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Abstract
In order to systematize existing results, we propose to analyze

the learnability of boolean functions computed by an algebraically de-
fined model, programs over monoids. The expressiveness of the model,
hence its learning complexity, depends on the algebraic structure of
the chosen monoid. We identify three classes of monoids that can be
identified, respectively, from Membership queries alone, Equivalence
queries alone, and both types of queries. The algorithms for the first
class are new to our knowledge, while for the other two are combina-
tions or particular cases of known algorithms. Learnability of these
three classes captures many previous learning results. Moreover, by
using nontrivial taxonomies of monoids, we can argue that using the
same techniques to learn larger classes of boolean functions seems to
require proving new circuit lower bounds or proving learnability of
DNF formulas.

This work was presented at ALT’2009. This version includes some
proofs omitted in the ALT’2009 proceedings.

1 Introduction

In his foundational paper [Val84], Valiant introduced the (nowadays called)
PAC-learning model, and showed that conjunctions of literals, monotone
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DNF formulas, and k-DNF formulas were learnable in the PAC model. Shortly
after, Angluin proposed the (nowadays called) Exact learning from queries
model, proved that Deterministic Finite Automata are learnable in this model
[Ang87], and showed how to recast Valiant’s three learning results in the ex-
act model [Ang88].

Valiant’s and Angluin’s initial successes were followed by a flurry of PAC-
or Exact learning results, many of them concerning (as in Valiant’s paper) the
learnability of Boolean functions, others investigating learnability in larger
domains. For the case of Boolean functions, however, progress both in the
pure (distribution-free, polynomial-time) PAC model or in the exact learning
model has slowed down considerably in the last decade.

Certainly, one reason for this slowdown is the admission that these two
models do not capture realistically many Machine Learning scenarios. So a
lot of the effort has shifted to investigating variations of the original mod-
els that accommodate these features (noise tolerance, agnostic learning, at-
tribute efficiency, distribution specific learning, subexponential time, . . . ),
and important advances have been made here.

But another undeniable reason of the slowdown is the fact that it is
difficult to find new learnable classes, either by extending current techniques
to larger classes or by finding totally different techniques. Many existing
techniques seem to be blocked by the frustrating problem of learning DNF,
or by our lack of knowledge of basic questions on boolean circuit complexity,
such as the power of modular or threshold circuits.

In this paper, we use algebraic tools for organizing many existing results
on Boolean function learning, and pointing out possible limitations of exist-
ing techniques. We adopt the program over a monoid as computing model
of Boolean functions [Bar89, BST90]. We use existing, and very subtle,
taxonomies of finite monoids to classify many existing results on Boolean
function learning, both in the Exact and PAC learning models, into three
distinct algorithmic paradigms.

The rationale beyond the approach is that the algebraic complexity of a
monoid is related to the computational complexity of the Boolean functions
it can compute, hence to their learning complexity. Furthermore, the existing
taxonomies of monoids may help in detecting corners of learnability that have
escaped attention so far because of lack of context, and also in indicating
barriers for a particular learning technique. We provide some examples of
both types of indications. Similar insights have led in the past to, e.g., the
complete classification of the communication complexity of boolean functions
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and regular languages [TT05, CKK+07].
More precisely, we present three classes of monoids that are learnable in

three different Exact learning settings:
Strategy 1: Groups for which lower bounds are known in the program

model, all of which are solvable. Boolean functions computed over these
groups can be identified from polynomially many Membership queries and,
in some cases, in polynomial or quasipolynomial time. Membership learning
in polynomial time is impossible for any monoid which is not a solvable group.

Strategy 2: Monoids built as wreath products of DA monoids and p-
groups. These monoids compute boolean functions computed by decision lists
whose nodes contain MODp gates fed by NC0 functions of the inputs. These
are learnable from Equivalence queries alone, hence also PAC-learnable, using
variants of the algorithms for learning decision lists and intersection-closed
classes. The result can be extended to MODm gates (for nonprime m) with
restrictions on their accepting sets. All monoids in this class are nonuniver-
sal (cannot compute all boolean functions), in fact the largest class known
to contain only nonuniversal monoids. We argue that proving learnability
of the most reasonable extensions of this class (either in the PAC or the
Equivalence-query model) requires either new circuit lower bounds or learn-
ing DNF.

Strategy 3: Monoids in the variety named LGp©m Com. Programs over
these monoids are simulated by polynomially larger Multiplicity Automata
(in the sequel, MA) over the field Fp, and thus are learnable from Membership
and Equivalence queries. Not all MA can be translated to programs over such
monoids; but all classes of Boolean functions that, to our knowledge, were
shown to be learnable via the MA algorithm (except the full class of MA
itself) are in fact captured by this class of monoids. We conjecture that this
is the largest class of monoids that can be polynomially simulated by MA,
hence it defines the limit of what can be learned via the MA algorithm in
our algebraic setting.

These three classes subsume a good number of the classes of Boolean
functions that have been proved learnable in the literature, and we will detail
them when presenting each of the strategies. Additionally, with the algebraic
interpretation we can examine more systematically the possible extensions
these results, at least within our framework. By examining natural extensions
of our three classes of monoids, we can argue that any substantial extension
of two of our three monoid classes provably requires solving two notoriously
hard problems: either proving learnability of DNF formulas or proving new
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lower bounds for classes of solvable groups. This may be an indication that
substantial advance on the learnability of circuit-based classes similar to the
ones we capture in our framework may require new techniques.

Admittedly, there is no reason why every class of boolean functions in-
teresting from the learning point of view should be equivalent to programs
computed over a class of monoids, and certainly our classification leaves
out many important classes. Among them are classes explicitly defined in
terms of threshold gates, or by read-k restrictions on the variables, or by
monotonicity conditions. This is somehow unavoidable in our setting, since
threshold gates have no natural analogue on finite monoids, and because mul-
tiple reads and variable negation are free in the program model. Similarly,
the full classes of MA and DFA cannot be captured in our framework, since
for example the notion of automata size is critically sensitive to the order in
which the inputs are read, while in the program model variables can always
be renamed with no increase in size.

Our taxonomy is somehow complementary to that involving threshold
functions, as in [HS07, She08]. Some classes of Boolean functions are cap-
tured by both that approach and ours, while each one contains classes not
captured by the other.

2 Background

2.1 Boolean functions

We build circuits typically using AND, OR, and MOD gates. We sometimes
use and, or to denote AND and OR gates of bounded fan-in, where the bound
will be clear from the context. We use the generalized model of MODm gates
that come equipped with an accepting set A ⊆ [m]1 indicated as superindex:
A MODA

m gate outputs is 1 iff the sum of its inputs mod m is in A. We simply
write MODm gates to mean MODA

m gates with arbitrary A’s. For each k,
NC0

k is the set of boolean functions depending each on at most k variables.
We often compose classes of boolean functions. For two classes of boolean

functions C and D, C ◦D denotes functions in C with inputs replaced with
functions in D.

The class of functions DL is that computed by decision lists where each
node contains one variable. Therefore, e.g., DL◦NC0

k are decision lists whose

1[m] denotes the set {0 · · · − 1} throughout the paper.
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nodes contain boolean functions depending on at most k variables.
We will use the computation model called Multiplicity Automata, MA for

short. The following is one of several equivalent definitions; see e.g. [BV96,
BBB+00] for more details. A multiplicity automaton over an alphabet Σ and
a field F is a nondeterministic finite automaton over Σ where we associate
an element of F to each transition. The value of the automaton on an input
x ∈ Σ? is the sum over all accepting paths of the products of the elements
along the path, where sum and product are over the field. Alternatively, an
MA with s states can be defined by associating an s × s matrix over F to
each letter in Σ. The value of the automaton on x1 . . . xn is the product of
the matrices associated to letters x1, . . . xn, pre- and post-multiplied by two
fixed row and column vectors.

We will at some point use the notion of rank of a binary tree, which is a
useful combinatorial notion when discussing decision tree complexity [EH89,
Blu92]. Intuitively, it is the depth of the largest complete tree that can be
embedded in the tree:

Definition 1 [EH89] The rank of a binary tree is defined as follows:

• The rank of a leaf is 0.

• If the two children of a tree T have ranks rL and rR, then the rank of T
is rL + 1 if rL = rR, and is max{rL, rR} if rL 6= rR.

2.2 Learning Theory

We assume some familiarity with Valiant’s PAC model and especially An-
gluin’s model of Exact learning via queries. In the latter, a class of boolean
functions C is agreed between Teacher and Learner. The Teacher fixes a
target function f ∈ C on n variables in an adversarial way, and discloses n
to the Learner, an algorithm. The Learner’s goal is to identify f precisely.
To do so, it can ask Membership and Equivalence queries. A Membership
query is a string x ∈ {0, 1}n, and the answer from the Teacher must be
f(x). An Equivalence query is the representation of a function g, and the
answer from the Teacher must be either ‘Yes’ if f = g, or a counterexample
x such that f(x) 6= g(x). The Learner succeeds if it eventually produces the
representation of a function equal to f .

To measure the resources used by the Learner, we assume that associated
to C there is a notion of “function size”; typically C is defined by a set of
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representations of functions, and the size of f is the size of the shortest
representation of f in C. This can be made formal through the notion of
“representation class” that we omit here. The resources used by the Learner
are measured as a function of n, the arity of the target function f , and the
size of f in C, which we normally denote with s.

There are two variants of learning that we will mention: we say that the
Learner “polynomially identifies C” if it identifies every f ∈ C using a polyno-
mial (in the sense above) number of queries, and any amount of computation
time. We say that it “polynomially learns C” if it does so using polynomial
time. Thus, polynomial learning implies polynomial identification. Another
kind of distinction arises considering the class of functions that the Learner
can use as their final guesses for f and as intermediate hypothesis in the
form of Equivalence queries. In proper learning, only (representations of)
functions in C can be used; if a larger class can be used, learning is called
improper. In this paper, we will in general allow improper learning.

We will use repeatedly the well-known Composition Theorem (see e.g.
[KLPV87]) which states that if a class C (with minor syntactical require-
ments) is learnable in polynomial time then C ◦NC0

k is also learnable in poly-
nomial time for every fixed k. The result is valid for both the Equivalence-
query model and the PAC model, but the proof fails in the presence of
Membership queries.

2.3 Monoids and Programs

Recall that a monoid is a set equipped with a binary operation that is asso-
ciative and has an identity. All the monoids in this paper are finite; some of
our statements about monoids might be different or fail for infinite monoids.

A group is a monoid where each element has an inverse. A monoid is
aperiodic if there is some number t such that at+1 = at for every element a.
Only the one-element monoid is both a group and aperiodic. A theorem by
Krohn and Rhodes states that every monoid can be built from groups and
aperiodic monoids by repeatedly applying the so-called wreath product. The
wreath product of monoids A and B is denoted with A ? B.

A program over a monoid M is a pair (P, A), where A ⊆ M is the accepting
set and P is an ordered list of instructions. An instruction is a triple (i, a, b)
whose semantics is as follows: read (boolean) variable xi; if xi = 0, emit
element a ∈ M , and emit element b ∈ M if xi = 1. A list of instructions P
defines a sequence of elements in M on every assignment a to the variables.
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We denote with P (a) the product in M of this sequence of elements. If
P (a) ∈ A we say that the program accepts a, and that it rejects a otherwise;
alternatively, we say that the program evaluates to 1 (resp. 0) on a.

Each program on n variables thus computes a boolean function from
{0, 1}n to {0, 1}. For a monoid M , B(M) is the set of boolean functions recog-
nized by programs over M . If M is a set of monoids, B(M) is

⋃
M∈M B(M).

A monoid M is said to divide a monoid N if M is a homomorphic image
of a submonoid in N . A set of monoids closed under direct product and
division (i.e., taking submonoids and homomorphic images) is called a variety
(technically, a pseudovariety since we are dealing with finite monoids). The
following varieties will appear in this paper:

• Com: All commutative monoids.

• Ab: All Abelian groups. Recall that every finite Abelian group is
a direct product of a number of groups of the form Zpα

i
for different

primes pi.

• Gp: All p-groups, that is, groups of cardinality a power of the prime p.

• Gnil: Nilpotent groups. For the purposes of this paper, a group is
nilpotent iff it is the direct product of a number of groups, each of
which is a pi-group for possibly different pi’s. All Abelian groups are
nilpotent. For interpretation, it was shown in [PT88] that programs
over nilpotent groups are equivalent in power to polynomials of constant
degree over a ring of the form (Zm)k.

• G: The variety of all groups.

• DA: A variety of aperiodic monoids to be defined in Section 4.2. For
interpretation, it was shown in [GT03] that programs over monoids in
DA are equivalent in power to decision trees of bounded rank.

2.4 Learning Programs over Monoids: Generalities

Every monoid M defines a set of boolean functions B(M) with an associated
notion of function size, namely the length of the shortest program over M .
The general question we ask is thus “given M and a learning model, is B(M)
polynomial-time learnable in that learning model?”. Polynomiality (or other
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bounds) is on the number of variables and size in M of the target function,
denoted with s as already mentioned.

For a set of monoids M, we say for brevity “programs over M are learn-
able” or even “M is learnable” to mean “for every fixed M ∈ M, B(M) is
learnable”, that is, there may be a different algorithm for each M ∈M, with
a different running time. In other words, each algorithm works for a fixed M
that it “knows”. Models where a single algorithm must work for a whole
class of monoids are possible, but we do not pursue them in this paper.

The following easy result is useful to compare the learning complexity of
different monoids:

Fact 2 If M divides N and B(N) is learnable (in any of the learning models
in this paper), then B(M) is also learnable.

In contrast, we do not know whether learnability is preserved under direct
product (which is to say, by taking fixed-size boolean combinations of classes
of the form B(M)): if it was, many of the open problems in this paper would
be resolved, but have no general argument or counterexample.

A fact we will often use to tranfer learning results between monoid terri-
tory and circuit territory is the following, implicitly proved and used in [BT88].

Fact 3 For every monoid M and group G, B(M ? G) = B(M) ◦ B(G).

This is in fact true whenever G is a monoid that can implement a “reset
operation”, which for groups in particular can be implemented by taking
product |G| times.

3 Learning from Small-Weight Assignments

The small-weight strategy applies to function classes with the following prop-
erty.

Definition 4 For an assignment a ∈ {0, 1}n , the weight of a defined as
the number of 1s it contains, and denoted w(a). A representation class C is
k-narrowing if every two different functions f, g ∈ C of the same arity differ
on some assignment of weight at most k. (k may actually be a function of
some other parameters, such as the arity of f and g or their size in C).

The following is essentially proved in [GTT06].
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Theorem 5 If C is k-narrowing, then C can be identified with nO(k) Mem-
bership queries (and possibly unbounded time).

The algorithm witnessing this is simple: ask all assignments in {0, 1}n of
weight at most k, of which there are at most nO(k). Then find any function
f ∈ C consistent with all answers. By the narrowing property, that f must
be equivalent to the target.

3.1 Groups with Lower Bounds

It was shown in [Bar89] and [GTT06], respectively, that nonsolvable groups
and nongroups can compute any conjunction of variables and their negations
by a polynomial-size program. Any class of functions with this property
is not n-narrowing, and by a standard adversary argument, it requires 2n

Membership queries to be identified. Therefore we have:

Fact 6 If M is not a group, or if M is a nonsolvable group, then B(M)
cannot be identified with a subexponential number of Membership queries.

Therefore, Membership learnability of classes of the form B(M) is re-
stricted, at most, to solvable groups. There are two maximal subclasses
of solvable groups for which lower bounds on their computational power are
known, and in both cases the lower bound is essentially a narrowing property.

Fact 7 1. For every nilpotent group M there is a constant k such that
B(M) is k-narrowing [PT88]. Therefore B(M) can be identified from
nO(k) Membership queries (and possibly unbounded time).

2. For every group G ∈ Gp ? Ab there is a constant c such that B(M)
is (c log s)-narrowing [BST90]. Therefore, programs over G of length s
can be identified from nO(log s) Membership queries.

The next two theorems give specific, time-efficient versions of this strategy
for Abelian groups and Gp ? Ab groups. These are, to our knowledge, new
learning algorithms.

Theorem 8 For every Abelian group G, B(G) is learnable from Membership
queries in time nc, for a constant c = c(G).
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Theorem 9 For every G ∈ Gp ? Ab with p prime, B(G) is learnable from
Membership queries in nc log s time, for a constant c = c(G).

(Recall that s stands for the length of the shortest program computing
the target function). Proofs are given in the Appendix.

3.2 Interpretation in Circuit Terms

Let us now interpret these results in circuit terms. It is easy to see that
programs over a fixed Abelian group are polynomially equivalent to a boolean
combination of some fixed number of MODm gates, for some m. Theorem 8
then implies:

Corollary 10 For every m, boolean combinations of s MODm gates are
learnable from Membership queries in time nc, for c = c(m, s).

Also, it is shown in [BST90] that programs over a fixed group in Gp ?Ab
are polynomially equivalent to MODp ◦ MODm circuits. Such circuits were
shown in [BBTV97] to be polynomial-time learnable from Membership and
Equivalence queries in polynomial time, by showing that they have small
Multiplicity automata – a generalization of their construction is used in Sec-
tion 5. Theorem 9 shows that Membership queries suffice, if quasipolynomial
time is allowed:

Corollary 11 For every prime p and every m, the class of functions com-
puted by MODp ◦ MODm circuits of size s are learnable from Membership
queries in time nO(log s).

As an example, the 6-element permutation group on 3 points, S3, can
be described as a wreath product Z3 ? Z2. Intuitively each permutation can
be described by a rotation and a flip, which interact when permutations are
composed so direct product does not suffice. Programs over S3 are polyno-
mially equivalent to MOD3 ◦MOD2 circuits, and our result claims that they
are learnable from nc log s Membership queries for some c.

3.3 Open Questions on Groups and Related Work

While programs over nilpotent groups can be identified from polynomially
many Membership queries, we have not resolved whether a time-efficient
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algorithm exists, even in the far more powerful PAC+Membership model. In
other words, we know that the values of such a program on all small-weight
assignments are sufficient to identify it uniquely, but can these values be used
to efficiently predict the value of the program on an arbitrary assignment?

In circuit terms, by results of [PT88], such programs can be shown to be
polynomially equivalent to fixed-size boolean combinations of MODm ◦ NC0

circuits or, equivalent, of polynomials of constant degree over Zm. We are
not even aware of algorithms learning a single MODA

m ◦NC0 circuit for arbi-
trary sets A. When m is prime, one can use Fermat’s little theorem to make
sure that the MODm gate receives only inputs summing to either 0 or 1, at
the expense of increasing the arity of the NC0 part. Then, one can set up
a set of linear equations where the unknowns are the coefficients of the tar-
get polynomial and each small-weight assignment provides an equation with
constant term either 0 or 1. The solution of this system must be equivalent
to the target function.

For solvable groups that beither nilpotent nor in Gp ? Ab, the situation
is even worse in the sense that we do not have lower bounds on their compu-
tational power, i.e., we cannot show that they are weaker than NC1. Observe
that any learning result would establish a separation with NC1, conditioned
to the cryptographic assumptions under which NC1 is nonlearnable. In an-
other direction, while lower bounds do exist for MODp ◦MODm circuits, we
do not have them for MODp ◦ MODm ◦ NC0; linear lower bounds for some
particular cases were given in [CGPT06].

Let us note that programs over Abelian groups (equivalently, boolean
combinations of MODm gates) are particular cases of the multi-symmetric
concepts studied in [BCJ93]. Multi-symmetric concepts are there shown to
be learnable from Membership and Equivalence queries, while we showed that
for these particular cases Membership queries suffice. XOR’s of k-terms and
depth-k decision trees are special cases of MODm ◦ NC0 previously noticed
to be learnable from Membership queries alone [BK].

4 Learning intersection-closed classes

In this section we observe that classes of the form DL ◦ MODA
m ◦ NC0 are

learnable from Equivalence queries (for some particular combinations of m
and accepting sets A). The algorithm is actually the combination of two
well-known algorithms (plus the composition theorem to deal with NC0).
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1) The algorithm for learning submodules of a module in [HSW90] (though
probably known before); 2) the algorithm in the companion paper extending
it to nested differences of intersection-closed classes, also in [HSW90].

It had been shown in [BBTV97] that decision lists whose nodes con-
tain polynomials of constant degree over F2 are learnable from Equivalence
queries, essentially by the same algorithm. This result extends to other fields
Fp, the main point being that the accepting set plays no role in the case p = 2,
but one must deal with it for other primes p.

We furthermore show that the classes above have natural algebraic in-
terpretation, and use this interpretation that they may be very close to a
stopping barrier for a certain kind of learning.

4.1 The Learning Algorithm

Theorem 12 For every m and k the class DL◦MOD[m]−{0}
m ◦NC0

k is learnable
from Equivalence queries in time polynomial in m, 22k

, and nk.

Proof. By the composition theorem, it suffices to show that DL◦MOD[m]−{0}
m

is learnable from Equivalence queries. We can furthermore assume that the
MODm gates receive only variables (not constants) as inputs, since we can
replace any constant 1 input with a dummy variables and appeal to the
composition theorem again.

Following [HSW90], for a class C, let nd(C) be the set of nested differences
of concepts in C, i.e., of functions of the form f1 − (f2 − (f3 − (. . . ))) with
each fi ∈ C (we are here identifying the function f with the set of inputs on
which f is 1). Also, let not(C) the set of negations of functions in C. Our
algorithm is based on the observation that, for every class C containing the
constant functions, DL ◦ C = nd(not(C)). To see this, consider a function
in DL ◦ C. By inserting dummy nodes, we can assume w.l.o.g. that the list
computing it starts with a node emitting 0 and that nodes emitting 0 and
1 alternate. Let the list be of the form L = (f, 0), (g, 1), L′ where f, g ∈ C
and L′ denotes the rest of the list (and the function it computes). Observe
then that the function computed by L is equivalent to the nested difference
not(f)− (not(g)− L′) and proceed inductively.

So we have to show that nd(C) is learnable, for C the class of MOD{0}
m

functions whose inputs are variables only. Every MOD{0}
m function is the

restriction to inputs in {0, 1}n of the set of solutions of a homogeneous equa-
tion over Zm, therefore a submodule of Zn

m. The set of all submodules of Zn
m
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is closed under intersection (the intersection of two submodules is a submod-
ule), and therefore we are trying to learn nested differences of submodules of
Zn

m. Thus, we can apply the algorithm for learning nested differences, and
learn the class with a number of queries equal to the maximum size of a set
of linearly independent tuples in Zn

m, which is known to be at most n log m.
The hypothesis class is thus nested differences of submodules, where each

submodule is defined as the span of a set of of previous counterexamples
in {0, 1}n. Determining whether another vector belongs to the span of a
given set of vectors amounts to solving systems of linear equations over Zn

m,
which can be done in polynomial time, and therefore the hypothesis class is
polynomial-time evaluatable.

Note that in Theorem 12 the running time does not depend on the length
of the decision list that is being learned. In fact, as a byproduct of this proof
one can see that the length of these decision lists can be limited to a poly-
nomial of m and nk without actually restricting the class of functions being
computed. Intuitively, this is because there can be only as many linearly
independent such MOD gates, and a node whose answer is determined by
the previous ones in the decision list can be removed. Thus, for constant m
and k, this class can compute at most 2nO(1)

n-ary boolean functions and is
not universal.

Also, note that we claim this result for MODm gates having all but 0 as
accepting elements. In the special case that m is a prime p, we can deal with
arbitrary accepting sets:

Lemma 13 For every prime p and every k, DL ◦ andk ◦ MODp ◦ NC0
k is

included in DL ◦MOD[p]−{0}
p ◦ NC0

(p−1)k2.

(Observe that, in the above, each usage of MOD without a superscript
allows for a different accepting set.) To prove Lemma 13, we show first that
every function in MODA

p is included in MOD[p]−{0}
p ◦ NC0

p−1. Indeed, by a
now standard use of Fermat’s little theorem, one can see that

MODA
p (x1, . . . , xn) =

∏
a 6∈A

(
n∑

i=1

xi − a)p−1,

and distributing in the right-hand side, one obtains a 0/1-valued, degree-
(p−1) polynomial, computable in MOD[p]−{0}

p ◦NC0
p−1. The and, equivalently
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the product, of k such polynomials is a polynomial of degree (p − 1)k, and
the lemma follows.

As a corollary of Theorem 12 and Lemma 13, we have:

Corollary 14 For every prime p and every k, DL ◦ andk ◦MODp ◦ NC0
k is

learnable from Equivalence queries in time nc, where c = c(p, k).

If we ignore the issue of proper learning and polynomials in the running
time, this subsumes at least the following known results:

• k-decision lists (which are DL ◦ NC0) [Riv87]. k-decision lists in turn
subsumed k-CNF and k-DNF, and rank-k decision trees.

• Systems of equations over Zm (which are a subclass of DL◦MOD[m]−{0}
m ).

• Polynomials of constant degree over finite fields, restricted to boolean
functions. When the field has prime cardinality p, these are equivalent
to MODp ◦ NC0.

• Decision lists having polynomials of bounded degree over F2 at the
nodes [BBTV97].

• Strict width-2 branching programs [BBTV97]. This is because it is easy
to show that these are polynomially simulated by DL ◦MOD2 ◦ NC0.

These are virtually all known results on learning Boolean functions in
the pure PAC model (no Membership queries) that do not involve threshold
gates or read-restrictions, neither of which can be captured in our algebraic
setting. Observe that each of them contains at most 2nO(1)

functions, hence
is not universal. In the next section we remark that the class of monoids
we have identified is in fact the largest known to contain only nonuniversal
monoids, so it is no chance that it unifies these previous results.

4.2 Interpretation in Algebraic Terms

Classes closely related to those in the previous section have clear precise
algebraic interpretations. They involve the class DA of monoids, of which
we give here an operational definition. Formal definitions can be found e.g.
in [Sch76, GT03, Tes03, TT04].

14



Let M be a monoid in DA. Then the product of elements m1, . . . ,mn in
M can be determined by knowing the truth or falsehood of a fixed number
of boolean conditions of the form “m1 . . . mn, as a string over M , admits a
factorization of the form L0a1L1a2 . . . akLk”, where 1) the ai are elements of
M , 2) each Li is a language such that x ∈ Li can be determined solely by
the set of letters appearing in x, and 3) the expression L0a1L1a2 . . . akLk is
unambiguous, i.e., every string has at most one factorization in it.

As mentioned already in the introduction, it was shown in [GT03] that
programs over monoids in DA are equivalent in power to decision trees in
bounded rank [EH89], where the required rank of the decision trees is related
to the parameter k in its definition in the particular DA monoid. In partic-
ular, programs over a fixed DA monoid can be simulated both by CNF and
DNF formulas of size nO(1) and by decision lists with bounded-length terms
at the nodes, and can be learned in the PAC and Equivalence-query models
[EH89, Riv87, Sim95].

We then have the following characterization:

Theorem 15 1. B(DA ? Gnil) =
⋃

m,k DL ◦MODm ◦ NC0
k =

⋃
m,k DL ◦

MOD{0}
m ◦ NC0

k.

2. B(DA ? Gp) =
⋃

k DL ◦ MODp ◦ NC0
k =

⋃
k DL ◦ MOD{0}

p ◦ NC0
k =⋃

k DL ◦MOD[p]−{0}
p ◦ NC0

k.

Proof. We prove part (1) by a series of claims:

Claim a. B(DA ? Gnil) = B(DA) ◦ B(Gnil), by Fact 3.

Claim b. For every monoid M in DA there is some k such that B(M) ⊆ DTk

where DTk is the class of functions computed by rank-k decision trees. Vice-
versa, for every k there is some Mk ∈ DA such that DTk ⊆ B(Mk). This
was shown in [GT03].

Claim c. For every k we have DTk ⊆ DL◦andk. This was observed by Blum
[Blu92].

Claim d. For every nilpotent group G there are m and k such that B(G) ⊆
ormk ◦andk◦MOD[0]

m ◦andk. Vice-versa, for every c and m there is some nilpo-
tent group G such that orc◦andc◦MOD[0]

m ◦andc ⊆ B(G). This is a statement
in circuit terms of the result in [PT88] mentioned in the introduction, that
nilpotent groups are equivalent in power to polynomials of constant degree
over rings of the form (Zm)k. Intuitively, the or ranges over the accepting
subset of (Zm)k, and the and checks every component of Zm.
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Claim e. DL ◦ OR ◦ C = DL ◦ C. This is because a check for f1 ∨ · · · ∨ fs

inside a node in a decision list can be simulated by s consecutive nodes, each
checking some fi.

From claims a to e, we have that for every M ∈ DA ? Gnil there is some
k such that

B(M) ⊆ DTk ◦ ork ◦ andk ◦MOD[0]
m ◦ andk ⊆ DL ◦ andk ◦MOD[0]

m ◦ andk.

Together with the following Claim f, this shows that for some K

B(M) ⊆ DL ◦MOD[0]
m ◦K .

Claim f. For every k and p there is some K = K(k, m) with andk ◦MOD[0]
m ⊆

MOD[0]
m ◦ andK .

Proof of Claim f. Let m = pα1
1 · · · · ·pα`

` for distinct primes pi. Take a function
f = f1 ∧ · · · ∧ fk, where each fi ∈ MOD[0]

m . Since a number is 0 modulo m if
and only for all i it is 0 modulo pαi

i , and MODm functions are by definition
0/1-valued, we have for every i

f =
k∧

i=1

∧̀
j=1

fij

where each fij is in MODp
αi
i

[0]. Crucially, Beigel and Tarui [BT94] showed

that for every prime p and every α, and some r, every MODpα
[0] gate is

equivalent to a degree-r, 0/1-valued polynomial over Fp. That is, there are
degree-r polynomials Pij over Z such that fij = 1 if and only if Pij = 0

mod pj. Define now Pj =
∏k

i=1 Pij, which is a degree kr polynomial. We have

f = 1 if and only if, for every j, Pj = 0 mod pj, i.e., p
αj−1
j Pj = 0 mod p

αj

j . By
the Chinese Remainder Theorem, there is a polynomial P over Z of degree
kr` such that p

αj−1
j Pj = P mod p

αj

j for every j. We thus have f = 1 if and

only if P = 0 mod m, which means that f is in MOD[0]
m ◦ andkr`. (end proof

of Claim f)

The converse inclusion in part (1) of the theorem is that
⋃

m,k DL ◦
MODm ◦ NC0

k ⊆ B(DA ? Gnil). It follows from the claims above with only
one additional observation converse to Claim c:

Claim g. For every k, DL ◦ andk = DT1 ◦ andk.
For part (2), use once more the Fermat trick to show that when p is prime,

all accepting sets for MODp functions except for the empty set and [p] have

16



the same power, modulo NC0 functions at the input. This way, one has
Claim g for every nontrivial accepting set, not only [0].

From this theorem and Lemma 13, it follows that we can learn programs
over DA?Gp monoids from Equivalence queries, yet we do not know how to
learn (to our knowledge) programs over DA ? Gnil in any model. This alge-
braic interpretation lets us explore this gap in learnability and, in particular,
the limitation of the learning paradigm in the previous subsection.

Since every p-group is nilpotent and it can be shown that DA ? Gnil

monoids can only have nilpotent subgroups, we have

DA ? Gp ⊆ DA ? Gnil ⊆ DA ? G ∩Mnil,

where Mnil is the class of monoids having only nilpotent subgroups. Yet,
there is an important difference in what we know about DA ? Gp and DA ?
Gnil. Following [Tes03, TT04], a monoid M is said to have the Polynomial
Length Property (or PLP) if every program over M , regardless of its length,
is equivalent to another one whose length is polynomial in n. Clearly, every
monoid in PLP is nonuniversal, and the converse is conjectured in [Tes03,
TT04]. More specifically, the following was shown in [Tes03, TT04].

• Every monoid not in DA ? G ∩Mnil is universal.

• Every monoid in DA ? Gp has the PLP, hence is not universal.

The question of either PLP or universality is thus open for DA ? Gnil,
sitting between DA ? Gp and DA ? G ∩ Mnil, so resolving its learnability
may require new insights besides the intersection-closure/submodule-learning
algorithm. Note that, contrary to one could think, DA ?Gnil is not equal to
DA?G∩Mnil: there are monoids that, in this context, can be built by using
unsolvable groups and later using homomorphisms to leave only nilpotent
groups that cannot be obtained starting from nilpotent groups alone. Current
techniques seem insufficient (and may remain unable forever) to analyze even
these traces of unsolvability.

Are there other extensions of DA ? Gp that we could investigate from
the learning point? The “obvious” is trying to extend the DA or Gp parts
separately. For the DA part, it is known [Sch76, Tes03] that every aperi-
odic monoid not in DA necessarily is divided by one of two well-identified
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monoids, named U and BA2. Monoid U is the syntactic monoid of the lan-
guage {a, b}?aa{a, b}?, and programs over U are equivalent in power, up to
polynomials, to DNF formulas. Therefore, by Fact 2, extending DA in this
direction implies learning at least DNF. Monoid BA2 is the syntactic monoid
of (ab)?, and interestingly, although it is aperiodic, programs over it can be
simulated (essentially) by OR gates fed by parity gates. In fact it in DA?Gp

for every p, so we know it is learnable.
If we try to extend on the group part, we have already mentioned that

the two classes of groups beyond Gp for which we have lower bounds are Gnil

and Gp?Ab. We have already discussed the problems concerning DA?Gnil.
For Gp ? Ab, they correspond to MODp ◦ MODm circuits, and we showed
them to be learnable from Membership queries alone in the previous section.
With Equivalence queries, however, learning MODp◦MODm would also imply
learning MODp ◦MODm ◦NC0 and, as discussed in the previous section, this
seems difficult because we cannot even prove now that these circuits cannot
do NC1. In particular, even learning programs over S3 (i.e. MOD3 ◦MOD2

circuits) from Equivalence queries alone seems unresolved now.

5 Learning as Multiplicity Automata

The learning algorithm for multiplicity automata [BV96, BBB+00] elegantly
unified many previous results and also implied learnability of several new
classes. It has remained one of the “maximal” learning algorithms for boolean
functions, in the sense that no later result has superseded it.

Theorem 16 [BV96, BBB+00] Let F be any finite field. Functions Σ? → F
represented as Multiplicity Automata over a fixed finite field are learnable
from Evaluation and Equivalence queries in time polynomial in the size of
the MA and |Σ|.

We can use Multiplicity Automata to compute boolean functions as fol-
lows: We take Σ = {0, 1}, and some accepting subset A ⊆ F , and the
function evaluates to 1 on an input if the MA outputs an element in A, and
0 otherwise. However, as basically argued in [BBTV97] we can use Fermat’s
little theorem to turn an MA into one that always outputs either 0 or 1 (as
field elements) with only polynomial blowup, and therefore we can omit the
accepting subset.
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In this section we identify a class of monoids that can be simulated by
MA’s, but not the other way round. Yet, it can simulate most classes of
boolean functions whose learnability was proved via the MA-learning algo-
rithm.

Note that it will be impossible to find a class of submonoids that, in our
setting, is precisely equivalent (up to polynomial blowup) to the whole class
of MA. This is true for the simple reason that the complexity of a function
measured as “shortest program length” cannot grow under renaming of input
variables: it suffices to change the variable names in the instructions of the
program. MA, on the other hand, read their input in the fixed order x1, . . . ,
xn, so renaming the input variables in a function can force an exponential
growth in MA size. Consider as an example the function

∧n
i=1(x2i−1 = x2i):

clearly, it is computed by the MA of size O(n) that simply checks equality
of appropriate pairs of adjacent letters in its input string. However, its
permutation

∧n
i=1(xi = x2n−i+1) is the palindrome function, whose MA size

is roughly 2n over any field.
Our characterization uses the notion of Mal’tsev product of two monoids

A and B, denoted A©m B. We do not define the algebraic operation formally.
We use instead the following property, specific to our case [Wei87]: Let M
be a monoid in LGp ©m Com, i.e., the Mal’tsev product of a monoid in Gp

by one in Com. Then, the product in M of a string of elements m1 . . . mn

can be determined from the truth of a fixed number of logical conditions of
the following form: There are elements a1, . . . , ak in M and commutative
languages L0, . . . , Lk over M? such that the number of factorizations of
m1 . . . mn of the form L0a1L1a2L2 . . . Lk−1akLk, taken modulo p, is is some
given value p′ < p.

Contrived as it seems, the class LGp ©m Com is a natural borderline in
representation theory. Recent and deep work by Margolis et al [AMV05,
AMSV09] shows that semigroups in LGp©m Com are exactly those that can
be embedded into a semigroup of upper-triangular matrices over a field of
characteristic p (and any size).

The main result in this section is:

Theorem 17 Let M be a monoid in LGp©m Com. Suppose that M is defined
as above by the a boolean combination of at most ` conditions of length at
most k using commutative languages whose monoid has size C. Then every
program of length s over M is equivalent to an MA over Fp of size (s + C)c,
where c = c(p, `, k).
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Corollary 18 Programs over monoids in LGp ©m Com are polynomially
simulated by MAs over Fp that are direct sums of constant-width MA’s.

Proof. (of Theorem 17) (Sketch). Fix a program (P, A) over M of length s.
Let m1, . . .ms be the sequence of elements in M produced by the instructions
on P for a given input x1 . . . xn. The value of P for an input, hence whether it
belongs to A, can be determined from the truth or falsehood of ` conditions
as described above, each one given by a tuple of letters a1, . . . , ak and
commutative languages L0, . . . , Lk.

For each such condition, we build an MA to check it as follows: The MA
is the direct sum of

(
s
k

)
MA’s, one for each of the positions where the a0 . . . ak

witnessing a factorization could appear. Each MA concurrently checks that
each of the chosen positions contains the right ai (when the input variable
producing the corresponding element mj is available) and concurrently checks
whether the subword wi between ai and ai+1 is in the language Li. Crucially,
since Li is in Com, membership of wi in Li can be computed by a fixed-
width automaton, regardless of the order in which the variables producing
wi are read. The automaton produces 0 if this check fails for some i, and 1
otherwise. It can be checked that the resulting automaton for each choice
has size polynomial in s.

For each condition L0a1L1 . . . akLk, counting the number of factorizations
mod p amounts to taking the sum of the MA built for all possible guesses
and adding them over Fp.

To conclude the proof, take all MA’s resulting from the previous con-
struction and raise them to the p-th power. That increases their size by a
power of p, and by Fermat’s little theorem they become 0/1-valued. The
boolean combination of several conditions can be then expressed by (a fixed
number) of sums and products in Fp, with polynomial blowup.

We next note that several classes that were shown to be learnable by
showing they were polynomially simulated by MA.

Theorem 19 The following classes of boolean functions are polynomially
simulated by programs over LGp©m Com, hence are learnable from Member-
ship and Equivalence queries as MA:

• Polynomials over Fp (when viewed as computing boolean functions)
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• Unambiguous DNF functions; these include decision trees k-term DNF
for constant k.

• constant-degree, depth-three, ΣΠΣ arithmetic circuits [KS06], when re-
stricted to boolean functions.

An interesting case is that of O(log n)-term DNF. It was observed in
[Kus97] c log n-term DNF can be rewritten into DFA of size roughly nc, hence
learned from Membership and Equivalence queries by Angluin’s algorithm
[Ang87]. It is probably false that c log n-term DNF can be simulated by
programs over a fixed monoid in LGp ©m Com. However, we note that for
every c and n, we note that for every c and n, c log n-term DNF is simulated
by a monoid of size nc that is easily computed from c and n and commutative,
hence in LGp ©m Com. Indeed, let Mc,n be the monoid consisting of all
bit vectors of length c log n, with bitwise-OR as monoid operation. Then
a program over Mc,n simulates a c log n-term DNF by reading x1, . . .xn in
sequence and upon reading each xi emitting the vector that has 0 in the
positions corresponding to terms proved to be false by the value of xi that
is read. Then, a given DNF is true on an assignment if the product in Mc,n

of all vectors emitted in this way is not the all-0 vector. Thus, although
O(log n)-term DNF is not strictly speaking captured by our framework, it is
by a very uniform extension of it.

Finally, we conjecture that LGp ©m Com is the largest class of monoids
that are polynomially simulated by MA, hence, the largest class we can expect
to learn from MA within our algebraic framework:

Conjecture 20 If a monoid M is not in LGp©m Com, then programs over
M are not polynomially simulated by MA’s over Fp.

The proof of this conjecture should be within reach given the character-
ization given in [TT06] of the monoids that are not in LGp ©m Com: this
happens iff the monoid is divided by either the monoids U or BA2 described
before, or by a so-called Tq monoid or by a monoid whose commutator sub-
group is not a p-group. It would thus suffice to show that programs over
these four kinds of monoids cannot always be polynomially simulated by MA
over Fp.
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6 Conclusions and Future Work

We have explained within three algorithmic paradigms
a large fraction of known learning results on boolean functions that do

not use threshold gates, restrictions on reads, or monotonicity conditions.
Algebraic interpretations, in terms of programs over monoids, of each of the
three paradigms sheds some light on the their limitations.

This approach could be taken as a framework to systematize results in
other learning models, such as learning in the presence of noise, attribute-
efficient learning, or learning classes defined using monotonicity (by using
existing notions of “monotone programs over monoids”).
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Appendices

Appendix A: Proof of Theorem 8

We use the following lemma, showing that Abelian groups have the narrowing
property. The proof is a very simple case of the proof in [PT88] for all
nilpotent groups, and is omitted in this version.

Lemma 21 Let f and g be two functions computed by programs over an
Abelian group G. Then either f and g are identical, or they differ on an
assignment of weight at most |G|2.
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Now fix an Abelian group G, of cardinality g for short. Let (P, A) de-
note the target program, computing a boolean function f . We first note
that we can assume w.l.o.g. that P is a list of instructions of the form
(1, e, α1)(2, e, α2) . . . (n, e, αn), where e is the identity of G. This is because
we can first reorder instructions according to the variable they read, merge
instructions reading the same variable, factor out the product α of the con-
stants emitted by each instruction upon reading 0 values, then assume that
that α is the identity by multiplying the accepting set by α−1. So learning
the target function amounts to learning the sequence of constants α1, . . .αn

and the set A ⊆ G.
Second, note that (P, A) induces an equivalence relation ∼ on the set [n]

by setting i ∼ j iff αi = αj.
The algorithm first asks for the value of f on all assignments of weight at

most g2+1, of which there are about ng2+1. Let S+ be that set of assignments,
and S the subset of S+ formed by assignments of weight at most g2. The
algorithm then computes another equivalence relation ≈ in the following way:
for every i, and a ∈ S, b ∈ {0, 1}, let a[i := b] be the assignment obtained by
setting xi = b in a; we extend the notation to a[i := b; j := c] and so on with
the obvious meaning. Then i ≈ j iff either i = j or for every a ∈ S we have
f(a[i := 1; j := 0]) = f(a[i := 0; j := 1]); in words, whether setting xi and
resetting xj, or the other way round, never makes a difference with respect
to Membership in small weight assignments. This relation can be computed
in polynomial time from the answers to S+.

Clearly, ≈ is reflexive and symmetric. To see that it is transitive, assume
i ≈ j and j ≈ k, for distinct i, j, k. Take any assignment a ∈ S, and say that
xj = 0 in S. Then we have

f(a[i := 1; k := 0]) = f(a[k := 0][i := 1; j := 0])

= f(a[k := 0][i := 0; j := 1])

= f(a[i := 0][k := 0; j := 1])

= f(a[i := 0][k := 1; j := 0])

= f(a[i := 0; k := 1])

and a similar argument holds when xj = 1. Therefore i ≈ k. Note also that
if αi = αj, setting either xi or xj must have the same effect on the value of
P on any assignment, and therefore i ∼ j implies i ≈ j, which in turn means
| ≈ | ≤ | ∼ | ≤ g.
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Having computed ≈, then the algorithm exhaustively runs through all
functions f : | ≈ | → g and sets B ⊆ G standing for the guesses of coefficients
for each equivalence class and accepting sets. There are gg · 2g such guesses.
For each of them, f , the algorithm builds a program (Pf , B), where in Pf

the value of αi is set to f(r) for each i in the r-th equivalence class of ≈.
The algorithm outputs any pair (Pf , B) such that the function computed by
(Pf , B) equals f(a) on every a ∈ S, i.e., agrees with the target on all of S.
At least one such (Pf , B) exists: namely, the target program (P, A) which is
of the form Pf by the fact that ∼ refines ≈. And by Lemma 21, any such
pair (Pf , B) output by the program must agree with (P, A) not only on S
but on all of {0, 1}n.

Appendix B: Proof of Theorem 9

We will use the following machinery from [BST90] to analyze the computing
power of groups in Gp ? Ab, based on Fourier analysis on finite fields. Let
F be a finite field of order at least 3. As is well known, F ∗ is a cyclic
group under the field multiplication. Fix a generator g of this group. For
the purposes of this paper, a linear form on boolean variables x1 . . . xn is
an expression of the form gα1x1 · · · · gαnxn = g

∑
i αixi . Observe that a linear

form is never 0, no matter the value of x1, . . . , xn; this is a crucial difference
between polynomials and sums of linear forms that largely explains the lower
bound and, intuitively, makes learnability much easier.

The following result in [BST90] translates programs over Gp?Ab to sums
of linear characters over appropriate finite fields.

Fact 22 [BST90] Let G be a monoid in Gp ?Ab. Then there is a finite field
F such that programs over G are polynomially simulated by sums of linear
forms over F . That is, for every program over G on n variables and length
s there is a sum of at most poly(n, s) linear forms equivalent to it; i.e., this
sum evaluates to 0 on an assignment a if the program rejects a, and to 1 if
the program accepts a.

In fact, a converse form of this result also holds, but we will not need it
in this paper. Together with the following result it essentially provides the
the lower bound 7, part (2).
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Fact 23 [BST90] For a fixed finite field F , any two sums of s linear charac-
ters are either equivalent or differ on an assignment of weight at most c log s,
for a constant c = c(F ).

We now prove the learning result. Fix a group G ∈ Gp ? Ab assume the
target is computed by a program over G, and c be the constant given by Fact
23 for G. W.l.o.g., we will assume it is computed as a sum of at most s linear
forms over a field F , where s is polynomially larger than the program’s length.
For brevity, we will from now on call sums of linear characters “polynomials”,
since they can be viewed as polynomials in the derived variables gxi ; hence
s is the number of terms in the target polynomial.

The learning algorithm is as follows:

1. Read n and s;

2. Let W be the set of strings of length at most n and weight at most
c log(s2 n);

3. Ask Membership queries f(x ·y) for every pair of strings x, y ∈ W with
|x · y| = n;

4. Build (as described below) an MA over F out of the answers, and
output it;

To describe how the MA is built, we need some terminology.
The Hankel matrix of function f is the matrix whose rows and columns

are indexed by {0, 1}? and such that H[x, y] = f(xy). For this to make sense,
we define f to evaluate to 0 on all bit vectors whose length is not n

For every string x, row(x) and col(x) denote the row and column of H
indexed by x. Equivalently, row(x) (resp., col(x)) is the function mapping
each y to row(x)(y) = f(x · y) (resp., col(x)(y) = f(y · x)). For a subset
S ⊆ {0, 1}?, we denote by rowS(x) and colS(x) the restriction of the functions
above to arguments in S (equivalently, the subvector of row(x) / col(x)
indexed by strings in S).

The MA is built as follows. Intuitively, we use some strings in W to
stand for states of the MA. The states are naturally grouped in n+1 “levels”
` = 0 . . . n, corresponding to their distance from the initial state, but also to
the lengths of the strings labelling the states.
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1. For every ` = 0 . . . n, choose a maximal set S` = {s`
1, . . . , s

`
r`
} of

strings in W of length ` such that the r` vectors rowW (s`
i) are lin-

early independent in F . That is, S` forms a basis for the set of vectors
{ rowW (x) | x ∈ W, |x| = ` }. Note that r0 = 1 and that s0

1 = ε.

2. For ` = 0 . . . n, choose a minimal set E` = {e`
1, . . . , e

`
r`
} of strings in W

of length n−` such that the submatrix H[S`, E`] has full rank r`. Note
that indeed we must have |E`| = |S`| = r`, and that we have |s`

i e`
j| = n

for every i, j.

3. For every s`
i and every a ∈ {0, 1}, express rowE`+1(s`

i ·a) as a linear com-
bination of the rowE`+1(s`+1

j ), with coefficients µ`,i,a,j. This is always

possible because H[S`, E`] has full rank.

4. The MA has a state named s`
j for every ` = 0 . . . n and j = 1 . . . r`.

The label of the transition from state s`
i to state s`+1

j with letter a is
the coefficient µ`,i,a,j.

5. The initial state of the MA is s0
1 = ε. The final states are those sn

j ∈ Sn

such that f(sn
j ) = 1.

Note that all the steps above can be carried out in time polynomial in |W |
from the answers of the queries of the algorithm. The running time of the
algorithm is thus polynomial in |W |, which is nO(log(s2n)).
We make the following claims:

Claim
∑n

`=0 r` ≤ n · s. Thus, for every `, r` ≤ n · s.
Proof. This is because if f is computed by an s-term polynomial as de-
scribed above, it is computed by an MA of size at most n · s. By the known
result that the size of the smallest MA for a function is the rank of its Hankel
matrix, there are at most ns linearly independent rows row(x) in H.

The following claim is the one where we exploit that the target is a sum
of linear characters, rather than an arbitrary MA:

Claim For every y ∈ W having length n− `, col(y) is a linear combination
of the set of vectors col(e`

j). In fact, the coefficients of this linear combination
are exactly those expressing colS`(x) as a linear combination of the r` vectors
colS`(e`

j).

29



Proof. To give the coefficients a name, let βy,j be such that

colS`(y) =

r∑̀
j=1

βy,j colS`(e`
j).

Now observe that the function colS`(y) is computed by a polynomial of size
at most s, namely, the one obtained by setting the last n − ` arguments of
P as in y. The same happens with each colS`(e`

j) function, and therefore the
right hand side of the equation above is itself computed by a polynomial of
size s · r` ≤ s2n. Suppose that these two polynomials differ on any argument
whatsoever. Then, since they have both size ≤ s2 · n, by Fact 2 they must
disagree on some argument in W . But if they disagree on some x ∈ W ,
then x witnesses that colW (y) is linearly independent of the set of vectors
colW (e`

j), because the unique coefficients that make the vectors equal on S`

fail on x. This contradicts the fact that H[S`, E`] has rank r`.

By the same proof we can show a similar claim for every x ∈ W of length
` and vectors row(s`

j). But, using Claim 6, we can in fact extend the claim
to every x, not necessary in W . The proof is similar to an analogous claim
in the learning algorithm for MA, and omitted in this version.

Claim For every x ∈ {0, 1}? of length |x| = `, row(x) is a linear combination
of the set of vectors row(s`

j). In fact, the coefficients of this linear combination
are exactly those expressing rowE`(x) as a linear combination of the r` vectors
rowE`(e`

j).
Proof. For any x of length ` and y of length n− `, let us again give names
to the coefficients: α and β are the sets of coefficients such that

rowE`(x) =

r∑̀
j=1

αx,j rowE`(s`
j) (1)

colS`(y) =

r∑̀
k=1

βy,k colS`(e`
k) (2)

Note that the α’s and β’s exist and are unique since H[S`, E`] has full rank.
To prove the claim, fix x and assume that

row(x) 6=
r∑̀

j=1

αx,j row(s`
j)
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As in the proof of Claim 6, both left-hand side and right-hand side are
functions computed by polynomials of size ≤ s2n, so if they differ anywhere
they must differ on some y ∈ W . That is, for some y ∈ W we have

f(xy) = row(x)(y) 6=
r∑̀

j=1

αx,j row(s`
j)(y) (3)

On the other hand, by Claim 6 we have

f(xy) = col(y)(x) =

r∑̀
k=1

βy,k col(e`
k)(x) (4)

We now show that this cannot be the case by showing that the right-hand
sides of equations (3) and (4) are in fact equal, which contradicts the fact
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that they are respectively different from and equal to f(xy). Indeed,

r∑̀
j=1

αx,j row(s`
j)(y) = (by def. of row and col)

r∑̀
j=1

αx,j col(y)(s`
j) = (because s`

j ∈ S`)

r∑̀
j=1

αx,j colS`(y)(s`
j) = (by def. of β, equation (2))

r∑̀
j=1

αx,j

(
r∑̀

k=1

βy,k colS`(e`
k)(s

`
j)

)
= (rearranging the sum)

r∑̀
k=1

βy,k

(
r∑̀

j=1

αx,j colS`(e`
k)(s

`
j)

)
=

(by def. of col and row and because e`
k ∈ E` and s`

j ∈ S`)
r∑̀

k=1

βy,k

(
r∑̀

j=1

αx,j rowE`(s`
j)(e

`
k)

)
= (by def. of α, equation (1))

r∑̀
k=1

βy,k rowE`(x)(e`
k) = (because e`

k ∈ E`)

r∑̀
k=1

βy,k row(x)(e`
k) = (by def. of row and col)

r∑̀
j=1

βy,k col(e`
j)(x).

which proves our claim.

Finally, using Claim 6 we can show that the MA produced by the algo-
rithm is correct. Again, the proof is similar to the one for the MA learning
algorithm and omitted in this version.

Claim The MA produced by the algorithm computes exactly f .
Proof.

We show how to compute f(x) given the coefficients µ`,i,a,j computed by
the algorithm. For simplicity, we rename the states with a single subindex
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(instead of by a pair (`, i)), so the coefficients become µi,a,j (and it will happen
that µi,a,j = 0 for sure whenever |sj| 6= |si|+ 1.)

Note that computing f(x) is equivalent to computing row(ε)(x). We show
inductively how to compute row(si)(z) for every suffix z of x every state si,
by induction on |z|.

For |z| = 0, we have row(si)(z) = row(si)(ε) = f(si) which was a mem-
bership query we asked (this is the reason why si is a final state in the MA
iff f(si) = 1).

For z = az′, and using Claim 6, we have

row(si)(z) = row(si)(az′) = row(si a)(z′) =

=

(∑
j

µi,a,j row(sj)

)
(z′) =

∑
j

µi,a,j (row(sj)(z
′))

and we can now compute row(si)(z) because inductively we have computed
row(sj)(z

′) for suffix z′ and every sj.
Finally, we have f(x) = row(ε)(x) where ε = s0

1 is the initial state. So
the computation takes time polynomial in n and s.
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