
Adaptive on-line software aging prediction based on Machine Learning

Javier Alonso and Jordi Torres
Barcelona Supercomputing Center
Dept. of Computer Architecture

Technical University of Catalonia
{alonso,torres}@ac.upc.edu

Josep Ll. Berral and Ricard Gavaldà
Dept. of Software

Technical University of Catalonia
{jlberral,gavalda}@lsi.upc.edu

Abstract

The growing complexity of software systems is resulting
in an increasing number of software faults. According to
the literature, software faults are becoming one of the main
sources of unplanned system outages, and have an impor-
tant impact on company benefits and image. For this rea-
son, a lot of techniques (such as clustering, fail-over tech-
niques, or server redundancy) have been proposed to avoid
software failures, and yet they still happen. Many software
failures are those due to the software aging phenomena. In
this work, we present a detailed evaluation of our chosen
machine learning prediction algorithm (M5P) in front of
dynamic and non-deterministic software aging. We have
tested our prediction model on a three-tier web J2EE ap-
plication achieving acceptable prediction accuracy against
complex scenarios with small training data sets. Further-
more, we have found an interesting approach to help to de-
termine the root cause failure: The model generated by ma-
chine learning algorithms.

1. Introduction

As the complexity of software systems continues to
grow, so increases the difficulty of managing them. More-
over, our current and growing reliance on these software
systems to manage critical and ordinary tasks in our lives
requires these software systems not only to offer an accept-
able performance but continuous availability also. To meet
these social needs, more skilled developers and administra-
tors are needed to maintain these complex and heteroge-
neous software systems, resulting in a large fraction of the
total cost of ownership (TCO) of these systems.

Because system complexity is growing day by day, the
number of failures due (directly or indirectly) to this com-
plexity has also been growing, resulting in undesirable be-
haviors, poor levels of service, and even total outages. The
need to prevent or gracefully deal with outages of busi-

nesses and critical systems is clear, given the industry huge
loss due to the downtime per hour. A recent study1showed
the average downtime or service degradation cost per hour
for a typical enterprise is around US$125,000. Moreover,
outages have a negative impact on the company image that
could affect profits indirectly.

It is now well known that currently, computer system
outages are more often due to software, rather than hard-
ware, faults [1, 2]. Although, more sophisticated develop-
ing/testing and debugging tools are appearing to help devel-
opers avoid software faults [3, 4], the faults still appear and
have an important impact over the application availability.
In fact, fixing all faults during the testing and debugging
phase is a titanic task with an unaffordable cost, because
these tools often cannot access third-party modules code.
Even more, the transient and intermittent faults are too dif-
ficult to fix because it is highly complicated to reproduce
them. Design faults too often dormant and they activate
only under unknown or rare circumstances becoming in na-
ture transient or intermittent software errors.

Several studies [5, 6] have reported that one of the causes
of the unplanned software outages is the software aging
phenomena. This term refers to the accumulation of errors,
usually provoking resource contention, during long running
application executions, like web applications, which nor-
mally cause applications/systems hang or crash [7]. Grad-
ual performance degradation could also accompany soft-
ware aging phenomena. The software aging phenomenon
are often related to others, such us memory bloating/leaks,
unterminated threads, data corruption, unreleased file-locks
and overruns. Software aging has been observed in web-
servers [8], spacecraft systems [9], and even military sys-
tems [10], with severe consequences such as loss of lives.

For this reason, the applications have to deal with the
software aging problem in production stage, making soft-
ware rejuvenation techniques necessary. Software rejuve-
nation strategies can be divided into two basic categories:

1IDC #31513, July 2004

Time-based and Proactive/Predictive-based strategies. In
Time-based strategies, rejuvenation is applied regularly and
at predetermined time intervals. In fact, time-based strate-
gies are widely used in real environments, such web servers
[11].

In Predictive/Proactive rejuvenation, system metrics are
continuously monitored and the rejuvenation action is trig-
gered when a crash or system hang up due to software ag-
ing seem to approach. This approach is a better technique,
because if we can predict the crash and apply rejuvenation
actions only in these cases, we reduce the number of reju-
venation actions with respect to the time-based approach.
Software rejuvenation has an impact on the system and po-
tentially, on the revenue of the company as well. Tradition-
ally, software rejuvenation has been based on a restart of the
application/system or even a whole machine, but, there are
more sophisticated techniques, like micro-reboot [12], i.e.
rebooting only the suspicious application component; this
reduces the impact of the rejuvenation action.

Predicting the time until resource exhaustion due to soft-
ware aging is far from easy. Progressive resource consump-
tion over time could be non-linear, or the degradation trend
could change along the time. Software aging could be re-
lated to the workload, or even the type of the workload.
Software aging could also be masked inside periodic re-
source usage patterns (i.e. leaving a fraction of memory
used allocated only after a periodic load peak). Another
situation that complicates resource exhaustion prediction is
that the phenomenon can look very different if we change
the perspective or granularity used to monitor the resources;
we will provide specific examples of this later on. This
could be relevant, specially, when we are working with vir-
tualized resources, as we do in Section 3. Still another dif-
ficulty for software aging prediction is that it can be due to
two or more resources simultaneously involved in the ser-
vice failure [13].

In this paper, we focus on our software aging prediction
model based on M5P (a well-known ML algorithm) and its
evaluation in front of a varied and complex software ag-
ing scenarios. In our preliminary previous work [14], we
evaluated three algorithms of Machine Learning (ML) (Lin-
ear Regression, Decision Trees, and M5P) to check whether
they offered the right capabilities to model software aging
phenomena, and M5P offered the best performance. In this
paper we have thus decided to use M5P to predict the re-
source exhaustion time, and try it in a new set of experi-
ments, reproducing more complex software aging scenar-
ios. Furthermore, M5P was selected because it has low
training and prediction costs and we will eventually want
on-line processing, and because it produces models that are
easy to interpret by humans. More sophisticated ML tech-
niques (i.e. Support Vector Machines, Neural Networks,
Bayesian Nets, Bagging or Boosting) can surely obtain bet-

ter accuracy, but we believe that M5P offers a good trade-off
between accuracy, interpretability, and computational cost.

The rest of the paper is organized as follows: Section 2
describes our prediction modelling and strategy. Section 3
presents the experimental setup. In Section 4 we present the
results of our experimental study of the accuracy to predict
the time to failure. Section 5 presents the related work; and,
finally, Section 6 concludes the paper.

2 Our modelling assumptions and prediction
strategy

In a perfect and easy world, resource exhaustion due to
software aging or to some other factor would be a linear
phenomenon with respect to time. The time until failure
could be then predicted easily by:

Tfail '
Rmaxi −Ri,t

si
, (1)

Where Rmax is the maximum available amount of re-
source i, Ri,t is the amount of resource i used at instant
t, and si is the consumption speed per second. However,
this is a very simplistic approach. First, in this approach we
are assuming consumption rate is constant along the time.
Moreover, we assume we know the resource involved on the
software aging a priori.

But software aging could have several unknown reasons.
It could originate from an interaction of several resources,
or we might not be monitoring all the significant metrics
from the system, or consumption rate could change over
time, and could also depend on the, possibly changing,
workload. Or even, the perspective used in monitoring the
resource is not the appropriate one; this is mainly true when
we are working with virtualized resources. On the other
hand, the system actions themselves (such as garbage col-
lection) can mask or mitigate the software aging process,
adding more life time to the system.

2.1 Motivating Examples

To understand the complexity and problems when build-
ing a resource consumption model, we describe two exam-
ples that we found when we tried to model the Java Memory
exhaustion of a J2EE application server.

2.1.1 Example 1: Nonlinear Resource Behavior

Given a deterministic and progressive software aging that
consumes a resource at constant rate, our first approach to
predict the time until resource exhaustion would compute
the rate (constant in this case) and apply the formula above.
One simple method to automatically obtain this slope is Lin-
ear Regression. Linear regression has been used in several

works, like [15], to predict the resource consumption under
normal circumstances. It is a powerful tool in the area of
capacity planning. However, linearity is a strong assump-
tion. Even if the resource consumption is linear a priori, the
system may exhibit nonlinear behaviors.

For example, we performed an experiment in which we
injected memory leaks at regular rates under a constant
workload in a Java Application (a Tomcat web server, as
we described in next section). In Figure 1 we can observe
the memory actually used during the experiment with a pro-
gressive memory consumption and constant workload (dark
line). We let the application run until the server fails due to
memory exhaustion. In a few words, we observe that even if
our memory leak injection has constant rate, the complexity
of the underlying system introduces a nonlinear behavior.

Figure 1. Progressive memory consumption
of the Java Application.

In more detail: In Java applications, the Java Heap Mem-
ory is divided into three main zones: Young, Old and Per-
manent. When a Java Object is created, it is stored in the
Young zone. When the Young Zone is full, alive objects are
moved to the Old zone, that for objects that have been alive
for a long time. The default Heap management system de-
fines an initial size for this zone, a fraction of the maximum
memory available for the application. When the Old zone
is full, the Heap Management System resizes it, allocating
more memory to it if available. In Figure 1 we observe this
resizing (grey line) in three moments of the execution: at
2150 seconds, at 4350 seconds, and (less visible) at 5150
seconds. At the same time that the Old zone is resized, some
objects are moved to the Permanent Zone, or are freed if
they are not referenced by others. We can see that the moni-
toring perspective is crucial here. In the figure, the dark line
is the percentage of memory used from the system perspec-
tive. The Heap resizes the Old zone and releases some part
of the memory allocated by the application. The perspec-
tive from the system level perspective (dark line) is that the
Java application is using a constant amount of memory for
a while, but that is only part of the truth: the application has
released a part of memory (grey line) but the system does

not yet see that fact. We can observe that fact only if we
monitor the Heap internal behavior, hence obtaining a more
accurate system description. We come back to this interest-
ing fact in the next example.

In the example, the normal Heap behavior allows the ap-
plication to run for about 16 extra minutes, over what we
would predict from the initial consumption rate. Further-
more, this figure is strongly dependent on the aggressive-
ness of the memory leak and the workload; less aggressive
leaks or lighter loads increase this extra time, hence the pre-
diction error of a naive prediction strategy.

2.1.2 Example 2: Different Viewpoints on a Resource

As discussed in the previous example, resource behavior
can look quite different depending on our monitoring strat-
egy. This is most dramatic when we are working with vir-
tualized resources, such as (in some sense) the Java Heap
Memory. Memory usage by a Java application looks quite
different if we monitor at the operating system (OS) level or
the Java Virtual Machine (JVM) level.

We conducted a simple experiment to show this duality.
We run a web application (presented in Section 4 in detail)
under a constant workload. We have modified the applica-
tion to force three different phases in the application exe-
cution. Every phase lasts 20 minutes. The application has
a normal behavior for 20 minutes, after which it consumes
memory abnormally during 20 minutes, and after which the
application releases the memory acquired during the pre-
vious phase, returning to the initial state. We repeat this
periodic behavior/pattern every hour during 5 hours. How-
ever, this periodic and constant workload is not shown by
a simple monitoring over the memory used by the Java ap-
plication from the OS perspective. In Figure 2 we present
both perspectives of the same resource during the same ex-
periment. The waves (the grey line) represent the sum of
the memory used by the Young and Old zones. The Per-
manent zone is not depicted because it is constant during
the experiment. We can observe how the memory allocated
by the Java application looks constant from the OS perspec-
tive (dark line). In a Linux system, when an application
frees up some memory, the system does not recover this
memory automatically: it only recovers it when required by
other applications. Due this behavior, if we monitor the OS
memory consumed by an application it may look constant
along time, but if we observe the Java Heap Memory, the
application is releasing and consuming memory.

These examples indicate the difficulty of building an ac-
curate prediction system. We need detailed and sophisti-
cated monitoring tools to obtain detailed information on the
resources. Even having all the metrics, we need a lot of
human expertise to decide which are the relevant ones, and
to actually build the model taking into account the system’s

Figure 2. The Tomcat memory consumption
from system and heap perspectives

complex behavior. This is probably unaffordable in most
cases, and anyway useless in ever-changing environments
where hardware and software are updated frequently. For
this reason, ML and Data Mining seems as an alternative
(or at least, a complement) to explicit expert modeling. ML
can be used to automatically build models of complex sys-
tems from a set of (possibly tens or hundreds of) apparently
independent metrics.

2.2 Prediction Assumptions

Our proposal is thus to use ML to predict time until fail-
ure due to software aging. Due to the complexity of mod-
eling these growing complex environments and with low
knowledge a priori about them, we decide to use ML to
build automatically the model from a set of metrics easily
available in any system like CPU utilization, system mem-
ory, application memory, Java memory, threads, users, jobs,
etc. Thanks to the potential of ML to learn from previous
executions what are the most important variables to take
into account to build the model. In fact, software aging
could be related with other reasons, besides resource ex-
haustion. The technique used in this paper could predict the
crash due to software aging if we collect the metrics (from
resources or not) related with the software aging.

Note that our approach may be valid when an approach-
ing failure is somehow foreseeable from the system met-
rics, not for sudden crashes that happen with no warning.
These would require completely different techniques, such
as static analysis of the code to reveal dangerous logical
conditions, which we do not address here.

Among many ML algorithms and models available, we
have chosen to use the one called M5P [16], included in
the popular WEKA [17] ML and data mining package, at
this stage of our work. An M5P model consists of a bi-
nary decision tree whose inner nodes are labelled with tests
of the form “variable < value?”, and each leaf is labelled
with a linear regression model (possibly using all variables).
The rationale is that while a global behavior may be highly

nonlinear, it may be composed (or approximate by) a rea-
sonable number of linear patches, i.e., it may be piecewise
linear. This may well be the case for many system behav-
iors of the kind we want to analyze, where the system may
be in one of a relatively small number of phases, each of
which is essentially linear. In [14] we performed a prelim-
inary comparison of M5P with linear regression alone, and
decision trees alone, in a simple failure prediction scenario
and concluded that it indeed performed much better.

Our model will be trained using failure executions and
tested using different executions from the training set to
validate the accuracy of the model build by ML. Our idea
is that our model predicts time until failure if the state of
the system (including workload) does not vary in the fu-
ture. However, if the situation changes (the consumption
speed changes) the model has to be able to recalculate the
time until failure under the new circumstances. The M5P
training process does not really take into account the ab-
solute value of the times, but the number of checkpoints
(instances) we collect. If the resource degrades 100 times
slower than in other environment, but we still measure the
same number of checkpoints, the measurements of the de-
grading resource will be the same, only spaced apart 100
more times, M5P will build the same model, and the pre-
dictions will be equally good.

For this reason, we added a set of derived metrics as a
variables to achieve a more accurate prediction. The most
important variable we add is the consumption speed from
every resource under monitoring (threads, system memory,
web application memory and every Java Heap zone: Young
and Old). To calculate the consumption speed, we decided
to use an average speed to avoid too much fluctuations in
the measure. We decided to use a sliding window average
(also called moving average). The sliding window average
collects the last X speed observations from the resource
and calculates their average, so as to smooth out noise and
fluctuation. The choice of X is a certain trade-off: a long
window is more noise tolerant, but also makes the method
slower to reflect changes in the input. It must be set by con-
sidering the expected noise and the frequency of change in
our scenario.

Using this sliding window and M5P we have conducted
a set of experiments to evaluate the effectiveness of our ap-
proach for complex software aging scenarios. We have used
Mean Absolute Error (MAE) to measure our prediction ac-
curacy: this is the average of the absolute difference be-
tween true values and predicted values. So, we are using
absolute errors. An error of 200 seconds over a time-to-
failure of 1000 seconds is not equivalent to an error of 2
minutes over 10 minutes. However, predicting exactly the
time until failure is probably too hard, even as a baseline.
We have used another measure called the Soft Mean Abso-
lute Error (S-MAE): We decided that if the model predicts

Table 1. Machine Description
Clients and DBServer App. Servers

Hardware 2-way Intel XEON 2.4
GHz with 2 GB RAM

4-way Intel XEON 1.4
GHz with 2 GB RAM

Operating System Linux 2.6.8-3-686 Linux 2.6.15
JVM - jdk1.5 with 1GB heap
Software TPC-W

Clients/MySQL
5.0.67

Tomcat 5.5.26

a time until crash within a margin of 10% of the real time
until crash (named security margin), we count it as zero er-
ror. For example, if the real time until crash is 10 minutes,
we assume 0 error if the model predicts between 11 minutes
and 9 minutes. If the system predicts say 13 (or 7) minutes,
we would count a 2-minute error (the absolute error). Of
course, thresholds other than 10% are possible. It is clear
that S-MAE is always smaller than MAE.

Finally, we have trained our model to be more accurate
when the crash is coming. For this reason, we have calcu-
lated the MAE for the last 10 minutes of every experiment
(POST-MAE) and for the rest of experiment (PRE-MAE).
The idea is that our approach has to have lower MAE in the
last 10 minutes than the rest of experiment, showing that the
prediction becomes more accurate when it is more needed.

3 Experimental Setup

In this section we describe the experimental setup used in
all experiments presented below, whose main goal is to eval-
uate the effectiveness of the prediction approach. The ex-
perimental environment simulates a real web environment,
composed by the web application server, the database server
and the clients machine. The analysis subsystem and plan-
ning subsystem are in an external centralized machine; in
a real environment, however, the best option would be to
have the analysis subsystem distributed among nodes and
only the planning subsystem centralized to make decisions
using the information from all nodes. Finally, to simulate
the client workload we have a machine with client simula-
tor installed.

In our experiments, we have used a multi-tier e-
commerce site that simulates an on-line book store, follow-
ing the standard configuration of TPC-W benchmark [18].
We have used the Java version developed using servlets and
using as a MySQL [19] as database server. As application
server, we have used Apache Tomcat [20]. TPC-W allows
us to run different experiments using different parameters
and under a controlled environment. These capabilities al-
low us to conduct the evaluation of our approach to predict
the time until failure. Details of machine characteristics are
given in Table 1.

TPC-W clients, called Emulated Browsers (EBs), access

the web site (simulating an on-line book store) in sessions.
A session is a sequence of logically connected (from the EB
point of view) requests. Between two consecutive requests
from the same EB, TPC-W computes a thinking time, repre-
senting the time between the user receiving a web page s/he
requested and deciding the next request. In all of our exper-
iments we have used the default configuration of TPC-W.
Moreover, following the TPC-W specification, the number
of concurrent EBs is kept constant during the experiment.

Table 2. Variables used in every experiment
to build the model

Exp
4.1

Exp
4.2

Exp
4.3

Exp
4.4

Throughput(TH) X X X-X a X
Workload X X X-X X
Response Time X X X-X X
System Load X X X-X X
Disk Used X X X-X X
Swap Free X X X-X X
Num. Processes X X X-X X
Sys. Memory Used X X X- X
Tomcat Memory Used X X X- X
Num. Threads X X X-X X
Num. Http Connections X X X-X X
Num. Mysql Connections X X X-X X
Max. MB Young/Old (2)b X X-X X
MB Young/Old Used (2) X X-X X
% Used Young/Old Used (2) X X-X X
SWAc Young/Old variation(2) X X-X X
SWA variation (3)d X X X-h X
SWA variation /TH (2)e X X X- X
SWA variation /TH (2)f X X-X X
1/SWA (3)d X X X-h X
1/SWA (3)f X X-X X
Young/Old Used/SWA (2) X X-X X
Resource Used(R)/SWA (3)d X X X-h X
(1/SWA variation)/TH (2)e X X X- X
(1/SWA variation)/TH (2)f X X-X X
(R/SWA variation)/TH (2)e X X X- X
(R/SWA variation)/TH (2)f X X-X X
SWA Resource Used (4)g X X X-X X
Time to Failure X X X-X X
a Exp. 4.3 Complete-Exp. 4.3 Feature Selection
b (X) number of variables represented
c Sliding Window Average (SWA)
d For Num. Threads, Tomcat Mem. Used and System Mem. Used
e For Tomcat Memory Used and System Memory Used
f For Young Zone Used and Old Zone Used
g For Response Time, Throughput, System Memory Used and

Tomcat Memory Used
h Removed only Tomcat Memory Used and System Memory Used

variables related

To simulate the aging-related errors consuming re-
sources until their exhaustion, we have modified the TPC-
W implementation. In our experiments we have played with
two different resources: Threads and Memory, individually
or merged. To simulate a random memory consumption

we have modified a servlet (TPCW search request servlet)
which computes a random number between 0 and N . This
number determines how many requests use the servlet be-
fore the next memory consumption is injected. Therefore,
the variation of memory consumption depends of the num-
ber of clients and the frequency of servlet visits. Accord-
ing to the TPC-W specification, this frequency depends on
the workload chosen. This makes that with high workload
our servlet injects quickly memory leaks, however with low
workload, the consumption is lower too. But, again, the
average consumption rate would depend on the average of
this random variable, with fluctuations that become less rel-
evant when averaged over time. Therefore, we could thus
simulate this effect by varying N , and we have decided to
stick to only one relevant parameter, N . On the other hand,
to simulate a thread consumption in the servlet we use two
parameters: T and M . At every injection, the system in-
jects a random number of threads between 0 and M , and
determines how much time occurs until the next injection,
a random number (in seconds) between 0 and T . Thread
injection is independent of the workload (since injection
occurs independently of the running applications), while
memory injection is workload dependent (because it occurs
when a certain application component is executed). These
two errors help us to validate our hypothesis under different
scenarios. TPC-W has three types of workload (Browsing,
Shopping and Ordering). In our case, we have conducted
all of our experiments using shopping distribution.

4. Prediction Experiment Results

Table 2 presents the variables used to build every model
used in every experiment conducted. In every experiment,
we indicate the size (number of nodes and leafs) of the
model and the number of instances used to train the model.
Moreover, [21] links to the training and test datasets used in
our experiments.

4.1 Deterministic Software Aging

Our first approach was to evaluate M5P to predict the
time until failure due to deterministic software aging. We
decided to inject a 1MB of memory leak with N = 30 (see
experimental setup). We trained our model, generated us-
ing M5P, with previous 4 executions with 25 EBs, 50EBs,
100EBs and 200EBs, becoming 2776 instances. The M5P
model generated was composed by a tree with 33 Leafs and
30 inner nodes, using 10 instances to build every leaf. In this
experiment, we did not add the heap information. The four
training experiments were executed until the crash of Tom-
cat, to let the M5P to learn the behavior of the system under
a deterministic software aging. Finally, to evaluate the accu-
racy of the model, we evaluated the model built with these

four experiments using two new experiments with different
workload (75EBs and 150EBs).

Table 3. MAEs obtained in Exp. 4.1
Lin. Reg M5P

75EBs MAE 19 min 35 secs 15 min 14 secs
75EBs S-MAE 14 min 17 secs 9 min 34 secs
150EBs MAE 20 min 24 sec 5 min 46 secs
150EBs S-MAE 17 min 24 secs 2 min 52 secs
75EBs PRE-MAE 21 min 13 secs 16 min 22 secs
75EBs POST-MAE 5 min 11 secs 2 min 20 secs
150EBs PRE-MAE 19 min 40 secs 6 min 18 secs
150EBs POST-MAE 24 min 14 secs 2 min 57 secs

In Table 3 we present the results obtained. We can ob-
serve how M5P obtains better results than simple linear re-
gression due because it handles better the trend changes due
to the Heap Memory Management actions, even when we
do not add the specific information, as in the examples in
Section 3.

4.2 Dynamic and Variable Software Aging

Our next experiment was to evaluate our model to pre-
dict progressive but dynamic software aging under constant
workload. We trained the model with 4 executions (1710
instances): one hour execution where we did not inject any
memory leak and three executions where we injected 1MB
memory leak with constant ratio (N = 15,N = 30 and
N = 75 in every respective execution, see the experimen-
tal setup). Using these only 4 executions we trained the
model. The model generated was composed by 36 leafs and
35 inner nodes, using 10 instances to build every leaf. The
model was trained to determinate as an infinite time until
crash as 3 hours (10800 secs) using the training data set
without injection. This model was tested over an experi-
ment where we changed the ratio every 20 minutes. During
the first 20 minutes we did not inject any memory leak. Af-
ter that, during the next 20 minutes we injected a memory
leak following a ratio of N = 30. After that, we increase
the injection to N = 15 and finally, 20 minutes later, we
reduced the software aging following a N = 75 and we
left constant this ratio until crash. In order to compute the
MAE and S-MAE, we fix the current injection rate and then
simulate the system until a crash occurs. So, we wanted to
evaluate the capability of the model to overcome software
aging trend changes and react before it, so if the consump-
tion speed goes down, the time until exhaustion increases
and vice versa.

Figure 3 presents the predicted time (dark line) vs. Tom-
cat memory evolution (grey line) during the execution.
First, we have trained our model to declare that the time un-
til crash is 3 hours (standing for “very long” or “infinite”)
when there is no aging; indeed, during the first 20 minutes

Figure 3. Time predicted vs. Tomcat Memory Evolution

the model predicts a 3-hour time-to-failure, meaning that
no aging is occurring. After 20 minutes, we start injecting;
we can see that the Tomcat memory starts decreasing gradu-
ally but predicted time until crash decreases drastically. The
reason to this drastic adaptation is due to the construction
of M5P. The starting injection phase provokes a change of
branch of the tree from non-aging (> 3 hours to crash) to
aging branch, based on aging trend. After another 20 min-
utes, the injection rate increases. The sliding window intro-
duces some delay in detecting that (in this case, 12 marks,
so 12 marks * 15 seconds per mark, 180 seconds). But a
more important fact happens in the beginning of the third
phase of the experiment: A flat zone provoked by the Heap
Management process, as discussed before.

Because of this, the model starts to predict more time
that the real time, because the model is seeing a lower-than-
real consumption rate, which translates to a larger-than-real
prediction. However, when the flat region ends (as visible
in the the Tomcat memory plot), the model reacts quickly
to adapt the time until crash close to the real value (around
2850 seconds after the start of the experiment). In the fourth
phase, we reduce the rate and the model quickly adapts
the time predicted to the new circumstances, increasing the
time until crash. Prediction in this region is not quite accu-
rate, though: as the injection rate is so slow, the model has
trouble detecting it, and it keeps the prediction almost con-
stant. Furthermore, we can observe a second resizing (from
4850 seconds to 5900 seconds). During this phase, again
the model is not accurate (as it does see a constant Tom-
cat memory usage), but when the Tomcat memory is out of
the flat zone, again the model reacts reducing the time un-
til crash. This behavior shows the adaptability to changes
of M5P. The MAE and S-MAE obtained by M5P in this
scenario was 16 min. 26 secs. and 13 min. 3 secs. respec-
tively, which we believe is a quite reasonable accuracy; on
the other hand, Linear Regression has a really unacceptable
MAE. On the other hand the PRE-MAE and POST-MAE
were, respectively, 17 min. 15 secs. and 8 min. 14 secs.

The experiment was running for 1 hour and 47 minutes.

Figure 4. Time predicted vs. Java Heap Tom-
cat Memory Evolution

4.3 Software Aging Hidden within Peri-
odic Pattern Resource Behavior

After evaluating the effectiveness of M5P to predict dy-
namic software aging, our next step was to evaluate the
model in front of a deterministic software aging masked by
a periodic pattern of memory acquisition followed by mem-
ory release. Aging here means that not all memory allocated
during the memory acquisition phase is later released, so
memory leaks accumulate over time. Our experiment was
the same we conducted in the second motivating example.
But now we modify the release phase to guarantee that after
these 20 minutes some memory was retained, so a crash was
bound to happen after several periodic phases. The work-
load was constant with 100EBs. As we can observe, the
memory leak in fact is quite constant but we introduce a pe-
riodic behavior pattern introducing some noise (the released
phases and non-injection phases). The injection phase fol-
lows N = 30 and release phase follows N = 75, allocat-
ing and releasing 1MB each time. We trained the model
using the same training set as in Section 5.2. So, the train-

Figure 5. Time predicted and resource evolution during the two-resource experiment

Table 4. MAEs obtained in Exp 4.3
Lin Reg M5P

MAE 15 min 57 secs 3 min 34 secs
S-MAE 4 min 53 secs 21 secs
PRE-MAE 16 min 10 secs 3 min 31 secs
POST-MAE 8 min 14 secs 5 min 29 secs

ing set does not have any execution with release phase or
periodic patterns. Our idea is that M5P can manage the
periodic pattern and extract from that, the real trend (the
random injection between 0 to N). However, we obtained
poor results in our first approach, and after some inspec-
tion we noted that the model was paying too much attention
to irrelevant attributed. We decided to apply an expert fea-
ture/variable selection following the conclusion extracted in
[22], where the authors concluded that selection of a good
subset of variables increases the prediction accuracy. We
decided to re-train the model only with the variables related
with the Java Heap evolution. The new model was formed
by 17 inner nodes and 18 leafs. In Figure 4 we can ob-
serve clearly how the time until failure is linear and how
the Java Heap memory is being consumed and released in
every phase until exhaust the memory resource. Table 4
shows the MAE and S-MAE, PRE-MAE and POST-MAE
obtained by M5P and the Linear Regression. We note that
M5P can manage the periodic pattern, unlike Linear Re-
gression which obtains much worse results even after vari-
able selection. However, we have to notice that, in this case,
M5P has problems to be accurate in the last 10 minutes of
the experiment.

4.4 Dynamic Software Aging due to Two
Resources

After evaluating our approach in front of aging due to a
single resource, our next step was to consider aging caused
by two resources simultaneously. The two resources in-

volved in the experiment were Memory and Threads, and
every phase was around 30 minutes. The experiment was
conducted as follows: we have a first phase with no injec-
tion (both resources), after that we start to inject both re-
sources: the memory rate injection was N = 30, while the
thread rate injection was M = 30 and T = 90. After that,
we increased the memory rate injection to N = 15 and the
thread rate injection was reduced to M = 15 and T = 120.
After that, in the last phase, we change again both rates, re-
ducing the memory rate (N = 75) and increasing the thread
rate injection (M = 45 and T = 60).

One important point in this experiment is that when a
Java Thread, a system thread is assigned to the Java thread
until it dies. Other important point is that every Java Thread
has an impact over the Tomcat Memory, because the Java
thread consumes Java memory by itself. So, although the
two causes of aging are unrelated on the surface, they are
related after all; we believe this may be a common situation,
and that it may easily go unnoticed even to expert eyes.

In Figure 5 we can observe the thread consumption and
memory consumption evolution during the experiment. We
can observe clearly the four phases of the experiment. The
MAE and S-MAE, PRE-MEA and POST-MAE obtained
by M5P in this experiment was: 16min. 52secs., 13min.
22secs, 18min. 16secs. and 2min. 5 secs. respectively: this
is about 10% error (MAE and S-MAE), given that the exper-
iment took 1 hour and 55 minutes until crash. We can ob-
serve how the M5P is able to predict with great accuracy the
time to crash, when it is near. Most importantly, the model
never was trained using executions where both resources
were injecting errors simultaneously. We trained the model
with several executions at different (constant) workload and
different (constant) injection rates (N = 15, 30, 75, M =
15, 30, 45 and T = 60, 90, 120, so 6 executions, 2752 in-
stances), but in all of them only one resource involved in
the execution. The model generated was composed by 35
inner nodes and 36 leafs. These results show the promis-
ing adaptability of this approach to new situations not seen

during previous training.
Finally, we want to remark another interesting point. Af-

ter conducted all of the experiments presented before, we
decided to inspect the models generated by M5P in every
experiment. We observed the model could give clues to
determine the root cause of failure. For example, in the
last experiment, we observed the tree built by M5P, where
the root node contains the system memory attribute if the
used system memory is over 1306 MB, the second variable
inspected is the number of threads in the system. But if
system memory is below 1306 MB, the most relevant vari-
able is Tomcat Memory and the only third is the number of
threads. Only with the first two levels of the tree we can
observe how memory usage and the threads are important
variables, which gives administrators or developers a clue
on the root cause of the failure due to software aging. So,
interpreting the models generated via ML models has an ad-
ditional interest besides prediction.

5. Related Work

The idea of modeling resource consumption and fore-
cast system performance from here is far from new. A lot
of effort along this line has been concerned with capac-
ity planning. In [23], an off-line framework is presented
to develop performance analysis and post-mortem analy-
sis of the causes of Service Level Objective (SLO) viola-
tions. It proposes the use of TANs (Tree Augmented Naive
Bayesian Networks), a simplified version of Bayesian Net-
works (BN), to determine which resources are most corre-
lated to performance behavior. In [24], Linear Regression
is used to build an analytic model for capacity planning of
multi-tier applications. They show how Linear Regression
offers successful results for capacity planning and resource
provisioning, even under variable workloads.

Other works such as [25, 26] present different techniques
to predict resource exhaustion due to a workload in a sys-
tem that suffers software aging. In these two works they
present two different approaches: in [25], authors use a
semi-Markov reward model using the workload and re-
source usage data collected from the system to predict re-
source exhaustion in time. In [26], authors use time-series
ARMA models from the system data to estimate the re-
source exhaustion due to workload received by the system.
However, these works assume a general trend of the soft-
ware aging, not a software aging that could change with
time. Other important difference with our work is that they
apply the model over the resource involved with the soft-
ware aging, but our approach is more generic because we
allow ML to learn, by itself, what is the resource (or re-
sources) involved in the software aging.

Other interesting approach was presented in [27], the au-
thors present an evaluation of three well-known ML algo-

rithms: Naive Bayes, decision trees and support vector ma-
chines to evaluate their effectiveness to model and predict
deterministic software aging. However, the authors didn’t
test their approach against a dynamic and more than one
resource involved in order to evaluate the effectiveness of
their approach.

Some interesting works have addressed the important
task of predicting failures and critical events specifically
in computer systems. In [28], the authors present a frame-
work to predict critical events in large-scale clusters. They
compare different time-series analysis methods and rule-
based classification algorithms to evaluate their effective-
ness when predicting different types of critical events and
system metrics. Their conclusion is that different predic-
tive methods are needed according to the element that we
want to predict. But, as we showed M5P could obtain good
results, even with more than one resource involved. [15]
presents an on-line framework that determines whether a
system is suffering an anomaly, a workload change, or a
software change. The idea is to divide the sequence of
recorded data into several segments using the Linear Re-
gression error. If for some period it is impossible to obtain
any Linear Regressions with acceptable error at all, the con-
clusion is that the system is suffering some type of anomaly
during that period. Their approach is complementary with
ours, because the underlying assumption is that, except on
transient anomalies and between software changes, the sys-
tem admits a static model, one that depends on the workload
only and does not degrade or drift over time. On the other
hand, we concentrate on systems that can degrade, i.e., for
which a model valid now will not be valid soon, even under
the same workload.

6. Conclusions

We have proposed a ML approach to build automatically
models from system metrics available in any system. We
decided to use ML due to the complexity of the resources
behavior and the complexity of the environments. We have
based our approach in feeding our model with a set of de-
rived variables where the most important variable is the con-
sumption speed of every resource, which is smoothed out
using averaging over a sliding window of recent instanta-
neous measurements. We have evaluated our approach to
predict the effect of software aging errors which gradually
consume resources until its exhaustion, in a way that can-
not be attributed to excess load. We have conducted a set
of experiments to evaluate the M5P in different and com-
plex software aging scenarios. Our experiments show how
M5P obtains acceptable accuracy in a variety of dynamic
scenarios. Moreover, M5P has showed its ability of adapt-
ing scenarios never seen during training. Finally, we have
suggested a new potential approach to help to determine the

root cause software aging, interpreting the models gener-
ated by M5P. On the other hand, in [29], we present an
extended version of this paper, presenting a framework for
predicting in real time the time-to-crash of web applications
which suffer from software aging, using ML techniques.
Our framework allows recovery of the potentially crashing
server using a clean automatic recovery and avoiding losses
of new and on-going user requests.

Several issues and challenges are still open. We want
to work on to know what is the best moment to apply the
recovery action, which has the responsibility to understand
the prediction information and take the most effectiveness
action to maximize the server utilization. In the future, we
also we want to investigate further Artificial Intelligence
techniques to combine human expertise with information
from the predictors. Anther idea we want to evaluate is to
build a prediction board with a set of prediction models to
reach a consensus to increase the prediction accuracy.

Acknowledgment

This research work has been supported by the Span-
ish Ministry of Education and Science (projects TIN2007-
60625 and TIN2008-06582-C03-01), EU PASCAL2 Net-
work of Excellence, and by the Generalitat de Catalunya
(2009-SGR-980 and 2009-SGR-1428).

References

[1] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why do
internet services fail, and what can be done about it?.In 4th
USENIX Symposium on Internet Technologies and Systems
(USITS’03), 2003.

[2] S. Peret and P. Narasimham. Causes of Failure in Web appli-
cations. TR CMU-PDL-05-109, Carnegie Mellon Univ, 2005.

[3] MemProfiler http://memprofiler.com/
[4] Parasoft Insure++ http://www.parasoft.com
[5] K. S. Trivedi, k. Vaidyanathan and K. Goseva-Popstojanova.

Modeling and Analysis of Software aging and Rejuvenation.
IEEE Annual Simulation Symposium, April 2000.

[6] T. Dohi, K. Goseva-Popstojanova and K. S. Trivedi. Analysis
of Software Cost Models with Rejuvenation. IEEE Intl. Sympo-
sium on High Assurance Systems Engineering (HASE 2000).

[7] M. Grottke, R. Matias Jr. and K.S. Trivedi The Fundamentals
of Software aging In Proc. 1st Int. Workshop on Software Ag-
ing and Rejuvenation. 19th Int. Symp. on Software Reliability
Engineering, 2008.

[8] Apache http://httpd.apache.org/docs/
[9] A.Tai, S.Chau, L.Alkalaj and H.Hecht. On-board Preventive

Maintenance: Analysis of Effectiveness an Optimal Duty Pe-
riod. Proc. 3rd Workshop on Object-Oriented Real-Time De-
pendable Systems, 1997.

[10] E. Marshall Fatal Error: How Patriot Overlooked Scud.
Science, p. 1347, Mar.1992

[11] K.Vaidyanathan and K.Trivedi A Comprehensive Model for
Software Rejuvenation. IEEE Trans. On Dependable and Se-
cure Computing, Vol, 2, No 2, April- 2005

[12] G.Candea, E.Kiciman, S.Zhang and A.Fox JAGR: An Au-
tonomous Self-Recovering Application Server. Proc. 5th Int
Workshop on Active Middleware Services, Seattle, June 2003

[13] K.Cassidy, K.Gross and A.Malekpour. Advanced Pattern
Recognition for Detection of Complex Software Aging Phenom-
ena in Online Transaction Processing Servers. Proc. of the Int.
Conf. on Dependable Systems and Networks, DSN-2002.

[14] J. Alonso, R. Gavaldà, and J. Torres Predicting web server
crashes: A case study in comparing prediction algorithms.
Procs. Fifth Intl. Conf. on Autonomic and Autonomous Sys-
tems (ICAS 2009), April 20-25, Valencia, Spain, 2009.

[15] L. Cherkasova, K. Ozonat, N. Mi, J. Symons, E. Smirni
Anomaly? Application Change? or Workload Change?
Towards Automated Detection of Application Performance
Anomaly and Change. Procs. 38th Annual IEEE/IFIP Conf. on
Dependable Systems and Networks, DSN’2008, June 24-27.

[16] Y. Wang and I. H. Witten Inducing Model Trees for Contin-
uous Classes. In Proc. of the 9th European Conf. on Machine
Learning Poster Papers, 1997.

[17] Weka 3.5.8 http://www.cs.waikato.ac.nz/ml/weka/.
[18] TPC-W Java Version http://www.ece.wisc.edu/˜pharm/.
[19] MySQL Data Base server http://www.mysql.com/.
[20] Apache Tomcat Server http://tomcat.apache.org/
[21] Training and Test Datasets in WEKA format

http://alonso.site.upc.edu/research/DSN-2010results.html
[22] G.A. Hoffmann, K.S. Trivedi, and M. Malek A best practice

guide to resource forecasting for the Apache Webserver. IEEE
Transactions on Reliability 56, 4 (Dec 2007), 615-628.

[23] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S.
Chase Correlating instrumentation data to system states: A
building block for automated diagnosis and control. In Proc.
6th USENIX OSDI, San Francisco, CA, Dec. 2004.

[24] Q. Zhang, L. Cherkasova, N. Mi, and E. Smirni A regression-
based analytic model for capacity planning of multi-tier appli-
cations. Cluster Computing (2008), vol 11: 197-211.

[25] K. Vaidyanathan and K.S. Trivedi A Measurement-Based
Model for Estimation of Resource Exhaustion in Operational
Software Systems. In Proc. of the 10th Intl. Symp. on Software
Reliability Engineering, 1999.

[26] L. Li, K. Vaidyanathan, and K. S. Trivedi An Approach for
Estimation of Software Aging in a Web Server. In Proc of Intl.
Symp. Empirical Software Engineering, 2002.

[27] A. Andrzejak and L.M. Silva Using Machine Learning for
Non-Intrusive Modeling and Prediction of Software Aging. In
Procs of IEEE Network Operations and Management Sympo-
sium, 2008. NOMS 2008.

[28] R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E. Mor-
eira, S. Ma, R. Vilalta, and A. Sivasubramaniam Critical Event
Prediction for Proactive Management in Large-scale Computer
Clusters. In KDD, pages 426435, August 2003

[29] J. Alonso, J-Ll. Berral, R. Gavaldà and J. Torres Adaptive on-
line software aging prediction based on Machine Learning. TR
UPC-DAC-RR-CAP-2010-4, http://alonso.site.upc.edu/, 2010.

