Lecture 7. Data Stream Mining. Building decision trees

Ricard Gavaldà

MIRI Seminar on Data Streams, Spring 2015

Contents

Data Stream Mining

Decision Tree Learning

Data Stream Mining

Background: Learning and mining

- Finding in what sense data is not random
- For example: frequently repeated patterns, correlations among attributes, one attribute being predictable from others, . . .
- Fix a description language a priori, and show that data has a description more concise than the data itself

Background: Learning and mining

Mining in Data Streams: What's new?

- Make one pass on the data
- Use low memory
 - Certainly sublinear in data size
 - In practice, that fits in main memory no disk accesses
- Use low processing time per item
- Data evolves over time nonstationary distribution

Two main approaches

- Learner builds model, perhaps batch style
- When change detected, revise or rebuild from scratch

Two approaches

- Keep accurate statistics of recent / relevant data
- e.g. with "intelligent counters"
- Learner keeps model in sync with these statistics

Decision Tree Learning

Background: Decision Trees

- Powerful, intuitive classifiers
- Good induction algorithms since mid 80's (C4.5, CART)
- Many many algorithms and variants now

Top-down Induction, C4.5 Style

```
Induct(Dataset S) returns Tree T if (not_expandable(S)) then return Build_Leaf(S) else choose "best" attribute a \in A split S into S_1, \ldots S_V using a for i = 1...V, T_i = \operatorname{Induct}(S_i) return Tree(root=a, T_1, \ldots, T_V))
```

Top-down Induction, C4.5 Style

To have a full algorithm one must specify:

- not_expandable(S)
- Build_Leaf(S)
- notion of "best" attribute
 - usually, maximize some gain function G(A, S)
 - information gain, Gini index, . . .
 - relation of A to the class attribute, C
- Postprocessing (pruning?)

Time, memory: reasonable polynomial in |S|, |A|, |V|

Extension to continuous attributes: choose attribute *and* cutpoints

VFDT

P. Domingos and G. Hulten: "Mining high-speed data streams" KDD'2000.

- Very influential paper
- Very Fast induction of Decision Trees, a.k.a. Hoeffding trees
- Algorithm for inducing decision trees in data stream way
- Does not deal with time change
- Does not store examples memory independent of data size

VFDT

Crucial observation [DH00]

An almost-best attribute can be pinpointed quickly: Evaluate gain function G(A,S) on examples seen so far S, then use Hoeffding bound

Criterion

If A_i satisfies

$$G(A_i, S) > G(A_i, S) + \varepsilon(|S|, \delta)$$
 for every $j \neq i$

conclude " A_i is best" with probability $1 - \delta$

VFDT-like Algorithm

```
T := \text{Leaf with empty statistics};
For t = 1, 2, ... do VFDT_Grow(T,x_t)
     VFDT_Grow (Tree T, example x)
          run x from the root of T to a leaf L
          update statistics on attribute values at L using x
          evaluate G(A_i, S_i) for all i from statistics at L
          if there is an i such that, for all i,
             G(A_i, S_L) > G(A_i, S_L) + \varepsilon(S_L, \delta) then
                  turn leaf L to a node labelled with A<sub>i</sub>
                  create children of L for all values of Ai
                  make each child a leaf with empty statistics
```

Extensions of VFDT

- IADEM [G. Ramos, J. del Campo, R. Morales-Bueno 2006]
 - Better splitting and expanding criteria
 - Margin-driven growth
- VFDT_c [J. Gama, R. Fernandes, R. Rocha 2006],
 UFFT [J. Gama, P. Medas 2005]
 - Continuous attributes
 - Naive Bayes at inner nodes and leaves
 - Short term memory window for detecting concept drift
 - Converts inner nodes back to leaves, fill them with window data
 - Different splitting and expanding criteria
- CVFDT [G. Hulten, L. Spencer, P. Domingos 2001]

CVFDT

G. Hulten, L. Spencer, P. Domingos, "Mining time-changing data streams", KDD 2001

- Concept-adapting VFDT
- Update statistics at leaves and inner nodes
- Main idea: when change is detected at a subtree, grow candidate subtree
- Eventually, either current subtree or candidate subtree is dropped
- Classification at leaves based on most frequent class in a window of examples
- Decisions at leaf use a window of recent examples

CVFDT

VFDT:

- No concept drift
- No example memory
- ullet No parameters but δ
- Rigorous performance guarantees

CVFDT:

- Concept drift
- Window of examples
- Several parameters besides δ
- No performance guarantees

CVFDT

Parameters related to time-change [default]:

- W: example window size [100,000]
- T_1 : time between checks of splitting attributes [20,000]
- T_2 : # examples to decide whether best splitting attribute is another [2,000]
- \bullet T_3 : time to build alternate trees [10,000]
- T_4 : # examples to decide if alternate tree better [1,000]

Enter ADWIN

[Bifet, G. 09] Adaptive Hoeffding Trees

Recall: the ADWIN algorithm

- detects change in the mean of a data stream of numbers
- keeps a window W whose mean approximates current mean
- memory, time O(log W)

Adaptive Hoeffding Trees

- Replace counters at nodes with ADWIN's (AHT-EST), or
- Add an ADWIN to monitor the error of each subtree (AHT-DET)
- Also for alternate trees
- Drop the example memory window

AHT have no parameters!

- When to start growing alternate trees?
 When ADWIN says "error reate is increasing", or
 When ADWIN for a counter says "attribute statistics are changing"
- How to start growing new tree?
 Use accurate estimates from ADWIN's at parent no window
- When to tell alternate tree is better?
 Use the estimation of error by ADWIN to decide
- How to answer at leaves?
 Use accurate estimates from ADWIN's at leaf no window

Memory

CVFDT's Memory is dominated by example window, if large

CVFDT	AHT-Est	AHT-DET
TAVC + AW	TAVC log W	TAVC + T log W

T = Tree size

A = # attributes

V = Values per attribute

W =Size of example window

C =Number of classes

Experiments

Figure: Learning curve of SEA concepts using continuous attributes

Adaptive Hoeffding Trees: Summary

- No "magic" parameters. Self-adapts to change
- Always as accurate as CVFDT, and sometimes much better
- Less memory no example window
- Moderate overhead in time (<50%). Working on it
- Rigorous guarantees possible

Exercise

Exercise 1

- Design a streaming version of the Naive Bayes classifier for stationary streams
- Now use ADWIN or some other change detection / tracking mechanism for making it work on evolving data streams

Recall that the NB classifier uses memory proportional to the product of #attributes x #number of values per attribute x #classes. Expect an additional log factor in the adaptive version. Update time should be small (log, if not constant).