
3. Recursion, part 1

Programming and Algorithms II

Degree in Bioinformatics

Fall 2018

>>> f(1)

#

>>>

2

>>> f(2)

#

##

#

>>>

3

>>> f(3)

#

##

#

###

#

##

#

>>>

4

>>> f(4) (TRY GUESSING!)
#

##

#

###

#

##

#

####

#

##

#

###

#

##

#

>>>
5

A recursive function

def f(n):

if n == 1:

print("#")

else:

f(n-1)

print("#"*n)

f(n-1)

6

A recursive function

def f(n):

if n > 0:

f(n-1)

print("#"*n)

f(n-1)

7

Recursive factorial

n! = n * (n-1) * (n-2) * … * 3 * 2 *1

But also:

n! = n * (n-1)!

0! = 1

• “…” leads to a loop

• defining a function in terms of itself leads to
recursion

8

Recursive factorial

def factorial(n):

"returns n!, for any natural n>=0"

if n == 0:

return 1

else:

return n * factorial(n-1)

9

Defining in terms of itself?

10

Mandelbrot’s set

Emmy Noether (1892-1935)

Base and recursive cases

Every recursive function must have:

• One or more base cases (no more calls)

• One or more recursive cases (more calls)

Conditions:

• If “size” is <=0 we must be in a base case

• A recursive call must decrease “size” by at least 1

11

Base and recursive cases

Size decreases by 1 or more at each call

When size is <= 0, we are in base case

This guarantees termination by the following property of

natural numbers:

Every strictly decreasing sequence of

natural numbers is finite

Not true for integers and real numbers

12

Base and recursive cases

n! = (n+1)! / (n+1) True but not good

n! = n * (n-1) * (n-2)! Correct but watch out:

def fact(n):

if (n == 0): return 1

else: return n*(n-1)*fact(n-2)

13

Computing integer powers

pow(x,y) = x * x * x * … * x (y times)

= x * pow(x,y-1) (assume x nonzero, y>0; 00 undef.)

Base case?

Running time O(y)

Observation:

x
(2y)

= (x2) y

pow(x,y) = pow(x*x,y//2) if y is even

14

Slow powering

def pow(x,y):

if y == 0:

return 1

else:

return x * pow(x,y-1)

y decreases by 1 at each call

running time O(y)

15

Fast powering

def pow(x,y):

if y == 0:

return 1

elif y % 2 == 1:

return x * pow(x,y-1)

else:

return pow(x*x,y//2)

y is divided by 2 every 2 calls

2 log y calls maximum, O(1) ops per call

running time O(log y)

(alternatively, y in binary loses 1 bit at every /2)
16

Finding a zero of a continuous function
Given:

• a function f promised to be continuous

• a range [a,b] such that f(a) < 0 < f(b)

• a margin epsilon

Compute:

• a value x in [a,b] such that f has a zero in [x-epsilon,x+epsilon]

Such x exists

by Bolzano’s theorem

Source: https://en.wikipedia.org/wiki/Intermediate_value_theorem
17

Finding zeros

def f(x): return x*x – 2

>>> print(solver(f,0,4,0.000001))

1.4142136573791504

import math

>>>print(solver(math.sin,1,4,0.000001))

3.1415926218032837

>>>print(solver(math.cos,0,4,0.000001))

1.5707964897155762

18

Finding a zero of a continuous function
def solver(f, a, b, epsilon)

We keep the promise that f(a) and f(b) have different signs. So there

must be a point in [a,b] where f(a) = 0

Similar to binary search:

Check the sign of f((a+b)/2)

Discard half the interval

Termination:

what decreases by at least 1 at each call?

19

Finding a zero of a continuous function

def solver(f, a, b, epsilon):

c = (a+b)/2

if abs(b-a) <= epsilon:

return c

else:

if f(c) * f(a) < 0:

return solver(f,a,c,epsilon)

else:

return solver(f,c,b,epsilon)

If we hit f(c) == 0, is there a problem?

20

Termination

Suppose that |b-a| is approx epsilon * 2k

Then |b-a| at the next call is

epsilon * 2k / 2 = epsilon * 2(k-1)

Number of calls = number of times we can
divide (epsilon * 2k) by 2 before we get to epsilon

… which is k

Isolating, we have |b-a| = epsilon * 2k iff
k = log_2 (|b-a| / epsilon)

21

Exercise: Binary search

Give a recursive function of binary search

search(lst,x)

You need to generalize to

search(lst,i,j)

1. What is/are the base case/s?

2. How do you make recursive calls with “smaller”
inputs?

22

Product of a list

prod([v1,v2,v3,…,vn]) = v1*v2*v3*…*vn

= v1 * prod([v2,…,vn])

= prod([v1,…,vn-1]) * vn

23

Product of a list

def prod(lst):

“returns the product of lst”

if len(lst) == 0:

return 1

else:

return lst[0] * prod(lst[1:])

Inefficiency: extracting & copying lst[1:]

24

Product of a list

def prod(lst):

return rprod(lst,0)

def rprod(lst,i):

"returns the product of lst[i..len(lst)-1]"

if (i == len(lst)):

return 1

else:

return lst[i] * rprod(lst,i+1)

25

Product of a list

def prod(lst):

return rprod(lst,len(lst)-1)

def rprod(lst,i):

"returns the product of lst[0..i]"

if (i == -1):

return 1

else:

return rprod(lst,i-1) * lst[i]

26

How is recursion executed?

Stack of calls made, with parameters

(example in blackboard)

Local variables local to the call

A new copy is created at each call

To note: recursive factorial uses memory O(n) while

iterative factorial uses memory O(1)

27

What is better, loops or recursion?

Every loop can be simulated with recursion

(next slides)

Recursion can be simulated with a loop and a stack

(not trivial with multiple recursion)

Tail recursion can be replaced with a loop, with no stack

(next slides)

28

Conclusions

• Loops and recursion have the same power in theory (if you
can add a stack to loops)

• Often choice depends on elegance / naturality

• But some problems have natural multiple recursion solutions,
complex iterative solutions

• Some languages automatically turn tail recursion to a loop

• Python DOES NOT optimize for tail recursion. You have to do
the transformation by hand, if you want

• Remember that recursion may have “hidden memory usage”:
stack of calls O(1) in loop may turn to O(n) in recursion

• So if tail recursive, in Python probably prefer loops

• Python has other ways (continuations, iterators, generators…)

29

Exercises

• Given a list of digits, compute the integer it represents
[3,7,2,9] -> the int 3279

• Write a recursive version of binary search

• Write a recursive version of selection sort (auxiliary
function to find min also recursive)

• Given a list of integers, say if there is a number that
equals the sum of all numbers before it in the list
– First version is probably O(len(lst)2). Why?

– Plus: Think of a second version O(len(lst)). Add new parameter or result

30

Optional for

theoretically-minded people

Loop to recursion

def f(x):

y = a(x)

while cond(x,y):

(x,y) = b(x,y)

return c(x,y)

32

def f(x):

y = a(x)

return rec_f(x,y)

def rec_f(x,y):

if cond(x,y):

return c(x,y)

else:

(x,y) = b(x,y)

return rec_f(x,y)

Loop to recursion

def fact(n):

f = 1

while n > 0:

f = f * n

n = n - 1

return f

33

def fact(n):

f = 1

return rec_fact(n,f)

def rec_fact(n,f):

if n == 0:

return f

else:

(f,n) = (f*n,n-1)

return

rec_fact(n,f)

Tail recursion to loop

def f(x):

while cond(x):

x = b(x)

return c(x)

34

def f(x):

if cond(x):

return c(x)

else:

z = b(x)

return f(z)

Tail recursion:

Nothing done after

recursive call

Some languages (& modern compilers) do

this transformation for you when they see

tail recurssion.

Not Python. It complicates recursión

Exercise: do the transformation “by hand”

for binary search and selection sort

