2. Dictionaries and Sets

Programming and Algorithms II
Degree in Bioinformatics
Fall 2017
Keeping counts. Example

Input contains 9 6 30 -5 9 5 -5 30 4 1 5 9 5 2 4 -5

Output should be ideally the list

\[(-5,3) (1,1) (2,1) (4,2) (5,3) (6,1) (9,3) (30,2) \]

Or perhaps in another order (less good)
A problem: Keeping counts

Problem:

Given:
Input that contains a sequence of integers

Compute:
A list of pairs \((x, c)\) where \(c\) is the number of times that \(x\) appears in the list (only for \(c>0\))

Optionally: the list should be sorted by \(x\)
First solution

create an empty list L
for each element x in input
 if x is not in L:
 L.append((x,1))
 else:
 replace (x,c) with (x,c+1) in L
First solution: Cost

N = number of integers in input
D = number of different integers in input
Note \text{len}(L) \leq D

“if x not in L” cost up to \(O(D)\)
 even if implemented as \(L\).\text{count}(x)

Total cost \(O(ND)\)

If \(D = N\) (all items different), cost is \(O(N^2)\)
Second solution: Keeping the list sorted

Finding x in a list L is $O(\text{len}(L))$

L.count(x) does not do magic

But if the list is sorted, we can do better

Binary or **dichotomic** search:

$O(\log D)$ time, where $D = \text{len}(L)$
Binary or dichotomous search

$O(\log D)$ time, where $D = \text{len}(L)$

Only on ordered structures

Only if $O(1)$ Random Access... which lists have

For $D=1,000$, $\log D = 10$

For $D = 1,000,000$, $\log D = 20$
Binary or dichotomistic search

In general, we keep two positions i, j such that x is in L if and only if it is in $L[i:j]$.
Binary or dichotomic search

```python
def binarySearch(L, x):
    i = 0
    j = len(L) - 1
    while i <= j:
        mid = (i+j)//2  # // is integer div
        if L[mid] > x:
            j = mid - 1
        elif L[mid] < x:
            i = mid + 1
        else:
            return mid
    return -1
```

If `x` is in `L`, returns some position of `i` that contains `x`
If `x` is not in `L`, returns `-1`
2 comparisons per iteration
def binarySearch(L, x):
 i = 0
 j = len(L)-1
 while i < j:
 mid = (i+j)//2
 if L[mid] >= x:
 j = mid
 else:
 i = mid+1
 if i < len(L) and L[i] == x:
 return i
 else:
 return -1

If x is in L, returns the first position of L that contains x
If x is not in L, returns -1
1 comparison per iteration
Why $\log_2(n)$

At every iteration, $j-i$ is divided by 2:
- Either i is the same and $j \leq (i+j)/2$
- Or j is the same and $i \geq (i+j)/2$

When $j < i$, we stop

How many times can we divide $\text{len}(L)$ by 2 before we get to 0?

$\text{len}(L) \approx 2^k \iff k \approx \log_2(\text{len}(L))$

example $256 = 2^8 \rightarrow 128 \ 64 \ 32 \ 16 \ 8 \ 4 \ 2 \ 1 \ 0$
Second solution: Keeping L sorted

Create an empty list L

For each element x in input

\[i = \text{binarySearch}(L, x) \]

if \(i == -1 \):

\[\text{insert } (x, 1) \text{ in } L, \text{ in place that keeps } L \text{ sorted} \]

else

\[x, c = L[i][0], L[i][1] \quad # \text{get pair } (x, c) \text{ in pos. } i \]

\[L[i] = (x, c+1) \]
Second solution: Cost

Remember that len(L) <= D

• Looking if x is in L (and where): O(log D)
• Adding it in right place if not in L: O(D)
• Incrementing count if already in L: O(1)
• O(D) cost for every one of D distinct elements

Solution 1: O(ND)
Solution 2: O(N log D) + D*O(D) + (N-D)*O(1) =
= O(N log D + D^2)

Is still O(N^2) if D=N, but better if D << N
Solution 3

1. read the whole input into a list A
2. sort A
3. go over A sequentially
 for each element $A[i]$
 if $(i == \text{len}(L)-1) \text{ or } (A[i] < A[i+1])$
 append $A[i]$ to L

1. $A=[3,2,1,3,5,3,1,2,1,5,1]$
2. $A=[1,1,1,\textbf{1},2,2,3,3,\textbf{3},5,5]$
3. $L=[\textbf{1},2,3,5]$

Solution 3

1. read the whole input into a list A
2. sort A
3. go over A sequentially
 for each element $A[i]$
 if $(i == \text{len}(L) - 1) \text{ or } (A[i] < A[i+1])$
 append $A[i]$ to L

1. $O(N)$
2. $O(N \log N)$
3. $O(N)$

Total time $O(N \log N)$
Recap: Costs

Solution 1: $O(ND)$
Solution 2: $O(N \log D + D^2)$
Solution 3: $O(N \log N)$

Solution 3 faster than 2 for $D > (N \log N)^{1/2}$
But uses \textit{memory} $O(N)$, not $O(D)$.
No good for Big Data

(There are $O(N \log N)$ algorithms for sorting files not in memory)
The problem

<table>
<thead>
<tr>
<th></th>
<th>Adding x</th>
<th>Searching x</th>
<th>Getting all elements in order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted list</td>
<td>.append (O(1))</td>
<td>.count or linear search (O(D))</td>
<td>.sort (O(D \log D))</td>
</tr>
<tr>
<td>Sorted list</td>
<td>.insert (O(D))</td>
<td>binary search (O(\log D))</td>
<td>Trivial (O(D))</td>
</tr>
</tbody>
</table>
The problem

<table>
<thead>
<tr>
<th></th>
<th>Adding x</th>
<th>Searching x</th>
<th>Getting all elements in order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted list</td>
<td>.append O(1)</td>
<td>.count or linear search O(D)</td>
<td>sort O(D log D)</td>
</tr>
<tr>
<td>Sorted list</td>
<td>.insert O(D)</td>
<td>binary search O(log D)</td>
<td>Trivial O(D)</td>
</tr>
<tr>
<td>Hash table</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(D log D)</td>
</tr>
<tr>
<td>Balanced tree</td>
<td>O(log D)</td>
<td>O(log D)</td>
<td>O(D)</td>
</tr>
</tbody>
</table>

- You will understand how they are built next semester (“Data structures and algorithms”)
- Detail: Hashing is O(1) “on average”
- Python dictionaries use hash tables.
Python dictionary operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy, <code>d1 = d</code></td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Get, <code>x = d[key]</code> or <code>d.get(key, default)</code></td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Set, <code>d[key] = v</code></td>
<td>$O(1)$</td>
</tr>
<tr>
<td>key (not) in d</td>
<td>$O(1)$</td>
</tr>
<tr>
<td><code>del d[key]</code></td>
<td>$O(1)$</td>
</tr>
<tr>
<td><code>len(d)</code></td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

Technically, *average* time. If you have really, really bad luck, all is $O(n)$
Python dictionary iterators

<table>
<thead>
<tr>
<th>Operation</th>
<th>Returns</th>
</tr>
</thead>
<tbody>
<tr>
<td>d.items()</td>
<td>([(k1,v1),(k2,v2),...,({kn,vn})]) IN NO PARTICULAR ORDER</td>
</tr>
<tr>
<td>d.iteritems()</td>
<td>Iterator over the list above</td>
</tr>
<tr>
<td>d.keys()</td>
<td>Iterator over the set of keys of d</td>
</tr>
<tr>
<td>d.itervalues()</td>
<td>Iterator over the set of values of d</td>
</tr>
</tbody>
</table>
Keeping counts, Solution 4

d = {}
for each x in input
 if x in d:
 c = d[x]
 else:
 c = 0
 d[x] = c + 1

To sort at the end:

L = []
for x in sorted(d.keys()):
 L.append((x,d[x]))
Solution 4, cost

- Checking if x in dictionary $O(1)$
- Getting count from dictionary $O(1)$
- Adding / updating dictionary $O(1)$
- N iterations, each cost $O(1)$
- Cost $O(N)$
- Independent of $D!!$

- Sorting at the end, $O(D \log D)$
- Cost $O(N + D \log D)$
Dictionaries vs. tables

• Dictionaries preferable if only operations are “find” and “insert/update”

• List have (small) ranges of ints as keys
• Dictionaries take any hashable type as key

• If a list suffices, don’t use a dictionary:
 Same $O()$ but bigger constant in time and memory
Sets

• Special case of Dictionaries, if you want

• No value associated to key

• Just is / is not
<table>
<thead>
<tr>
<th>Operation</th>
<th>Sets</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy, $s_1 = s$</td>
<td></td>
<td>$O(n)$</td>
</tr>
<tr>
<td><code>s.isdisjoint(s1)</code> , <code>s.issubset(s1)</code> , <code>s.issuperset(s1)</code></td>
<td></td>
<td>$O(n_1+n_2)$</td>
</tr>
<tr>
<td><code>s.union(s1)</code> , <code>s.intersection(s1)</code> , <code>s.difference(s1)</code></td>
<td></td>
<td>$O(n_1+n_2)$</td>
</tr>
<tr>
<td><code>x (not) in s</code></td>
<td></td>
<td>$O(1)$</td>
</tr>
<tr>
<td><code>s.add(x)</code></td>
<td></td>
<td>$O(1)$</td>
</tr>
<tr>
<td><code>s.remove(x)</code> (exception if not in)</td>
<td></td>
<td>$O(1)$</td>
</tr>
<tr>
<td><code>s.discard(x)</code> (no exception)</td>
<td></td>
<td>$O(1)$</td>
</tr>
<tr>
<td><code>len(s)</code></td>
<td></td>
<td>$O(1)$</td>
</tr>
<tr>
<td><code>for x in s ...</code></td>
<td></td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>
To remember

• Dictionaries: Functions keys \rightarrow values

• Sets: add, remove, is / is not

• Huge speedups over lists in many problems

• They are your friends

• Central to Python