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Background: Learning and mining

Finding in what sense data is not random

For example: frequently repeated patterns, correlations
among attributes, one attribute being predictable from
others, . . .

Fix a description language a priori, and show that data has
a description more concise than the data itself
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Mining in Data Streams: What’s new?

Make one pass on the data

Use low memory
Certainly sublinear in data size
In practice, that fits in main memory – no disk accesses

Use low processing time per item

Data evolves over time - nonstationary distribution
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Two main approaches

Learner builds model, perhaps batch style
When change detected, revise or rebuild from scratch
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Two approaches

Keep accurate statistics of recent / relevant data
e.g. with “intelligent counters”
Learner keeps model in sync with these statistics
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Decision Tree Learning
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Background: Decision Trees

Powerful, intuitive classifiers

Good induction algorithms since
mid 80’s (C4.5, CART)

Many many algorithms and
variants now
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Top-down Induction, C4.5 Style

Induct(Dataset S) returns Tree T
if (not expandable(S)) then

return Build Leaf(S)
else

choose “best” attribute a ∈ A
split S into S1, . . . Sv using a
for i = 1..v , Ti = Induct(Si)

return Tree(root=a,T1,. . . ,Tv ))
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Top-down Induction, C4.5 Style

To have a full algorithm one must specify:

not expandable(S)
Build Leaf(S)
notion of “best” attribute

usually, maximize some gain function G(A,S)
information gain, Gini index, . . .
relation of A to the class attribute, C

Postprocessing (pruning?)

Time, memory: reasonable polynomial in |S|, |A|, |V |

Extension to continuous attributes: choose attribute and
cutpoints
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VFDT

P. Domingos and G. Hulten: “Mining high-speed data streams”
KDD’2000.

Very influential paper
Very Fast induction of Decision Trees, a.k.a. Hoeffding
trees
Algorithm for inducing decision trees in data stream way
Does not deal with time change
Does not store examples - memory independent of data
size
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VFDT

Crucial observation [DH00]
An almost-best attribute can be pinpointed quickly:
Evaluate gain function G(A,S) on examples seen so far S,
then use Hoeffding bound

Criterion
If Ai satisfies

G(Ai ,S)> G(Aj ,S)+ ε(|S|,δ ) for every j 6= i

conclude “Ai is best” with probability 1−δ
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VFDT-like Algorithm

T := Leaf with empty statistics;
For t = 1,2, . . . do VFDT Grow(T,xt )

VFDT Grow (Tree T , example x)
run x from the root of T to a leaf L
update statistics on attribute values at L using x
evaluate G(Ai ,SL) for all i from statistics at L
if there is an i such that, for all j ,

G(Ai ,SL)> G(Aj ,SL)+ ε(SL,δ ) then
turn leaf L to a node labelled with Ai

create children of L for all values of Ai

make each child a leaf with empty statistics
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Extensions of VFDT

IADEM [G. Ramos, J. del Campo, R. Morales-Bueno 2006]
Better splitting and expanding criteria
Margin-driven growth

VFDTc [J. Gama, R. Fernandes, R. Rocha 2006],
UFFT [J. Gama, P. Medas 2005]

Continuous attributes
Naive Bayes at inner nodes and leaves
Short term memory window for detecting concept drift
Converts inner nodes back to leaves, fill them with window
data
Different splitting and expanding criteria

CVFDT [G. Hulten, L. Spencer, P. Domingos 2001]
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CVFDT

G. Hulten, L. Spencer, P. Domingos, “Mining time-changing
data streams”, KDD 2001

Concept-adapting VFDT
Update statistics at leaves and inner nodes
Main idea: when change is detected at a subtree, grow
candidate subtree
Eventually, either current subtree or candidate subtree is
dropped
Classification at leaves based on most frequent class in a
window of examples
Decisions at leaf use a window of recent examples
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CVFDT

VFDT:

No concept drift
No example memory
No parameters but δ

Rigorous
performance
guarantees

CVFDT:

Concept drift
Window of examples
Several parameters
besides δ

No performance
guarantees
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CVFDT

Parameters related to time-change [default]:

1 W : example window size [100,000]
2 T1: time between checks of splitting attributes [20,000]
3 T2: # examples to decide whether best splitting attribute is

another [2,000]
4 T3: time to build alternate trees [10,000]
5 T4: # examples to decide if alternate tree better [1,000]
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Enter ADWIN

[Bifet, G. 09] Adaptive Hoeffding Trees

Recall: the ADWIN algorithm

detects change in the mean of a data stream of numbers
keeps a window W whose mean approximates current
mean
memory, time O(logW )
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Adaptive Hoeffding Trees

Replace counters at nodes with ADWIN’s (AHT-EST), or

Add an ADWIN to monitor the error of each subtree
(AHT-DET)

Also for alternate trees

Drop the example memory window
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AHT have no parameters!

When to start growing alternate trees?
When ADWIN says “error reate is increasing”, or
When ADWIN for a counter says “attribute statistics are

changing”
How to start growing new tree?

Use accurate estimates from ADWIN’s at parent - no
window
When to tell alternate tree is better?

Use the estimation of error by ADWIN to decide
How to answer at leaves?

Use accurate estimates from ADWIN’s at leaf - no
window
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Memory

CVFDT’s Memory is dominated by example window, if large

CVFDT AHT-Est AHT-DET
TAVC +AW TAVC logW TAVC +T logW

T = Tree size A = # attributes
V = Values per attribute W = Size of example window
C = Number of classes
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Experiments

10

12

14

16

18

20

22

24

1
2
3

4
5

6
7

8
9

1
1
1

1
3
3

1
5
5

1
7
7

1
9
9

2
2
1

2
4
3

2
6
5

2
8
7

3
0
9

3
3
1

3
5
3

3
7
5

3
9
7

Examples x 1000

E
rr

o
r 

R
a

te
 (

%
)

AHTree

CVFDT

Figure: Learning curve of SEA concepts using continuous attributes
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Adaptive Hoeffding Trees: Summary

No “magic” parameters. Self-adapts to change

Always as accurate as CVFDT, and sometimes much
better

Less memory - no example window

Moderate overhead in time (<50%). Working on it

Rigorous guarantees possible
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Exercise

Exercise 1
Design a streaming version of the Naive Bayes classifier
for stationary streams
Now use ADWIN or some other change detection / tracking
mechanism for making it work on evolving data streams

Recall that the NB classifier uses memory proportional to the
product of #attributes x #number of values per attribute x
#classes. Expect an additional log factor in the adaptive
version. Update time should be small (log, if not constant).
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