
Learning from Time-Changing Data with Adaptive Windowing ∗

Albert Bifet Ricard Gavaldà
Universitat Politècnica de Catalunya
{abifet,gavalda}@lsi.upc.edu

17 October 2006

Abstract
We present a new approach for dealing with distribution
change and concept drift when learning from data sequences
that may vary with time. We use sliding windows whose
size, instead of being fixed a priori, is recomputed online
according to the rate of change observed from the data in
the window itself: The window will grow automatically when
the data is stationary, for greater accuracy, and will shrink
automatically when change is taking place, to discard stale
data. This delivers the user or programmer from having to
guess a time-scale for change.

Contrary to many related works, we provide rigorous
guarantees of performance, as bounds on the rates of false
positives and false negatives. In fact, for some change struc-
tures, we can formally show that the algorithm automati-
cally adjusts the window to a statistically optimal length.

Using ideas from data stream algorithmics, we develop a
time- and memory-efficient version of this algorithm, called
ADWIN2. We show how to incorporate this strategy easily into
two learning algorithms, the Näıve Bayes predictor and the
k-means clusterer, chosen since it is relatively easy to observe
their behaviour under time change. We combine ADWIN2
with the Näıve Bayes (NB) predictor, in two ways: one,
using it to monitor the error rate of the current model and
declare when revision is necessary and, two, putting it inside
the NB predictor to maintain up-to-date estimations of
conditional probabilities in the data. We test our approach
using synthetic and real data streams and compare them
to both fixed-size and variable-size window strategies with
good results.

Keywords: Data Streams, Time-Changing Data, Concept

and Distribution Drift, Näıve Bayes

1 Introduction

Dealing with data whose nature changes over time is
one of the core problems in data mining and machine
learning. To mine or learn such data, one needs strate-
gies for the following three tasks, at least: 1) detecting
when change occurs 2) deciding which examples to keep
and which ones to forget (or, more in general, keeping

∗Partially supported by the 6th Framework Program of

EU through the integrated project DELIS (#001907), by the
EU PASCAL Network of Excellence, IST-2002-506778, and by

the DGICYT MOISES-BAR project, TIN2005-08832-C03-03.
Home pages: http://www.lsi.upc.edu/~{abifet, gavalda}

updated sufficient statistics), and 3) revising the current
model(s) when significant change has been detected.

Most strategies use variations of the sliding window
idea: a window is maintained that keeps the most
recently read examples, and from which older examples
are dropped according to some set of rules. The contents
of the window can be used for the three tasks above: 1)
to detect change (e.g., by using some statistical test on
different subwindows), 2) obviously, to obtain updated
statistics from the recent examples, and 3) to have data
to rebuild or revise the model(s) after data has changed.

The simplest rule is to keep a window of some fixed
size, usually determined a priori by the user. This can
work well if information on the time-scale of change is
available, but this is rarely the case. Normally, the user
is caught in a tradeoff without solution: choosing a small
size (so that the window reflects accurately the current
distribution) and choosing a large size (so that many
examples are available to work on, increasing accuracy
in periods of stability). A different strategy uses a
decay function to weight the importance of examples
according to their age (see e.g. [5]). In this case, the
tradeoff shows up in the choice of a decay constant that
should match the unknown rate of change.

Less often, it has been proposed to use windows
of variable size. In general, one tries to keep exam-
ples as long as possible, i.e., while not proven stale.
This delivers the users from having to guess a priori an
unknown parameter such as the time scale of change.
However, most works along these lines that we know of
(e.g., [7, 13, 14, 17]) are heuristics and have no rigorous
guarantees of performance. Some works in computa-
tional learning theory (e.g. [3, 9, 10]) describe strategies
with rigorous performance bounds, but to our knowl-
edge they have never been tried in real learning/mining
contexts and often assume a known bound on the rate
of change.

In addition, window strategies have been used in
conjunction with learning/mining algorithms in two
ways: one, externally to the learning algorithm; the
window is used to monitor the error rate of the cur-



rent model, which under stable distributions should
keep decreasing or at most stabilize; when instead this
rate grows significantly, change is declared and the base
learning algorithm is invoked to revise or rebuild the
model with fresh data. Note that in this case the win-
dow contains bits or real numbers (not full examples).
The other way is to embed the window system inside the
learning algorithm, to maintain the statistics required
by the learning algorithm continuously updated; it is
then the algorithm’s responsibility to keep the model in
synchrony with these statistics.

In this paper, we present a new algorithm (ADWIN,
for ADaptive WINdowing) for maintaining a window of
variable size containing bits or real numbers. The algo-
rithm automatically grows the window when no change
is apparent, and shrinks it when data changes. Unlike
many related works, we provide rigorous guarantees of
its performance, in the form of bounds on the rates of
false positives and false negatives. In fact, it is pos-
sible to show that for some change structures, ADWIN
automatically adjusts its window size to the optimum
balance point between reaction time and small variance.
Since ADWIN keeps bits or real numbers, it can be put to
work together with a learning algorithm in the first way,
that is, to monitor the error rate of the current model.

The first version of ADWIN is inefficient in time and
memory. Using ideas from data-stream algorithmics,
we provide another version, ADWIN2, working in low
memory and time. In particular, ADWIN2 keeps a
window of length W with O(log W ) memory and update
time, while keeping essentially the same performance
guarantees as ADWIN (in fact, it does slightly better in
experiments). Because of this low time and memory
requirements, it is thus possible to use ADWIN2 in the
second way: a learning algorithm can create many
instances of ADWIN2 to maintain updated the statistics
(counts, averages, entropies, . . . ) from which it builds
the model.

To test our approach, we perform two types of
experiments. In the first type, we test the ability of
ADWIN2 to track some unknown quantity, independent
of any learning. We generate a sequence of random
bits with some hidden probability p that changes over
time. We check the rate of false positives (% of claimed
changes when p does not really change) and false
negatives (% of changes missed when p does change) and
in this case the time until the change is declared. We
compare ADWIN2 with a number of fixed-size windows
and show, as expected, that it performs about as well
or only slightly worse than the best window for each
rate of change, and performs far better than each
windows of any fixed-size W when the change of rate
is very different from W . We also compare to one of

the recently proposed variable-size window methods [7]
and show that it performs better, for moderately large
quantities of data.

Then we test ADWIN2 in conjunction with two learn-
ing algorithms. In this first work, we choose the Näıve
Bayes (NB) predictor and a k-means clusterer since it is
easiest to observe their reactions to time changes. We
are currently working on the application to decision tree
induction. We try both using ADWIN2 “outside”, moni-
toring NB’s error rate, and “inside”, providing accurate
statistics to NB. We compare them to fixed-size win-
dows and the variable-length window strategy in [7].
We perform experiments both on synthetic and real-life
data. The second combination (ADWIN2 inside NB) per-
forms best, sometimes spectacularly so. The first com-
bination performs about as well as [7] in some cases, and
substantially better in others. We propose a version of
k-means able to deal with centroids that move at differ-
ent velocities over time, by adding an instance of ADWIN2
to track each coordinate of each centroid. We compare
the performance of this algorithm over synthetic data
consisting of sums of k-gaussians. Experiments indicate
that our algorithm is able to track the true centroids
more accurately than any fixed-window method.

2 Comparison with Previous Work

It is impossible to review here the whole literature on
dealing with time change in machine learning and data
mining. We discuss only a few of the references using
sliding windows that seem most related to ours. Among
those using fixed-size windows, the work of Kifer et
al. [12] is probably the closest in spirit to ours. They
detect change by keeping two windows of fixed size, a
“reference” one and “current” one, containing whole
examples. The focus of their work is on comparing
and implementing efficiently different statistical tests to
detect change, with provable guarantees of performance.
In our case, our windows contain simple information
(bits or numbers), so change tests are really simple.

Among the variable-window approaches, best
known are the work of Widmer and Kubat [17] and
Klinkenberg and Joachims [13]. These works are es-
sentially heuristics and are not suitable for use in data-
stream contexts since they are computationally expen-
sive. In particular, [13] checks all subwindows of the
current window, like our first algorithm ADWIN does,
and is specifically tailored to work with SVMs. The
work of Last [14] uses info-fuzzy networks or IFN, as an
alternative to learning decision trees. The change de-
tection strategy is embedded in the learning algorithm,
and used to revise parts of the model, hence not eas-
ily applicable to other learning methods. Domingos et
al. [11] use the “monitoring” strategy in their CVFDT



system for decision-tree induction. Very roughly, each
example is stored in the node it reaches. When the error
rate at any given node seems to degrade, new examples
are used to build an alternative subtree at that node.

Our approach is closest to that of Gama et al. [7],
so we should explain the difference in more detail.
Their approach is as follows: the window is used to
monitor the current model’s error rate. In periods of no
change, that error should decrease or at most stabilize.
Therefore, one keeps track of the initial subwindow
where error has been lowest so far. When the error
rate over the whole current window significantly exceeds
this lowest error rate, change is declared. In contrast,
we compare the averages of all pairs of subwindows
obtained by partitioning the current one, and this
should lead to faster change detection. Indeed, suppose
that a sudden change occurs after T time steps without
any change. In Gama’s approach, we have to wait
until time T + T ′ so that the difference in averages
between the windows 1..T and 1..(T +T ′) is significant.
If T is large, it will take a comparably large T ′ to
override the influence of the past. In contrast, in our
approach, we test (among others) the partition 1..T and
(T + 1)..(T + T ′). Even for large T , the difference in
distribution will become clear with a much smaller T ′.

3 Maintaining Updated Windows of Varying
Length

In this section we describe our algorithms for dynam-
ically adjusting the length of a data window, make a
formal claim about its performance, and derive an effi-
cient variation.

3.1 Setting The inputs to the algorithms are a confi-
dence value δ ∈ (0, 1) and a (possibly infinite) sequence
of real values x1, x2, x3, . . . , xt, . . . The value of xt is
available only at time t. Each xt is generated accord-
ing to some distribution Dt, independently for every t.
We denote with µt and σ2

t the expected value and the
variance of xt when it is drawn according to Dt. We
assume that xt is always in [0, 1]; by an easy rescaling,
we can handle any case in which we know an interval
[a, b] such that a ≤ xt ≤ b with probability 1. Nothing
else is known about the sequence of distributions Dt; in
particular, µt and σ2

t are unknown for all t.

3.2 First algorithm: ADWIN Our algorithm keeps a
sliding window W with the most recently read xi. Let n
denote the length of W , µ̂W the (observed) average of
the elements in W , and µW the (unknown) average of µt

for t ∈W . Strictly speaking, these quantities should be
indexed by t, but in general t will be clear from the
context.

Since the values of µt can oscillate wildly, there is
no guarantee that µW or µ̂W will be anywhere close to
the instantaneous value µt, even for long W . However,
µW is the expected value of µ̂W , so µW and µ̂W do get
close as W grows.

Algorithm ADWIN is presented in Figure 1. The idea
is simple: whenever two “large enough” subwindows of
W exhibit “distinct enough” averages, one can conclude
that the corresponding expected values are different,
and the older portion of the window is dropped. In
other words, W is kept as long as possible while the
null hypothesis “µt has remained constant in W” is
sustainable up to confidence δ.1 “Large enough” and
“distinct enough” above are made precise by choosing
an appropriate statistical test for distribution change,
which in general involves the value of δ, the lengths
of the subwindows, and their contents. We choose one
particular statistical test for our implementation, but
this is not the essence of our proposal – many other tests
could be used. At every step, ADWIN simply outputs the
value of µ̂W as an approximation to µW .

The value of εcut for a partition W0 ·W1 of W is
computed as follows: Let n0 and n1 be the lengths of
W0 and W1 and n be the length of W , so n = n0 + n1.
Let µ̂W0 and µ̂W1 be the averages of the values in W0 and
W1, and µW0 and µW1 their expected values. To obtain
totally rigorous performance guarantees we define:

m =
1

1/n0 + 1/n1
(harmonic mean of n0 and n1),

δ′ =
δ

n
, and εcut =

√
1

2m
· ln 4

δ′
.

Our statistical test for different distributions in W0

and W1 simply checks whether the observed average
in both subwindows differs by more than the thresh-
old εcut. The role of δ′ is to avoid problems with multiple
hypothesis testing (since we will be testing n different
possibilities for W0 and W1 and we want global error
below δ). Later we will provide a more sensitive test
based on the normal approximation that, although not
100% rigorous, is perfectly valid in practice.

Now we state our main technical result about the
performance of ADWIN:

Theorem 3.1. At every time step we have

1. (False positive rate bound). If µt remains constant
within W , the probability that ADWIN shrinks the
window at this step is at most δ.

1It would easy to use instead the null hypothesis “there has

been no change greater than ε”, for a user-specified ε expressing
the smallest change that deserves reaction.



ADWIN: Adaptive Windowing Algorithm

1 Initialize Window W
2 for each t > 0
3 do W ←W ∪ {xt} (i.e., add xt to the head of W )
4 repeat Drop elements from the tail of W
5 until |µ̂W0 − µ̂W1 | ≥ εcut holds
6 for every split of W into W = W0 ·W1

7 output µ̂W

Figure 1: Algorithm ADWIN.

2. (False negative rate bound). Suppose that for some
partition of W in two parts W0W1 (where W1

contains the most recent items) we have |µW0 −
µW1 | > 2εcut. Then with probability 1 − δ ADWIN
shrinks W to W1, or shorter.

The proof of the theorem is given in Appendix A.
In practice, the definition of εcut as above is too
conservative. Indeed, it is based on the Hoeffding
bound, which is valid for all distributions but greatly
overestimates the probability of large deviations for
distributions of small variance; in fact, it is equivalent
to assuming always the worst-case variance σ2 = 1/4.
In practice, one can observe that µW0 − µW1 tends to a
normal distribution for large window sizes, and use

εcut =

√
2
m
· σ2

W · ln
2
δ′

+
2

3 m
ln

2
δ′

,(3.1)

where σ2
W is the observed variance of the elements in

window W . Thus, the term with the square root is
essentially equivalent to setting εcut to k times the
standard deviation, for k depending on the desired
confidence δ, as is done in [7]. The extra additive
term protects the cases where the window sizes are
too small to apply the normal approximation, as an
alternative to the traditional use of requiring, say,
sample size at least 30; it can be formally derived
from the so-called Bernstein bound. Additionally, one
(somewhat involved) argument shows that setting δ′ =
δ/(lnn) is enough in this context to protect from
the multiple hypothesis testing problem; anyway, in
the actual algorithm that we will run (ADWIN2), only
O(log n) subwindows are checked, which justifies using
δ′ = δ/(lnn). Theorem 3.1 holds for this new value
of εcut, up to the error introduced by the normal
approximation. We have used these better bounds in
all our implementations.

Let us consider how ADWIN behaves in two special
cases: sudden (but infrequent) changes, and slow grad-
ual changes. Suppose that for a long time µt has re-

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 500 10001500200025003000
0

500

1000

1500

2000

2500

µ axis Width

t axis

ADWIN

µt

µ̂W

W

Figure 2: Output of algorithm ADWIN with abrupt
change.

mained fixed at a value µ, and that it suddenly jumps
to a value µ′ = µ + ε. By part (2) of Theorem 3.1
and Equation 3.1, one can derive that the window will
start shrinking after O(µ ln(1/δ)/ε2) steps, and in fact
will be shrunk to the point where only O(µ ln(1/δ)/ε2)
examples prior to the change are left. From then on,
if no further changes occur, no more examples will be
dropped so the window will expand unboundedly.

In case of a gradual change with slope α following a
long stationary period at µ, observe that the average of
W1 after n1 steps is µ + αn1/2; we have ε(= αn1/2) ≥
O(

√
µ ln(1/δ)/n1) iff n1 = O(µ ln(1/δ)/α2)1/3. So n1

steps after the change the window will start shrinking,
and will remain at approximately size n1 from then
on. A dependence on α of the form O(α−2/3) may
seem odd at first, but one can show that this window
length is actually optimal in this setting, even if α is
known: it minimizes the sum of variance error (due to
short window) and error due to out-of-date data (due
to long windows in the presence of change). Thus, in
this setting, ADWIN provably adjusts automatically the
window setting to its optimal value, up to multiplicative
constants.

Figures 2 and 3 illustrate these behaviors. In
Figure 2, a sudden change from µt−1 = 0.8 to µt = 0.4
occurs, at t = 1000. One can see that the window
size grows linearly up to t = 1000, that ADWIN cuts the
window severely 10 steps later (at t = 1010), and that
the window expands again linearly after time t = 1010.
In Figure 2, µt gradually descends from 0.8 to 0.2 in
the range t ∈ [1000..2000]. In this case, ADWIN cuts
the window sharply at t around 1200 (i.e., 200 steps
after the slope starts), keeps the window length bounded



0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 1000 2000 3000 4000
0

500

1000

1500

2000

2500

µ axis Width

t axis

ADWIN

µt

µ̂W

W

Figure 3: Output of algorithm ADWIN with slow gradual
changes.

(with some random fluctuations) while the slope lasts,
and starts growing it linearly again after that. As
predicted by theory, detecting the change is harder in
slopes than in abrupt changes.

3.3 Improving time and memory requirements
Our first version of ADWIN is computationally expensive,
because it checks exhaustively all “large enough” sub-
windows of the current window for possible cuts. Fur-
thermore, the contents of the window is kept explic-
itly, with the corresponding memory cost as the window
grows. To reduce these costs we present a new version
ADWIN2 using ideas developed in data stream algorith-
mics [1, 15, 2, 6] to find a good cutpoint quickly. We
next provide a sketch of how these data structures work.

Our data structure is a variation of exponential
histograms [6], a data structure that maintains an
approximation of the number of 1’s in a sliding window
of length W with logarithmic memory and update
time. We adapt this data structure in a way that can
provide this approximation simultaneously for about
O(log W ) subwindows whose lengths follow a geometric
law, with no memory overhead with respect to keeping
the count for a single window. That is, our data
structure will be able to give the number of 1s among
the most recently t − 1, t − bcc, t − bc2c ,. . . , t −
bcic, . . . read bits, with the same amount of memory
required to keep an approximation for the whole W .
Note that keeping exact counts for a fixed-window
size is provably impossible in sublinear memory. We
go around this problem by shrinking or enlarging the
window strategically so that what would otherwise be
an approximate count happens to be exact.

More precisely, to design the algorithm one chooses
a parameter M . This parameter controls both 1) the
amount of memory used (it will be O(M log W/M)
words, and 2) the closeness of the cutpoints checked
(the basis c of the geometric series above, which will be
about c = 1+1/M). Note that the choice of M does not
reflect any assumption about the time-scale of change:
Since points are checked at a geometric rate anyway,
this policy is essentially scale-independent.

More precisely, in the boolean case, the information
on the number of 1’s is kept as a series of buckets whose
size is always a power of 2. We keep at most M buckets
of each size 2i, where M is a design parameter. For each
bucket we record two (integer) elements: capacity and
content (size, or number of 1s it contains).

Thus, we use about M · log(W/M) buckets to
maintain our data stream sliding window. ADWIN2
checks as a possible cut every border of a bucket, i.e.,
window lengths of the form M(1+2+ . . .+2i−1)+j ·2i,
for 0 ≤ j ≤M . It can be seen that these M · log(W/M)
points follow approximately a geometric law of basis
∼= 1 + 1/M .

Let’s look at an example: a sliding window with 14
elements. We register it as:

1010101 101 11 1 1
Content: 4 2 2 1 1
Capacity: 7 3 2 1 1

Each time a new element arrives, if the element is ”1”,
we create a new bucket of content 1 and capacity the
number of elements arrived since the last ”1”. After
that we compress the rest of buckets: When there are
M + 1 buckets of size 2i, we merge the two oldest ones
(adding its capacity) into a bucket of size 2i+1. So, we
use O(M · log W/M) memory words if we assume that a
word can contain a number up to W . In [6], the window
is kept at a fixed size W . The information missing about
the last bucket is responsible for the approximation
error. Here, each time we detect change, we reduce
the window’s length deleting the last bucket, instead of
(conceptually) dropping a single element as in a typical
sliding window framework. This lets us keep an exact
counting, since when throwing away a whole bucket we
know that we are dropping exactly 2i ”1”s.

We summarize these results with the following
theorem.

Theorem 3.2. The ADWIN2 algorithm maintains a data
structure with the following properties:

• It uses O(M · log(W/M)) memory words (assuming
a memory word can contain numbers up to W ).

• It can process the arrival of a new element in O(1)
amortized time and O(log W ) worst-case time.



• It can provide the exact counts of 1’s for all the
subwindows whose lengths are of the form b(1 +
1/M)ic, in O(1) time per query.

Since ADWIN2 tries O(log W ) cutpoints, the total
processing time per example is O(log W ) (amortized)
and O(log2 W ) (worst-case).

In our example, suppose M = 2, if a new element
”1” arrives then

1010101 101 11 1 1 1
Content: 4 2 2 1 1 1
Capacity: 7 3 2 1 1 1

There are 3 buckets of 1, so we compress it:
1010101 101 11 11 1

Content: 4 2 2 2 1
Capacity: 7 3 2 2 1

and now as we have 3 buckets of size 2, we compress it
again

1010101 10111 11 1
Content: 4 4 2 1
Capacity: 7 5 2 1

And finally, if we detect change, we reduce the size of
our sliding window deleting the last bucket:

10111 11 1
Content: 4 2 1
Capacity: 5 2 1

In the case of real values, we also maintain buckets of
two elements: capacity and content. We store at content
the sum of the real numbers we want to summarize. We
restrict capacity to be a power of two. As in the boolean
case, we use O(log W ) buckets, and check O(log W )
possible cuts. The memory requirement for each bucket
is log W + R + log log W bits per bucket, where R is
number of bits used to store a real number.

Figure 4 shows the output of ADWIN2 to a sudden
change, and Figure 5 to a slow gradual change. The
main difference with ADWIN output is that as ADWIN
reduces one element by one each time it detects changes,
ADWIN2 deletes an entire bucket, which yields a slightly
more jagged graph in the case of a gradual change.
The difference in approximation power between ADWIN
and ADWIN2 is almost negligible, so we use ADWIN2
exclusively for our experiments.

4 Experimental Validation of ADWIN2

We construct the following experiments to test the
performance of our algorithms. We use, somewhat
arbitrarily, M = 5 for all experiments.

In a first experiment, we investigate the rate of false
positives of ADWIN2. This is a very important measure,
specially when there is a cost associated with a reported
change. To do this, we feed ADWIN2 a data stream
of 100,000 bits, generated from a stationary Bernoulli

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 500 10001500200025003000
0

500

1000

1500

2000

2500

µ axis Width

t axis

ADWIN2

µt

µ̂W

W

Figure 4: Output of algorithm ADWIN2 with abrupt
change

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 5001000 2000 3000 4000
0

500

1000

1500

2000

2500

µ axis Width

t axis

ADWIN2

µt

µ̂W

W

Figure 5: Output of algorithm ADWIN2 with slow gradual
changes



distribution with parameter µ, and different confidence
parameters δ.

Table 1 shows the ratio of false positives obtained.
In all cases, it is below δ as predicted by the theory, and
in fact much smaller for small values of µ.

Table 1: Rate of false positives
µ δ = 0.05 δ = 0.1 δ = 0.3

0.01 0.0000 0.0000 0.0000
0.1 0.0001 0.0002 0.0018
0.3 0.0008 0.0017 0.0100
0.5 0.0012 0.0030 0.0128

In a second set of experiments, we want to compare
ADWIN2 as an estimator with estimations obtained from
fixed-size window, and with fixed-size window which
are flushed when change is detected. In the last case,
we use a pair of windows (X, Y ) of a fixed size W .
Window X is used as a reference window that contains
the first W elements of the stream that occurred after
the last detected change. Window Y is a sliding window
that contains the latest W items in the data stream. To
detect change we check whether the difference of the
averages of the two windows exceeds threshold εcut. If
it does, we copy the content of window Y into reference
window X, and empty the sliding window Y . This
scheme is as in [12], and we refer to it as “fixed-size
windows with flushing”.

We build a framework with a stream of synthetic
data, and estimators of each class: an estimator that
uses ADWIN2, an array of estimators of fixed-size win-
dows for different sizes, and also an array of fixed-size
windows with flushing. Our synthetic data streams con-
sist of some triangular wavelets, of different periods,
some square wavelets, also of different periods, and a
staircase wavelet of different values. We test the esti-
mator’s performance over a sample of 106 points, feed-
ing the same synthetic data stream to each one of the
estimators tested. We compute the average distance
(both L1 and L2) from the true probability generating
the data stream to the estimation. Finally, we compare
these measures for the different estimators. Tables 2, 3,
4 and 5 shows these results using L1 and L2 distances
and δ = 0.1, 0.3. For the ADWIN2 estimator, besides the
distance to the true distribution, we list as information
the window length averaged over the whole run.

The general pattern for the triangular or square
wavelets is as follows. For any fixed period P , the
best fixed-size estimator is that whose window size is
a certain fraction of P . ADWIN2 usually does sometimes
does worse than this best fixed-size window, but only
slightly, and often does better than even the best fixed

size that we try. Additionally, it does better than any
window of fixed size W when P is much larger or much
smaller than W , that is, when W is a “wrong” time
scale. The explanation is simple: if W is too large the
estimator does not react quickly enough to change, and
if W is too small the variance within the window implies
a bad estimation. One can check that ADWIN2 adjusts
its window length to about P/4 when P is small, but
keeps it much smaller than P for large P , in order again
to minimize the variance / time-sensitivity tradeoff.

In a third type of experiments, we use small proba-
bilities to generate input to estimators. We compare
again ADWIN2 to fixed-size strategies in the situation
when getting a 1 is a rare event. To deal with this case
nonadaptively, one should decide a priori on a very large
fixed window size, which is a waste if it turns out that
there happen to be many 1s. We measure the relative
error of the estimator, that is |True Probability - Es-
timated Probability|/ True Probability. Table 6 shows
the results. ADWIN2 beats almost all fixed-size window
estimators, with or without flushing. This confirms that
ADWIN2’s capacity of shrinking or enlarging its window
size can be a very useful tool for to accurately track the
probability of infrequent events.

In a fourth type of experiments, we test ADWIN2
as a change detector rather than as an estimator, and
compare it to Gama’s method [7]. The measures of
interest here are the rate of changes detected and the
mean time until detection.

To do this, we feed ADWIN2 and Gama’s change
detector with four data streams of lengths L = 2, 000,
10, 000, 100, 000 and 1, 000, 000 bits, generated from a
Bernoulli distribution of parameter µ. We keep µ = 0.2
stationary during the first L−1, 000 time steps, and then
make it increase linearly during the last 1, 000 steps. We
try different slopes: 0 (no change), 10−4, 2·10−4, 3·10−4,
and 4 · 10−4.

To compare the rate of false negatives on an equal
foot, we adjust ADWIN2 confidence parameter δ to have
the same rate of false positives as Gama’s method.

Table 7 shows the results. Rows are grouped in
four parts, corresponding to the four values of L that
we tested. For each value of L, we give the number
of changes detected in the last 1, 000 samples (summed
over all runs) and the mean and standard distribution
of the time until the change is detected, in those runs
where there is detection.

The first column gives the ratio of false positives.
One observation we made is that Gama’s method tends
to detect many more changes early on (when the window
is small) and less changes as the window grows. This
explains that, on the first column, even if the ratio
of false positives is the same, the average time until



Table 2: Comparative of ADWIN2 with other estimators using L1 and δ = 0.1
ADWIN2 Fixed-sized Window Fixed-sized flushing Window

Stream Period Width 32 128 512 2048 8192 32 128 512 2048 8192
Scale 5000 0,05 503 0,07 0,04 0,06 0,17 0,16 0,07 0,04 0,05 0,11 0,15

Triangular 128 0,15 74 0,13 0,17 0,16 0,16 0,16 0,13 0,17 0,16 0,16 0,16
Triangular 512 0,09 140 0,08 0,12 0,16 0,16 0,16 0,09 0,12 0,16 0,16 0,16
Triangular 2048 0,05 314 0,07 0,06 0,11 0,16 0,16 0,07 0,06 0,09 0,16 0,16
Triangular 8192 0,03 657 0,07 0,04 0,04 0,11 0,16 0,07 0,04 0,04 0,06 0,16
Triangular 32768 0,02 935 0,07 0,03 0,02 0,04 0,11 0,07 0,03 0,02 0,02 0,03
Triangular 131072 0,02 1.099 0,07 0,03 0,02 0,02 0,03 0,07 0,03 0,02 0,01 0,01
Triangular 524288 0,02 1.107 0,07 0,03 0,02 0,01 0,01 0,07 0,03 0,02 0,01 0,01
Triangular 43 0,17 148 0,20 0,17 0,16 0,16 0,16 0,20 0,17 0,16 0,16 0,16
Triangular 424 0,10 127 0,09 0,13 0,15 0,16 0,16 0,10 0,13 0,15 0,16 0,16
Triangular 784 0,07 180 0,08 0,09 0,19 0,16 0,16 0,08 0,10 0,15 0,16 0,16
Triangular 5000 0,03 525 0,07 0,04 0,06 0,16 0,17 0,07 0,04 0,05 0,09 0,15

Square 128 0,14 45 0,18 0,30 0,30 0,30 0,30 0,20 0,30 0,30 0,30 0,30
Square 512 0,06 129 0,09 0,16 0,30 0,30 0,30 0,09 0,14 0,30 0,30 0,30
Square 2048 0,03 374 0,06 0,06 0,16 0,30 0,30 0,07 0,06 0,08 0,30 0,30
Square 8192 0,02 739 0,06 0,04 0,05 0,15 0,30 0,06 0,04 0,03 0,04 0,30
Square 32768 0,02 1.144 0,06 0,03 0,02 0,04 0,15 0,06 0,03 0,02 0,01 0,02
Square 131072 0,02 1.248 0,06 0,03 0,02 0,02 0,04 0,06 0,03 0,02 0,01 0,01

Table 3: Comparative of ADWIN2 with other estimators using L1 and δ = 0.3
ADWIN2 Fixed-sized Window Fixed-sized flushing Window

Stream Period Width 32 128 512 2048 8192 32 128 512 2048 8192
Scale 5000 0,05 213 0,07 0,04 0,06 0,17 0,16 0,07 0,04 0,05 0,10 0,15

Triangular 128 0,13 48 0,13 0,17 0,16 0,16 0,16 0,13 0,17 0,16 0,16 0,16
Triangular 512 0,08 93 0,08 0,12 0,16 0,16 0,16 0,09 0,12 0,16 0,16 0,16
Triangular 2048 0,06 156 0,07 0,06 0,11 0,16 0,16 0,07 0,06 0,09 0,16 0,16
Triangular 8192 0,05 189 0,07 0,04 0,04 0,11 0,16 0,07 0,04 0,04 0,06 0,16
Triangular 32768 0,05 218 0,07 0,03 0,02 0,04 0,11 0,07 0,03 0,02 0,02 0,03
Triangular 131072 0,05 215 0,07 0,03 0,02 0,02 0,03 0,07 0,03 0,02 0,01 0,01
Triangular 524288 0,05 217 0,07 0,03 0,02 0,01 0,01 0,07 0,03 0,02 0,01 0,01
Triangular 43 0,17 49 0,20 0,17 0,16 0,16 0,16 0,20 0,17 0,16 0,16 0,16
Triangular 424 0,09 85 0,09 0,13 0,15 0,16 0,16 0,10 0,14 0,15 0,16 0,16
Triangular 784 0,07 109 0,08 0,09 0,19 0,16 0,16 0,08 0,10 0,15 0,16 0,16
Triangular 5000 0,05 184 0,07 0,04 0,06 0,16 0,17 0,07 0,04 0,05 0,09 0,15

Square 128 0,12 37 0,18 0,30 0,30 0,30 0,30 0,20 0,30 0,30 0,30 0,30
Square 512 0,07 93 0,09 0,16 0,30 0,30 0,30 0,09 0,14 0,30 0,30 0,30
Square 2048 0,05 175 0,06 0,06 0,16 0,30 0,30 0,07 0,06 0,08 0,30 0,30
Square 8192 0,05 220 0,06 0,04 0,05 0,15 0,30 0,06 0,04 0,03 0,04 0,30
Square 32768 0,05 273 0,06 0,03 0,02 0,04 0,15 0,06 0,03 0,02 0,02 0,02
Square 131072 0,04 250 0,06 0,03 0,02 0,02 0,04 0,06 0,03 0,01 0,01 0,01



Table 4: Comparative of ADWIN2 with other estimators using L2 and δ = 0.1
ADWIN2 Fixed-sized Window Fixed-sized flushing Window

Stream Period Width 32 128 512 2048 8192 32 128 512 2048 8192
Scale 5000 0.06 501 0.08 0.04 0.06 0.19 0.19 0.08 0.05 0.07 0.13 0.17

Triangular 128 0.19 75 0.18 0.19 0.19 0.19 0.19 0.18 0.19 0.19 0.19 0.19
Triangular 512 0.12 140 0.12 0.17 0.19 0.19 0.19 0.12 0.17 0.19 0.19 0.19
Triangular 2048 0.08 320 0.09 0.09 0.16 0.19 0.19 0.09 0.10 0.14 0.19 0.19
Triangular 8192 0.05 666 0.08 0.06 0.09 0.16 0.19 0.09 0.06 0.08 0.11 0.19
Triangular 32768 0.04 905 0.08 0.05 0.05 0.08 0.16 0.08 0.05 0.04 0.06 0.08
Triangular 131072 0.04 1,085 0.08 0.04 0.03 0.04 0.08 0.08 0.04 0.03 0.03 0.04
Triangular 524288 0.04 1,064 0.08 0.04 0.02 0.02 0.03 0.08 0.04 0.02 0.02 0.02
Triangular 43 0.20 146 0.23 0.20 0.19 0.19 0.19 0.23 0.20 0.19 0.19 0.19
Triangular 424 0.13 126 0.12 0.18 0.17 0.19 0.19 0.13 0.18 0.17 0.19 0.19
Triangular 784 0.11 181 0.11 0.14 0.22 0.19 0.19 0.11 0.14 0.19 0.19 0.19
Triangular 5000 0.06 511 0.09 0.07 0.11 0.20 0.20 0.09 0.07 0.10 0.14 0.19

Square 128 0.21 45 0.25 0.30 0.30 0.30 0.30 0.26 0.30 0.30 0.30 0.30
Square 512 0.12 129 0.14 0.25 0.30 0.30 0.30 0.15 0.23 0.30 0.30 0.30
Square 2048 0.07 374 0.09 0.13 0.25 0.30 0.30 0.10 0.12 0.18 0.30 0.30
Square 8192 0.05 765 0.08 0.07 0.12 0.24 0.30 0.08 0.07 0.09 0.13 0.30
Square 32768 0.04 1,189 0.07 0.05 0.06 0.12 0.24 0.07 0.04 0.05 0.07 0.09
Square 131072 0.04 1,281 0.07 0.04 0.03 0.06 0.12 0.07 0.04 0.03 0.03 0.05

Table 5: Comparative of ADWIN2 with other estimators using L2 and δ = 0.3
ADWIN2 Fixed-sized Window Fixed-sized flushing Window

Stream Period Width 32 128 512 2048 8192 32 128 512 2048 8192
Scale 5000 0.08 210 0.08 0.04 0.06 0.18 0.19 0.08 0.05 0.07 0.13 0.17

Triangular 128 0.17 48 0.18 0.19 0.19 0.19 0.19 0.18 0.19 0.19 0.19 0.19
Triangular 512 0.12 93 0.12 0.17 0.19 0.19 0.19 0.12 0.17 0.19 0.19 0.19
Triangular 2048 0.09 153 0.09 0.09 0.16 0.19 0.19 0.09 0.10 0.14 0.19 0.19
Triangular 8192 0.08 193 0.08 0.06 0.09 0.16 0.19 0.09 0.06 0.08 0.11 0.19
Triangular 32768 0.08 213 0.08 0.05 0.05 0.08 0.16 0.08 0.05 0.04 0.06 0.08
Triangular 131072 0.08 223 0.08 0.04 0.03 0.04 0.08 0.08 0.04 0.03 0.03 0.04
Triangular 524288 0.08 222 0.08 0.04 0.02 0.02 0.03 0.08 0.04 0.02 0.02 0.02
Triangular 43 0.21 49 0.23 0.19 0.19 0.19 0.19 0.23 0.19 0.19 0.19 0.19
Triangular 424 0.12 85 0.12 0.18 0.17 0.19 0.19 0.13 0.18 0.17 0.19 0.19
Triangular 784 0.11 109 0.11 0.14 0.22 0.19 0.19 0.11 0.14 0.19 0.19 0.19
Triangular 5000 0.08 181 0.09 0.07 0.11 0.20 0.20 0.09 0.07 0.10 0.14 0.19

Square 128 0.18 37 0.25 0.30 0.30 0.30 0.30 0.26 0.30 0.30 0.30 0.30
Square 512 0.12 93 0.14 0.25 0.30 0.30 0.30 0.15 0.23 0.30 0.30 0.30
Square 2048 0.09 174 0.09 0.13 0.25 0.30 0.30 0.10 0.12 0.18 0.30 0.30
Square 8192 0.08 243 0.08 0.07 0.12 0.25 0.30 0.08 0.07 0.09 0.13 0.30
Square 32768 0.08 262 0.07 0.05 0.06 0.12 0.24 0.07 0.05 0.05 0.07 0.09
Square 131072 0.08 253 0.07 0.04 0.03 0.06 0.12 0.07 0.04 0.03 0.03 0.04



Table 6: Relative error using small probabilities
Fixed-sized Window Fixed-sized flushing Window

Prob. ADWIN2 32 128 512 2048 8192 32 128 512 2048 8192
1/32 0.06 0.72 0.38 0.20 0.10 0.05 0.72 0.38 0.20 0.10 0.05
1/64 0.04 1.21 0.53 0.27 0.14 0.07 1.21 0.53 0.27 0.14 0.07
1/128 0.02 1.56 0.73 0.39 0.20 0.10 1.56 0.73 0.39 0.20 0.10
1/256 0.02 1.76 1.21 0.53 0.28 0.14 1.76 1.21 0.53 0.28 0.14
1/512 0.03 1.89 1.56 0.74 0.40 0.22 1.89 1.56 0.74 0.40 0.22
1/1024 0.04 1.89 1.72 1.18 0.52 0.28 1.89 1.72 1.18 0.52 0.28
1/2048 0.04 1.97 1.88 1.55 0.70 0.36 1.97 1.88 1.55 0.70 0.36
1/4096 0.10 1.97 1.93 1.76 1.22 0.55 1.97 1.93 1.76 1.22 0.55
1/8192 0.10 1.93 1.91 1.83 1.50 0.66 1.93 1.91 1.83 1.50 0.66
1/16384 0.22 2.08 2.06 2.02 1.83 1.31 2.08 2.06 2.02 1.83 1.31
1/32768 0.37 1.85 1.85 1.83 1.75 1.49 1.85 1.85 1.83 1.75 1.49

the first false positive is produced is much smaller for
Gama’s method.

The last four columns describe the results when
change does occur, with different slopes. ADWIN2 detects
change more often, with the exception of the L = 2, 000
experiment. As the number of samples increases, the
percentage of changes detected decreases in Gama’s
methodology; as discussed early, this is to be expected
since it takes a long time for Gama’s method to over-
come the weight of past examples. In contrast, ADWIN2
maintains a good rate of detected changes, largely inde-
pendent of the number of the number of past samples
L−1, 000. One can observe the same phenomenon as be-
fore: even though Gama’s method detects less changes,
the average time until detection (when detection occurs)
is smaller.

5 Example 1: Näıve Bayes Predictor

5.1 An Incremental Näıve Bayes Predictor Let
x1,. . . , xk be k discrete attributes, and assume that xi

can take ni different values. Let C be the class attribute,
which can take nC different values. Recall that upon
receiving an unlabelled instance I = (x1 = v1, . . . , xk =
vk), the Näıve Bayes predictor computes a “probability”
of I being in class c as:

Pr[C = c|I] ∼=
k∏

i=1

Pr[xi = vi|C = c]

= Pr[C = c] ·
k∏

i=1

Pr[xi = vi ∧ C = c]
Pr[C = c]

The values Pr[xi = vj ∧ C = c] and Pr[C = c] are
estimated from the training data. Thus, the summary
of the training data is simply a 3-dimensional table that
stores for each triple (xi, vj , c) a count Ni,j,c of training

instances with xi = vj , together with a 1-dimensional
table for the counts of C = c. This algorithm is
naturally incremental: upon receiving a new example
(or a batch of new examples), simply increment the
relevant counts. Predictions can be made at any time
from the current counts.

We compare two time-change management strate-
gies. The first one uses a static model to make pre-
dictions. This model is rebuilt every time that an ex-
ternal change detector module detects a change. We
use Gama’s detection method and ADWIN2 as change de-
tectors. Gama’s method generates a warning example
some time before actually declaring change; see [7] for
the details; the examples received between the warning
and the change signal are used to rebuild the model.
In ADWIN2, we use the examples currently stored in the
window to rebuild the static model.

The second one is incremental: we simply create
an instance Ai,j,c of ADWIN2 for each count Ni,j,c, and
one for each value c of C. When a labelled example
is processed, add a 1 to Ai,j,c if xi = v ∧ C = c,
and a 0 otherwise, and similarly for Nc. When the
value of Pr[xi = vj ∧ C = c] is required to make
a prediction, compute it using the estimate of Ni,j,c

provided by Ai,j,c. This estimate varies automatically
as Pr[xi = vj ∧ C = c] changes in the data.

Note that different Ai,j,c may have windows of
different lengths at the same time. This will happen
when the distribution is changing at different rates for
different attributes and values, and there is no reason to
sacrifice accuracy in all of the counts Ni,j,c, only because
a few of them are changing fast. This is the intuition
why this approach may give better results than one
monitoring the global error of the predictor: it has more
accurate information on at least some of the statistics
that are used for the prediction.



Table 7: Change detection experiments. Each entry contains “x (y)” where x is average and y is standard
deviation.

2 · 103 samples, 103 trials
Slope 0 10−4 2 · 10−4 3 · 10−4 4 · 10−4

Detection time (Gama) 854 (462) 532 (271) 368 (248) 275 (206) 232 (178)
%runs detected (Gama) 10.6 58.6 97.2 100 100
Detection time ADWIN2) 975 (607) 629 (247) 444 (210) 306 (171) 251 (141)
%runs detected (ADWIN2) 10.6 39.1 94.6 93 95
104 samples, 100 trials
Detection time (Gama) 2,019 (2,047) 498 (416) 751 (267) 594 (287) 607 (213)
%runs detected (Gama) 14 13 38 71 84
Detection time ADWIN2) 4,673 (3142) 782 (195) 595 (100) 450 (96) 367 (80)
%runs detected (ADWIN2) 14 40 79 90 87
105 samples, 100 trials
Detection time (Gama) 12,164 (17,553) 127 (254) 206 (353) 440 (406) 658 (422)
%runs detected (Gama) 12 4 7 11 8
Detection time ADWIN2) 47,439 (32,609) 878 (102) 640 (101) 501 (72) 398 (69)
%runs detected (ADWIN2) 12 28 89 84 89
106 samples, 100 trials
Detection time (Gama) 56,794 (142,876) 1 (1) 1 (0) 1 (0) 180 (401)
%runs detected (Gama) 22 5 5 3 5
Detection time ADWIN2) 380,738 (289,242) 898 (80) 697 (110) 531 (89) 441 (71)
%runs detected (ADWIN2) 22 15 77 80 83

5.2 Synthetic data Experiments The experi-
ments with synthetic data use a changing concept based
on a rotating hyperplane explained in [11]. A hyper-
plane in d-dimensional space is the set of points x that
satisfy

d∑
i=1

wixi ≥ w0

where xi, is the ith coordinate of x. Examples for which∑d
i=1 wixi ≥ w0 are labeled positive, and examples for

which
∑d

i=1 wixi < w0 are labeled negative. Hyper-
planes are useful for simulating time-changing concepts
because we can change the orientation and position of
the hyperplane in a smooth manner by changing the
relative size of the weights.

We use 2 classes, d = 8 attributes, and 2 values (0
and 1) per attribute. The different weights wi of the
hyperplane vary over time, at different moments and
different speeds for different attributes i. All wi start
at 0.5 and we restrict to two wi’s varying at the same
time, to a maximum value of 0.75 and a minimum of
0.25.

To test the performance of our two Näıve Bayes
methodologies we do the following: At every time t,
we build a static Näıve Bayes model Mt using a data
set of 10,000 points generated from the distribution
at time t. Model Mt is taken as a “baseline” of how

well a Näıve Bayes model can do on this distribution.
Then we generate 1000 fresh points from the current
distribution and use them to compute the error rate of
both the static model Mt and the different models built
dynamically from the points seen so far. The ratio of
these error rates is averaged over all the run.

Table 8 shows accuracy results. The “%Static”
column shows the accuracy of the static model Mt –
it is the same for all rows, except for small random
fluctuations. The “%Dynamic” column is the accuracy
of the model built dynamically using the estimator
in the row. The last column in the table shows the
quotient of columns 1 and 2, i.e., the relative accuracy
of the dynamically vs. statically built models. In all NB
experiments we show in boldface the result for ADWIN2
and the best result. It can be seen that the incremental
time-change management model (using one instance of
ADWIN2 per count) outperforms fixed-size windows and
the models based on detecting change and rebuilding the
model. Among these, the one using ADWIN2 as a change
detector is better than that using Gama’s method.

5.3 Real-world data experiments We test the
performance of our Näıve Bayes predictors using the
Electricity Market Dataset described by M. Harries [8]
and used by Gama [7]. This dataset is a real-world



Table 8: Näıve Bayes, synthetic data benchmark
Width %Static %Dynamic % Dynamic/Static

Gama Change Detection 94.74% 58.02% 61.24%
ADWIN2 Change Detection 94.73% 70.72% 74.66%

ADWIN2 for counts 94.77% 94.16% 99.36%
Fixed-sized Window 32 94.74% 70.34% 74.24%
Fixed-sized Window 128 94.76% 80.12% 84.55%
Fixed-sized Window 512 94.73% 88.20% 93.10%
Fixed-sized Window 2048 94.75% 92.82% 97.96%

Fixed-sized flushing Window 32 94.74% 70.34% 74.25%
Fixed-sized flushing Window 128 94.75% 80.13% 84.58%
Fixed-sized flushing Window 512 94.73% 88.17% 93.08%
Fixed-sized flushing Window 2048 94.72% 92.86% 98.03%

dataset where we do not know when drift occurs or if
there is drift, hence it is not possible to build a static
model for comparison as we did before.

This data was collected from the Australian New
South Wales Electricity Market. In this market, the
prices are not fixed and are affected by demand and
supply of the market. The prices in this market are
set every five minutes. The ELEC2 dataset contains
45312 instances dated from 7 May 1996 to 5 December
1998. Each example of the dataset refers to a period
of 30 minutes, i.e. there are 48 instances for each
time period of one day. Each example on the dataset
has 5 fields, the day of week, the time stamp, the
NSW electricity demand, the Vic electricity demand,
the scheduled electricity transfer between states and the
class label. The class label identifies the change of the
price related to a moving average of the last 24 hours.
The class level only reflect deviations of the price on a
one day average and removes the impact of longer term
price trends.

At each time step, we train a static model using the
last 48 samples received. We compare this static model
with other models, also on the last 48 samples. Table 9
shows accuracy results of the different methods on this
dataset. Again, in each column (a test), we show in
boldface the result for ADWIN2 and for the best result.

The results are similar to those obtained with the
hyperplane data: ADWIN2 applied in the incremen-
tal time-change model (to estimate probabilities) does
much better than all the others, with the exception of
the shortest fixed-length window, which achieves 86.44%
of the static performance compared to ADWIN2 s 83.62%.
The reason for this anomaly is due to the nature of
this particular dataset: by visual inspection, one can
see that it contains a lot of short runs (length 10 to
20) of identical values, and therefore a myopic strategy
(i.e., a short window) gives best results. ADWIN2 be-

haves accordingly and shortens its window as much as
it can, but the formulas involved do not allow windows
as short as 10 elements. In fact, we have tried replicat-
ing each instance in the dataset 10 times (so there are
runs of length 100 to 200 of equal values), and then case
ADWIN2 becomes the winner again.

We also test the prediction accuracy of these meth-
ods. We compare, as before, a static model generated
at each time t to the other models, and evaluate them
asking to predict the instance that will arrive at time
t+1. The static model is computed training on the last
24 samples. The results are in Table 10. In this exper-
iment, ADWIN2 outperforms clearly other time-change
models. Generally, the incremental time-change man-
agement model does much better than the static model
that refreshes its NB model when change is detected.

6 Example 2: k-means Clustering

6.1 An Incremental k-means clusterer In con-
trast to Näıve Bayes, it is not completely obvious how
to give an incremental version of the k-means clustering
algorithm.

We adapt in essence the incremental version from
[16]. In that version, every new example is added to
the cluster with nearest centroid, and every r steps a
recomputation phase occurs, which recomputes both the
assignment of points to clusters and the centroids. To
balance accuracy and computation time, r is chosen in
[16] to be the square root of the number of points seen
so far. In our case, this latter rule is extended to react
to changes in the data distribution.

We incorporate adaptive windowing to this algo-
rithm in the following way. Let k and d be the number
of centroids and attributes. We add an instance Wij of
our algorithm for every attribute centroid i and every
attribute j, hence kd instances. The algorithm still in-
terleaves phases in which centroids are just incremen-



Table 9: Näıve Bayes, Electricity data benchmark, testing on last 48 items
Width %Static %Dynamic % Dynamic/Static

Gama Change Detection 91.62% 45.94% 50.14%
ADWIN2 Change Detection 91.62% 60.29% 65.81%

ADWIN2 for counts 91.62% 76.61% 83.62%
Fixed-sized Window 32 91.55% 79.13% 86.44%
Fixed-sized Window 128 91.55% 72.29% 78.97%
Fixed-sized Window 512 91.55% 68.34% 74.65%
Fixed-sized Window 2048 91.55% 65.02% 71.02%

Fixed-sized flushing Window 32 91.55% 78.57% 85.83%
Fixed-sized flushing Window 128 91.55% 73.46% 80.24%
Fixed-sized flushing Window 512 91.55% 69.65% 76.08%
Fixed-sized flushing Window 2048 91.55% 66.54% 72.69%

Table 10: Näıve Bayes, Electricity data benchmark, testing on next instance
Width %Static %Dynamic % Dynamic/Static

Gama Change Detection 94.40% 45.87% 48.59%
ADWIN2 Change Detection 94.40% 46.86% 49.64%

ADWIN2 for counts 94.39% 72.71% 77.02%
Fixed-sized Window 32 94.39% 71.54% 75.79%
Fixed-sized Window 128 94.39% 68.78% 72.87%
Fixed-sized Window 512 94.39% 67.14% 71.13%
Fixed-sized Window 2048 94.39% 64.25% 68.07%

Fixed-sized flushing Window 32 94.39% 71.62% 75.88%
Fixed-sized flushing Window 128 94.39% 70.12% 74.29%
Fixed-sized flushing Window 512 94.39% 68.02% 72.07%
Fixed-sized flushing Window 2048 94.39% 65.60% 69.50%



tally modified with incoming points and phases where
global recomputation of centroids takes place. The sec-
ond type of phase can occur each time we detect change.
We use two criteria. First, when any of the Wi` win-
dows shrinks, we take this as a signal that the position
of centroid i may have changed. In the case of estima-
tors that use windows of a fixed size s, when any of the
windows is full of new s elements we take this as as indi-
cator of change in the position of centroids. And in the
estimators that use windows of a fixed size with change
detection, every time it detects change, we use this as a
signal that the position of a centroid may have changed.

The second criterion is to recompute when the
average point distance to theirs centroids has changed
more than an ε factor where ε is user-specified. This is
taken as an indication that a certain number of points
may change from cluster i to cluster j or vice-versa if
recomputation takes place now.

6.2 Experiments We build a model of k-means clus-
tering, using a window estimator for each centroid coor-
dinate. We compare the performance of our model with
a static one, measuring the sum of the distances of each
data point to each centroid assigned.

The synthetic data used in our experiments consist
of a sample of 106 points generated from a k-gaussian
distribution with some fixed variance σ2, and centered
in our k moving centroids. Each centroid moves accord-
ing to a constant velocity. We try different velocities
v and values of σ in different experiments. Tables 11
and 12 shows the results of computing the distance from
100 random points to their centroids. We observe that
ADWIN2 outperforms other estimators in essentially all
settings.

7 Time and Memory Requirements

In the experiments above we have only discussed the
performance in terms of error rate, and not time or
memory usage. Certainly, this was not our main goal
in this paper, and we have in no way tried to optimize
our implementations in either time or memory (as is
clearly indicated by the choice of Java as programming
language). Let us, however, mention some rough
figures about time and memory, since they suggest
that our approach can be fairly competitive after some
optimization work.

All programs were implemented in Java Standard
Edition. The experiments were performed on a 3.0 GHz
Pentium PC machine with 1 Gigabyte main memory,
running Microsoft Windows XP. The Sun Java 2 Run-
time Environment, Standard Edition (build 1.5.0 06-
b05) was used to run all benchmarks.

Consider first the experiments on ADWIN2 alone.

A bucket formed by an integer plus a real number
uses 9 bytes. Therefore, about 540 bytes store a sliding
window of 60 buckets. In the boolean case, we could
use only 5 bytes per bucket, which reduces our memory
requirements to 300 bytes per window of 60 buckets.
Note that 60 buckets, with our choice of M = 5 suffice
to represent a window of length about 260/5 = 4096.

In the experiment comparing different estimators
(Tables 2,3,4 and 5), the average number of buckets used
by ADWIN2 was 45,11, and the average time spent was
23 seconds to process the 106 samples, which is quite
remarkable. In the Näıve Bayes experiment (Table 8),
it took an average of 1060 seconds and 2000 buckets
to process 106 samples by 34 estimators. This means
less than 32 seconds and 60 buckets per estimator. The
results for k-means were similar: We executed the k-
means experiments with k = 5 and two attributes, with
10 estimators and 106 sample points using about an
average of 60 buckets and 11.3 seconds for each instance
of ADWIN2.

8 Conclusions

We have described a new method for dealing with dis-
tribution change and concept drift when learning from
data sequences that may vary with time. We developed
an algorithm ADWIN using sliding windows whose size is
recomputed online according to the rate of change ob-
served from the data in the window itself. This delivers
the user from having to choose any parameter (for ex-
ample, window size), a step that most often ends up
being guesswork. So, client algorithms can simply as-
sume that ADWIN stores the currently relevant data.

We proposed a time- and memory-efficient ver-
sion of our algorithm, ADWIN2, that checks O(log W )
cutpoints, uses O(log W ) memory words, and whose
processing time per example is O(log2 W ) (worst-case)
and O(log W ) (amortized).

We tested our approach using synthetic, time-
changing data streams and a real dataset, showed the
improvements of our estimator over fixed-size windows
and one of the most recently proposed variable-length
window strategies [7]. These tests studied ADWIN2 as
an estimator, as a change detector, and in combination
with the Näıve-Bayes predictor. In one line, the results
indicate that ADWIN2 does almost as well as the best in
all contexts, and much better than any other in at least
one context. This shows that ADWIN2 really adapts its
behavior to the characteristics of the problem at hand.

Future work must include more thorough experi-
mentation, both with more real-world datasets and in
combination with other learning algorithms. As men-
tioned before, we are currently working in the integra-
tion of ADWIN2 in decision-tree induction methods.



Table 11: k-means sum of distances to centroids, with k = 5, 106 samples and centroid velocities of 10−5 and
different variances.

σ = 0.15 σ = 0.3 σ = 0.6
Width Static Dynamic Static Dynamic Static Dynamic

ADWIN2 9.72 16.63 19.42 26.71 38.83 47.32
Fixed-sized Window 32 9.72 18.46 19.42 27.92 38.83 48.79
Fixed-sized Window 128 9.72 26.08 19.42 35.87 38.83 58.65
Fixed-sized Window 512 9.72 28.20 19.42 38.13 38.83 61.22
Fixed-sized Window 2048 9.72 29.84 19.42 39.24 38.83 61.96
Fixed-sized Window 8192 9.72 32.79 19.42 40.58 38.83 63.09
Fixed-sized Window 32768 9.72 35.12 19.42 40.93 38.83 64.40

Fixed-sized flushing Window 32 9.72 29.29 19.42 34.19 38.83 57.54
Fixed-sized flushing Window 128 9.72 31.49 19.42 39.06 38.83 61.18
Fixed-sized flushing Window 512 9.72 30.10 19.42 39.47 38.83 62.44
Fixed-sized flushing Window 2048 9.72 29.68 19.42 39.38 38.83 62.01
Fixed-sized flushing Window 8192 9.72 31.54 19.42 39.86 38.83 62.82
Fixed-sized flushing Window 32768 9.72 36.21 19.42 41.11 38.83 65.54

Table 12: k-means sum of distances to centroids, with k = 5, 106 samples with variance σ = 0.3 and different
centroid velocities.

v = 10−3 v = 10−2 v = 0
Width Static Dynamic Static Dynamic Static Dynamic

ADWIN2 19.41 28.13 19.41 28.60 19.41 27.63
Fixed-sized Window 32 19.41 30.60 19.41 29.89 19.41 28.62
Fixed-sized Window 128 19.41 39.28 19.41 37.62 19.41 36.41
Fixed-sized Window 512 19.41 41.74 19.41 39.47 19.41 38.32
Fixed-sized Window 2048 19.41 42.36 19.41 39.76 19.41 38.67
Fixed-sized Window 8192 19.41 42.73 19.41 40.24 19.41 38.21
Fixed-sized Window 32768 19.41 44.13 19.41 41.81 19.41 37.12

Fixed-sized flushing Window 32 19.41 38.82 19.41 34.92 19.41 29.44
Fixed-sized flushing Window 128 19.41 41.30 19.41 38.79 19.41 42.72
Fixed-sized flushing Window 512 19.41 42.14 19.41 39.80 19.41 44.04
Fixed-sized flushing Window 2048 19.41 42.43 19.41 40.37 19.41 44.37
Fixed-sized flushing Window 8192 19.41 43.18 19.41 40.92 19.41 44.45
Fixed-sized flushing Window 32768 19.41 44.94 19.41 70.07 19.41 44.47



On another line, we are investigating the possibility
of making better predictions from the contents of the
window. Right now, the prediction at every time step is
simply the average of the elements in the window. But
if change is occurring, it may be better to give more
weight to most recent examples – the question is then
how much more weight? We have recently reported
on using Kalman filters together with an earlier (less
sensitive) version of ADWIN2, where the Kalman filter is
adaptively tuned to provide better estimations [4].

References

[1] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems.
In Proc. 21st ACM Symposium on Principles of Data-
base Systems, 2002.

[2] B. Babcock, M. Datar, and R. Motwani. Sampling
from a moving window over streaming data. In Proc.
13th Annual ACM-SIAM Symposium on Discrete Al-
gorithms, 2002.

[3] P. Bartlett, S. Ben-David, and S. Kulkarni. Learn-
ing changing concepts by exploiting the structure of
change. Machine Learning, 41(2):153–174, 2000.

[4] A. Bifet and R. Gavaldà. Kalman filters and adaptive
windows for learning in data streams. In Proc. 9th Intl.
Conference on Discovery Science, volume 4265, pages
28–40. Springer-Verlag Lecture Notes in Artificial In-
telligence, 2006.

[5] E. Cohen and M. Strauss. Maintaining time-decaying
stream aggregates. In Proc. 22nd ACM Symposium on
Principles of Database Systems, 2003.

[6] M. Datar, A. Gionis, P. Indyk, and R. Motwani.
Maintaining stream statistics over sliding windows.
SIAM Journal on Computing, 14(1):27–45, 2002.

[7] J. Gama, P. Medas, G. Castillo, and P. Rodrigues.
Learning with drift detection. In SBIA Brazilian
Symposium on Artificial Intelligence, pages 286–295,
2004.

[8] M. Harries. Splice-2 comparative evaluation: Electric-
ity pricing. Technical report, The University of South
Wales, 1999.

[9] D. Helmbold and P. Long. Tracking drifting con-
cepts by minimizing disagreements. Machine Learning,
14(1):27–45, 1994.

[10] M. Herbster and M. K. Warmuth. Tracking the best
expert. In Intl. Conf. on Machine Learning, pages 286–
294, 1995.

[11] G. Hulten, L. Spencer, and P. Domingos. Mining time-
changing data streams. In 7th ACM SIGKDD Intl.
Conf. on Knowledge Discovery and Data Mining, pages
97–106, San Francisco, CA, 2001. ACM Press.

[12] D. Kifer, S. Ben-David, and J. Gehrke. Detecting
change in data streams. In Proc. 30th VLDB Conf.,
Toronto, Canada, 2004.

[13] R. Klinkenberg and T. Joachims. Detecting concept

drift with support vector machines. In Proc. 17th Intl.
Conf. on Machine Learning, pages 487 – 494, 2000.

[14] M. Last. Online classification of nonstationary data
streams. Intelligent Data Analysis, 6(2):129–147, 2002.

[15] S. Muthukrishnan. Data streams: Algorithms and ap-
plications. In Proc. 14th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, 2003.

[16] C. Ordonez. Clustering binary data streams with k-
means. In ACM SIGMOD Workshop on Research
Issues on Data Mining and Knowledge Discovery, 2003.

[17] G. Widmer and M. Kubat. Learning in the presence of
concept drift and hidden contexts. Machine Learning,
23(1):69–101, 1996.



A Appendix: Proof of Theorem 1

Part 1. Assume µW0 = µW1 = µW as null hypothesis. We show that for any partition W as W0W1 we have
probability at most δ/n that ADWIN decides to shrink W to W1, or equivalently,

Pr[ |µ̂W1 − µ̂W0 | ≥ εcut ] ≤ δ/n.

Since there are at most n partitions W0W1, the claim follows by the union bound. Note that, for every real
number k ∈ (0, 1), |µ̂W1 − µ̂W0 | ≥ εcut can be decomposed as

Pr[ |µ̂W1 − µ̂W0 | ≥ εcut ] ≤ Pr[ |µ̂W1 − µW | ≥ kεcut ] + Pr[ |µW − µ̂W0 | ≥ (1− k)εcut) ].(1.2)

Applying the Hoeffding bound, we have then

Pr[ |µ̂W1 − µ̂W0 | ≥ εcut ] ≤ 2 exp(−2(k εcut)2 n0) + 2 exp(−2((1− k) εcut)2 n1)(1.3)

To approximately minimize the sum, we choose the value of k that makes both probabilities equal, i.e. such that

(k εcut)2 n0 = ((1− k) εcut)2 n1.

which is k =
√

n1/n0/(1 +
√

n1/n0). For this k, we have precisely

(k εcut)2 n0 =
n1n0

(
√

n0 +
√

n1)2
ε2cut ≤

n1n0

(n0 + n1)
ε2cut = m ε2cut.

Therefore, in order to have

Pr[ |µ̂W1 − µ̂W0 | ≥ εcut ] ≤ δ

n

it suffices to have
4 exp(−2m ε2cut) ≤

δ

n

which is satisfied by

εcut =

√
1

2m
ln

4n

δ
.

Part 2) Now assume |µW0 −µW1 | > 2εcut. We want to show that Pr[ |µ̂W1 − µ̂W0 | ≤ εcut ] ≤ δ, which means that
with probability at least 1− δ change is detected and the algorithm cuts W to W1. As before, for any k ∈ (0, 1),
we can decompose |µ̂W0 − µ̂W1 | ≤ εcut as

Pr[ |µ̂W0 − µ̂W1 | ≤ εcut ] ≤ Pr[ (|µ̂W0 − µW0 | ≥ kεcut) ∪ (|µ̂W1 − µW1 | ≥ (1− k)εcut) ]
≤ Pr[ |µ̂W0 − µW0 | ≥ kεcut ] + Pr[ |µ̂W1 − µW1 | ≥ (1− k)εcut ].

To see the first inequality, observe that if |µ̂W0 − µ̂W1 | ≤ εcut, |µ̂W0 −µW0 | ≤ kεcut, and |µ̂W1 −µW1 | ≤ (1− k)εcut

hold, by the triangle inequality we have

|µW0 − µW1 | ≤ |µ̂W0 + kεcut − µ̂W1 + (1− k)εcut| ≤ |µ̂W0 − µ̂W1 |+ εcut ≤ 2εcut,

contradicting the hypothesis. Using the Hoeffding bound, we have then

Pr[ |µ̂W0 − µ̂W1 | ≥ εcut ] ≤ 2 exp(−2(k εcut)2 n0) + 2 exp(−2((1− k) εcut)2 n1).

Now, choose k as before to make both terms equal. By the calculations in Part 1 we have

Pr[ |µ̂W0 − µ̂W1 | ≥ εcut ] ≤ 4 exp(−2 m ε2cut) ≤
δ

n
≤ δ,

as desired.


