTreeMiner2 212.57 65.78 4.42
WinTreeMiner W=100,000 192.01 72.61 6.53
WinTreeMiner W= 50,000 212.09 66.23 11.68
IncTreeMiner 212.75 65.73 4.4

Boosting Time Acc. Mem.

AdaTreeMiner1 236.31 79.83 4.8
AdaTreeMiner2 326.8 65.43 4.25
WinTreeMiner W=100,000 286.02 70.15 5.8
WinTreeMiner W= 50,000 318.19 63.94 9.87
IncTreeMiner 317.95 65.55 4.25

Table 1. Comparison of classification algorithms. Memory is measured in MB. The
best individual accuracy is indicated in boldface.

trees, we obtain results similar to [20]. Comparing maximal trees with closed
trees, we see that maximal trees use 1/4 to 1/3rd of attributes, 1/3 of memory,
and they perform better.

6.2 Closed Frequent Tree Labeled Mining

As far as we know, CMTreeMiner is the state-of-art algorithm for mining induced
closed frequent trees in databases of rooted trees. The main difference with our
approach is that CMTreeMiner is not incremental and only works with bottom-
up subtrees, and our method works with both bottom-up and top-down subtrees.

IncTreeMiner

CMTreeMiner

TreeNatTime
(sec.)

Size (Milions)

2 4 6 8

33

66

100

Fig. 5. Time used on ordered trees, T8M dataset

For synthetic data, we use the same dataset as in [7] and [20] for rooted
ordered trees. The synthetic dataset T8M is generated by the tree generation

Maximal Closed

BAGGING Unordered Ordered Unordered Ordered

Trees Att. Acc. Mem. Att. Acc. Mem. Att. Acc. Mem. Att. Acc. Mem.

CSLOG12 15483 84 79.64 1.2 77 79.63 1.1 228 78.12 2.54 183 78.12 2.03
CSLOG23 15037 88 79.81 1.21 80 79.8 1.09 243 78.77 2.75 196 78.89 2.21
CSLOG31 15702 86 79.94 1.25 80 79.87 1.17 243 77.6 2.73 196 77.59 2.19
CSLOG123 23111 84 80.02 1.7 78 79.97 1.58 228 78.91 4.18 181 78.91 3.31

Maximal Closed

BOOSTING Unordered Ordered Unordered Ordered

Trees Att. Acc. Mem. Att. Acc. Mem. Att. Acc. Mem. Att. Acc. Mem.

CSLOG12 15483 84 79.46 1.21 77 78.83 1.11 228 75.84 2.97 183 77.28 2.37
CSLOG23 15037 88 79.91 1.23 80 80.24 1.14 243 77.24 2.96 196 78.99 2.38
CSLOG31 15702 86 79.77 1.25 80 79.69 1.17 243 76.25 3.29 196 77.63 2.62
CSLOG123 23111 84 79.73 1.69 78 80.03 1.56 228 76.92 4.25 181 76.43 3.45

Table 2. Comparison of tree classification algorithms. Memory is measured in MB.
The best individual accuracies are indicated in boldface (one per row).

program of Zaki [20], used for the evaluation on tree classification. In brief,
a mother tree is generated first with the following parameters: the number of
distinct node labels N = 100, the total number of nodes in the tree M = 10, 000,
the maximal depth of the tree D = 10 and the maximum fanout F = 10.
The dataset is then generated by creating subtrees of the mother tree. In our
experiments, we set the total number of trees in the dataset to be from T = 0
to T = 8, 000, 000.

The results of our experiments on synthetic data are shown in Figures 5,6,7,
and 8. We observe that as the data size increases, the running times of Inc-
TreeMiner and CMTreeMiner become closer, and that IncTreeMiner uses
much less memory than CMTreeMiner. CMTreeMiner failed in our experiments
when dataset size reached 8 million trees: not being an incremental method, it
must store the whole dataset in memory all the time in addition to the lattice
structure, in contrast with our algorithms.

In Figure 9 we compare WinTreeMiner with different window sizes to
AdaTreeMiner on T8M dataset. We observe that the two versions of Ada-
TreeMiner outperform WinTreeMiner for all window sizes.

IncTreeMiner

CMTreeMiner

TreeNat

Time
(sec.)

Size (Milions)

2 4 6 8

100

200

300

400

Fig. 6. Time used on unordered trees, TN1 dataset

IncTreeMiner

CMTreeMiner

TreeNat

Memory

(GB)

Size (Milions)

2 4 6 8

1

2

Fig. 7. Memory used on ordered trees, T8M dataset

7 Conclusions

The scheme for classification based on our methods, efficiently selects a reduced
number of attributes, and achieves higher accuracy (even more in the more
selective case in which we keep only attributes corresponding to maximal trees).
Our approach to tree mining outperforms CMTreeMiner in time and memory
consumption when the number of trees is huge, because CMTreeMiner is not an
incremental method and it must store the whole dataset in memory all the time.

Song et al.[17] introduced the concept of relaxed frequent itemset using the
notion of relaxed support. We can see relaxed support as a mapping from all
possible dataset supports to a set of relaxed intervals. Relaxed closed mining is
a powerful notion that reduces the number of closed subpatterns. We introduced
the concept of logarithmic relaxed frequent pattern in [5]. Future work will be
to apply this notion to our classification method by introducing an attribute
for each relaxed frequent closed pattern, instead of one for each closed frequent
pattern. Also, we would like to apply these classification methods to other kinds
of patterns.

IncTreeMiner

CMTreeMiner

TreeNat

Memory

(GB)

Size (Milions)

2 4 6 8

1

2

Fig. 8. Memory used on unordered trees on T8M dataset

WinTreeMiner

AdaTreeMiner1

AdaTreeMiner2

Time

(sec.)

Window size (Milions)

1 2

100

200

Fig. 9. Time used on ordered trees on T8M dataset varying window size

And finally, we would like to extend our work to generators [15]. In [2] the
authors were interested in implications of trees of the form G → Z, where G is
a generator of Z. When Γ (G) = Z for a set of trees G 6= Z and G is minimal
among all the candidates with closure equal to Z, we say that G is a generator of
Z. Generator based representations contain the same information as the frequent
closed ones. In the literature, there is no method for finding generators of trees
in evolving data streams. As future work, we would like to compare classification
using tree generators, with the classification methods presented in this paper.

8 Acknowledgments

Partially supported by the EU PASCAL2 Network of Excellence (FP7-ICT-
216886), and by projects SESAAME-BAR (TIN2008-06582-C03-01), MOISES-
BAR (TIN2005-08832-C03-03). Albert Bifet has been supported by a FI grant
through the Grups de Recerca Consolidats (SGR) program of Generalitat de
Catalunya.

References

[1] H. Arimura and T. Uno. An output-polynomial time algorithm for mining frequent
closed attribute trees. In ILP, pages 1–19, 2005.

[2] J. L. Balcázar, A. Bifet, and A. Lozano. Mining implications from lattices of
closed trees. In Extraction et gestion des connaissances (EGC’2008), pages 373–
384, 2008.

[3] J. L. Balcázar, A. Bifet, and A. Lozano. Mining frequent closed rooted trees.
Accepted for publication in Machine Learning Journal, 2009.

[4] A. Bifet and R. Gavaldà. Learning from time-changing data with adaptive win-
dowing. In SIAM International Conference on Data Mining, 2007.

[5] A. Bifet and R. Gavaldà. Mining adaptively frequent closed unlabeled rooted trees
in data streams. In 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2008.

[6] A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavaldà. New ensemble
methods for evolving data streams. In 15th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining. ACM, 2009.

[7] Y. Chi, Y. Xia, Y. Yang, and R. Muntz. Mining closed and maximal frequent sub-
trees from databases of labeled rooted trees. Fundamenta Informaticae, XXI:1001–
1038, 2001.

[8] M. Collins and N. Duffy. New ranking algorithms for parsing and tagging: kernels
over discrete structures, and the voted perceptron. In ACL ’02, pages 263–270,
2001.

[9] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics
over sliding windows. SIAM Journal on Computing, 14(1):27–45, 2002.

[10] G. C. Garriga, P. Kralj, and N. Lavrač. Closed sets for labeled data. J. Mach.
Learn. Res., 9:559–580, 2008.

[11] G. Holmes, R. Kirkby, and B. Pfahringer. MOA: Massive Online Analysis.
http://sourceforge.net/projects/moa-datastream. 2007.

[12] H. Kashima and T. Koyanagi. Kernels for semi-structured data. In ICML, pages
291–298, 2002.

[13] T. Kudo, E. Maeda, and Y. Matsumoto. An application of boosting to graph
classification. In NIPS, 2004.

[14] T. Kudo and Y. Matsumoto. A boosting algorithm for classification of semi-
structured text. In EMNLP, pages 301–308, 2004.

[15] J. Li, H. Li, L. Wong, J. Pei, and G. Dong. Minimum description length principle:
Generators are preferable to closed patterns. In AAAI, 2006.

[16] J. Punin, M. Krishnamoorthy, and M. Zaki. LOGML: Log markup language for
web usage mining. In WEBKDD Workshop (with SIGKDD), 2001.

[17] G. Song, D. Yang, B. Cui, B. Zheng, Y. Liu, and K. Xie. CLAIM: An efficient
method for relaxed frequent closed itemsets mining over stream data. In DASFAA,
pages 664–675, 2007.

[18] A. Termier, M.-C. Rousset, M. Sebag, K. Ohara, T. Washio, and H. Motoda.
DryadeParent, an efficient and robust closed attribute tree mining algorithm.
IEEE Trans. Knowl. Data Eng., 20(3):300–320, 2008.

[19] X. Yan and J. Han. CloseGraph: mining closed frequent graph patterns. In KDD
’03, pages 286–295, New York, NY, USA, 2003. ACM Press.

[20] M. J. Zaki. Efficiently mining frequent trees in a forest. In KDD ’02, 2002.
[21] M. J. Zaki and C. C. Aggarwal. XRules: an effective structural classifier for xml

data. In KDD ’03, pages 316–325, New York, NY, USA, 2003. ACM.

