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A recursive function

def f(n):

if n == 1:

print("#")

else:

f(n-1)

print("#"*n)

f(n-1)
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A recursive function

def f(n):

if n > 0:

f(n-1)

print("#"*n)

f(n-1)
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Recursive factorial

n! = n * (n-1) * (n-2) * … * 3 * 2 *1

But also:

n! = n * (n-1)!

0! = 1

• “…” leads to a loop

• defining a function in terms of itself leads to 
recursion
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Recursive factorial

def factorial(n):

"returns n!, for any natural n>=0"

if n == 0:

return 1

else:

return n * factorial(n-1)
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Defining in terms of itself?
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Mandelbrot’s set

Emmy Noether (1892-1935)



Base and recursive cases

Every recursive function must have:

• One or more base cases (no more calls)

• One or more recursive cases (more calls)

Conditions:

• If “size” is <=0 we must be in a base case

• A recursive call must decrease “size” by at least 1
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Base and recursive cases

Size decreases by 1 or more at each call

When size is <= 0, we are in base case

This guarantees termination by the following property of 

natural numbers:

Every strictly decreasing sequence of 

natural numbers is finite

Not true for integers and real numbers
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Base and recursive cases

n! = (n+1)! / (n+1)     True but not good

n! = n * (n-1) * (n-2)!    Correct but watch out:

def fact(n):

if (n == 0): return 1

else: return n*(n-1)*fact(n-2)
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Computing integer powers

pow(x,y) = x * x * x * … * x  (y times)

= x * pow(x,y-1)                      (assume x nonzero, y>0; 00 undef.)

Base case?

Running time O(y)

Observation: 

x 
(2y) 

= (x2) y

pow(x,y) = pow(x*x,y//2)    if y is even
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Slow powering

def pow(x,y):

if y == 0:

return 1

else:

return x * pow(x,y-1)

y decreases by 1 at each call

running time O(y)
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Fast powering

def pow(x,y):

if y == 0:

return 1

elif y % 2 == 1:

return x * pow(x,y-1)

else: 

return pow(x*x,y//2)

y is divided by 2 every 2 calls

2 log y calls maximum, O(1) ops per call

running time O(log y)

(alternatively, y in binary loses 1 bit at every /2)
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Finding a zero of a continuous function
Given:

• a function f promised to be continuous

• a range [a,b] such that f(a) < 0 < f(b)

• a margin epsilon

Compute:

• a value x in [a,b] such that f has a zero in [x-epsilon,x+epsilon]

Such x exists

by Bolzano’s theorem

Source: https://en.wikipedia.org/wiki/Intermediate_value_theorem
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Finding zeros

def f(x):   return x*x – 2

>>> print(solver(f,0,4,0.000001))

1.4142136573791504

import math

>>>print(solver(math.sin,1,4,0.000001))

3.1415926218032837

>>>print(solver(math.cos,0,4,0.000001))

1.5707964897155762
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Finding a zero of a continuous function
def solver(f, a, b, epsilon)

We keep the promise that f(a) and f(b) have different signs. So there

must be a point in [a,b] where f(a) = 0

Similar to binary search:

Check the sign of f((a+b)/2)

Discard half the interval

Termination: 

what decreases by at least 1 at each call?
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Finding a zero of a continuous function

def solver(f, a, b, epsilon):

c = (a+b)/2

if abs(b-a) <= epsilon:

return c

else:

if f(c) * f(a) < 0:

return solver(f,a,c,epsilon) 

else: 

return solver(f,c,b,epsilon)

If we hit f(c) == 0, is there a problem?
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Termination

Suppose that |b-a| is approx epsilon * 2k

Then |b-a| at the next call is

epsilon * 2k / 2 = epsilon * 2(k-1)

Number of calls = number of times we can
divide (epsilon * 2k) by 2 before we get to epsilon

… which is k

Isolating, we have |b-a| = epsilon * 2k iff
k = log_2 (|b-a| / epsilon)
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Exercise: Binary search

Give a recursive function of binary search

search(lst,x)

You need to generalize to 

search(lst,i,j)

1. What is/are the base case/s?

2. How do you make recursive calls with “smaller” 
inputs?
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Product of a list

prod([v1,v2,v3,…,vn]) = v1*v2*v3*…*vn

= v1 * prod([v2,…,vn])

= prod([v1,…,vn-1]) * vn
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Product of a list

def prod(lst):

“returns the product of lst”

if len(lst) == 0:

return 1

else:

return lst[0] * prod(lst[1:])

Inefficiency: extracting & copying lst[1:]
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Product of a list

def prod(lst):

return rprod(lst,0)

def rprod(lst,i):

"returns the product of lst[i..len(lst)-1]"

if (i == len(lst)):

return 1

else: 

return lst[i] * rprod(lst,i+1)
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Product of a list

def prod(lst):

return rprod(lst,len(lst)-1)

def rprod(lst,i):

"returns the product of lst[0..i]"  

if (i == -1):

return 1

else: 

return rprod(lst,i-1) * lst[i]
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How is recursion executed?

Stack of calls made, with parameters

(example in blackboard)

Local variables local to the call

A new copy is created at each call

To note: recursive factorial uses memory O(n) while

iterative factorial uses memory O(1)
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What is better, loops or recursion?

Every loop can be simulated with recursion

(next slides)

Recursion can be simulated with a loop and a stack

(not trivial with multiple recursion)

Tail recursion can be replaced with a loop, with no stack

(next slides)
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Conclusions

• Loops and recursion have the same power in theory (if you
can add a stack to loops)

• Often choice depends on elegance / naturality

• But some problems have natural multiple recursion solutions, 
complex iterative solutions

• Some languages automatically turn tail recursion to a loop

• Python DOES NOT optimize for tail recursion. You have to do 
the transformation by hand, if you want

• Remember that recursion may have “hidden memory usage”: 
stack of calls O(1) in loop may turn to O(n) in recursion

• So if tail recursive, in Python probably prefer loops

• Python has other ways (continuations, iterators, generators…)
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Exercises

• Given a list of digits, compute the integer it represents
[3,7,2,9] -> the int 3279

• Write a recursive version of binary search

• Write a recursive version of selection sort (auxiliary
function to find min also recursive)

• Given a list of integers, say if there is a number that
equals the sum of all numbers before it in the list
– First version is probably O(len(lst)2). Why?

– Plus: Think of a second version O(len(lst)). Add new parameter or result
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Optional for

theoretically-minded people



Loop to recursion

def f(x):

y = a(x)

while cond(x,y):

(x,y) = b(x,y)

return c(x,y)
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def f(x):

y = a(x)

return rec_f(x,y)

def rec_f(x,y):

if cond(x,y):

return c(x,y)

else:

(x,y) = b(x,y)

return rec_f(x,y)



Loop to recursion

def fact(n):

f = 1

while n > 0:

f = f * n

n = n - 1

return f
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def fact(n):

f = 1

return rec_fact(n,f)

def rec_fact(n,f):

if n == 0:

return f

else:

(f,n) = (f*n,n-1)

return

rec_fact(n,f)



Tail recursion to loop

def f(x):

while cond(x):

x = b(x)

return c(x)
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def f(x):

if cond(x):

return c(x)

else:

z = b(x)

return f(z)

Tail recursion: 

Nothing done after

recursive call

Some languages (& modern compilers) do 

this transformation for you when they see

tail recurssion. 

Not Python. It complicates recursión

Exercise: do the transformation “by hand” 

for binary search and selection sort


