Lecture 8. Evaluation. Other Predictors. Clustering

Ricard Gavaldà

MIRI Seminar on Data Streams, Spring 2015
Predictor Evaluation
Predictor Evaluation

Target $T : X \rightarrow Y$, predictor $P : X \rightarrow Y$

Error under loss function $\ell : Y \times Y \rightarrow \mathbb{R}$ and some distribution:

$$E_x[\ell(P(x), T(x))]$$

Approximated on a finite labeled sample $S = ((x_1, y_1), \ldots, (x_n, y_n))$ by

$$\frac{1}{n} \sum_{i=1}^{n} \ell(P(x_i), y_i)$$

Common loss functions

- $\ell(a, b) = (a - b)^2$ (regression)
- $\ell(a, b) = 0$ if $a = b$, 1 otherwise (classification)
Evaluation - Batch setting

- Split training set + test set
- Leave-one-out
- k-fold cross-validation
- ...

None translates obviously to stream setting; esp. with drift
Interleaved test then train
- train on next N stream items
- evaluate on next M stream items
- repeat

Problem: choice of N and M?
Evaluation in Streams: prequential

Prequential

for each stream item,
 predict
 when (and if) its label is known,
 use prediction and label to evaluate
 then use (item,label) to train

Problem 1: Tends to be pessimistic - early errors when model undertrained count as errors forever

Example. Suppose \(\Pr[\text{error at time } t \text{ is } 1/\sqrt{t}] \)
At time \(T \), current error is \(\approx 1/\sqrt{T} \)
But \(E[\text{observed prequential error at time } T] \approx 2/\sqrt{T} \), twice
Prequential

for each stream item,
predict
when (and if) its label is known,
use prediction and label to evaluate
then use (item,label) to train

Problem 2: If there is drift, estimation may be arbitrarily off

Solution to problems 1 and 2: Use fading/decaying or sliding windows
1. Count only “edge over chance agreement”: Kappa statistic

\[\kappa = \frac{\text{Pr}[\text{agreement}] - \text{Pr}[\text{chance agreement}]}{1 - \text{Pr}[\text{chance agreement}]} \]

where

\[\text{Pr}[\text{chance agreement}] = \sum_c \text{Pr}[c]^2 \]
2. Temporal dependencies

- Question: will it rain tomorrow?
- Pretty good answer: ‘yes’ if it rained today, ‘no’ otherwise

Observations are not independently drawn!
Temporal dependencies: use to your advantage!

- Baseline classifier: $\text{pred}_t = y_{t-1}$

- Temporally augmented classifiers [Zliobaite, Bifet et al 15]

 $\text{pred}_t = \text{classifier}(x_t, y_{t-1}, \ldots, y_{t-k})$
Other predictors
Other predictors

- Naive Bayes: Easy to streamize
- Linear regression: Next slide
- Model trees: Decision trees with a model in each leaf
 - Naïve Bayes and Linear regression common choices
- Bagging, Boosting
- Dynamic ensemble methods
Linear regression model:

\[f(x) = w_0 + \sum_{i=1}^{d} w_i x_i = x \cdot w \]

Least squares fitting:

Given \(\{(x_j, y_j)\}_{j=1}^{t} \), minimize sum of squares

\[\sum_{j=1}^{t} (y_j - f(x_j))^2 = (y - X \cdot w)^T \cdot (y - X \cdot w) \]

Solution:

\[w = (X^T X)^{-1} X^T y \]
We mentioned a sketch with low memory for this in Linear Algebra lecture

But, in practice, good old Perceptron has all the advantages:

- Cost $O(d)$ per item
- Memory $O(d)$
- Adapts to change (at rate λ)

Weight update rule: Given (x, y)

$$w_i = w_i + \lambda \cdot (y - f_w(x)) \cdot x_i$$

= minimizes MSE via Stochastic Gradient Descent
How to simulate sampling with replacement in streams?

create k empty base classifiers
for each example x
 for i = 1 to k
 give r copies of x to ith classifier with prob. P(r)

predict(x) = majority vote of k classifiers

It can be shown that this works for P(r) = Poisson(1)
[Oza-Russell 01]
Stream setting: How to do this without storing sample S?

“increase weight in S of instances x where
\[
\text{sign}(w_1 C_1(x) + \cdots + w_t C_t(x)) \text{ is wrong}
\]"

- Several proposals exist
- None outperforms bagging so far
- Not well understood theoretically
Dynamic Ensemble Methods

- Many variants
- Keep a pool of classifiers
- Rules for creating new classifiers
- Rules for deleting classifiers
- Rule for predicting from the pool

Exercise 1.

Suggest a sensible implementation for the above that can deal with evolving streams.
Clustering
Three main strategies:

- Point assignment
- Agglomerative: bottom-up hierarchical
- Divisive: top-down hierarchical
Clustering: point assignment

Fix k, desired number of clusters:

- k-means / k-median: minimize avg distance to closest cluster
- k-center: minimize max distance to closest cluster (= cluster radius)

Specific sketches mentioned in Lectures 4 and 5
Several streaming proposals for k-means
VFKM: Very Fast k-means (Domingos-Hulten 01)

repeat
 1. assign points to closest centroid;
 2. move centroids to average of their clusters;
until 3. stable

1. S new points each round
2. approximate average by Hoeffding bound on S
3. If it does not stabilize, we saw too few points: restart with larger S
Clustering: point assignment

StreamKM++ [Ackermann+12]

- “Coreset” of a set S w.r.t. a problem: subset of S such that solving the problem on the coreset approximately solves the problem on S

- Recursively builds a tree whose leaves form a coreset for k-means-like algorithm
Divisive clustering: BIRCH [Zhang+96]

- Fast bottom-up clustering
- Works well with “spherical” cluster structure

- Tree of clusters, similar to B-tree
- Parameters: branch factor + max radius of clusters
- Stores center + radius + sum of squares at each node
Divisive clustering: BIRCH [Zhang+96]

- Fast bottom-up clustering
- Works well with “spherical” cluster structure

- Push a new point to closest leaf
- If it fits in that leaf (within radius), done
- Otherwise, create new node at same level
- If capacity exceeded, split parent & recurse
Unlike BIRCH, can deal with time change

Each point comes with a time stamp
Each tree node keeps earliest and latest timestamp
Nodes that are too old can be dropped

Snapshot: set of nodes of similar timestamps
Comparing snapshots = Cluster evolution
ODAC: Online Divisive Agglomerative Clustering

- Top-down hierarchical clustering
- Initially for time series clustering, but idea can be generalized to other concepts
- Different tree levels use points from different time windows
create initial node (root leaf);
for each stream point
 push down point to appropriate leaf;
 update leaf statistics;
 if (leaf is too heterogeneous)
 make it inner node;
 create children = more homogeneous clusters
Adaptive index for microclusters (log-time insertion)
Also timestamps: time-adapting
Buffer and hitchhikers: adapt to stream speed
Adapt to available memory
Implemented in the MOA system