
Lecture 5. Graph streams

Ricard Gavaldà

MIRI Seminar on Data Streams, Spring 2014

Contents

1 Counting subgraphs

2 Connectivity and distances
Spanning forests
Graph spanners

3 HyperANF: Approximating distance distributions

4 Clustering

Graph streams

Two main models:

Adjacency model: Stream is a list of edges (u,v) ∈G in
arbitrary order
Incidence model: Stream is a list of tuples (u,v1, . . . ,vk)
where the (u,v1), . . . ,(u,vk) are all edges leaving u in G

In fully dynamic models, edge deletions are allowed

Counting subgraphs

Counting triangles

Simplest instance of “counting subgraph occurrences”

Interesting for e.g. “clustering coefficient” and communities

[Bar-Yossef+02]: reduction to computing moments
[Buriol+06] better space & update time bounds

Counting triangles

Ti (i = 0 . . .3) = set / number of tuples (u,v ,w) for which i
out of the 3 possible edges are present

We want to approximate T3

Reduction:
For every edge (u,v) in stream, produce all tuples (u,v ,w)

Observation: (u,v ,w) is generated i times iff it is in Ti

Counting triangles via moments

In the generated stream:

Fk = 1 ·T1 + 2k ·T2 + 3k ·T3

Therefore  F0
F1
F2

=

 1 1 1
1 2 3
1 4 9

 ·
 T1

T2
T3


Invertible matrix

Counting triangles via moments

So T3 is a linear combination of F0, F1, F2

And we can approximate F0, F1, F2 in O(ε−2 ln(|V |3/δ))

Looks like we’re done. But there’s a glitch

Counting triangles via moments, end

The linear combination is

T3 = F0−1.5F1 + 0.5F2

So good approximations may cancel into a bad approximation

We need to average O((T1 + T2 + T3)/T3)2 copies of the
algorithm

→ space O(1
ε2 (1 + T1+T2

T3
)2 log(|V |/δ))

Counting triangles, another solution

Let m = |E |, n = |V |, and assume T3 ≥ t . Note T3 ≤m(n−2)

Pick an edge ei = (u,v) at random from stream
Pick w uniformly at random from V −{u,v}
If there are edges ej = (u,w) and ek = (v ,w), for j ,k > i in
stream, return 3m(n−2), else return 0

E [output] = T3

Var [output] = T3(3m(n−2)−T3)

Repeat O(ε−2mn/t) times in parallel and average
Note use of reservoir sampling

Counting arbitrary subgraphs

[Kane+12]

Stream for graph G on n vertices, t edges

Fixed graph H, m vertices, k edges

Want to approximate #H(G), the number of occurrences
of H in G

Counting arbitrary subgraphs

Theorem
For each ε > 0 there is an algorithm that ε-approximates
#H(G) using

O
(

1
ε2

tk

#H(G)2 logn
)

bits if δ (H)≥ 2

O
(

1
ε2

tk ∆(G)k

#H(G)2 logn
)

bits for every H

Here ∆() and δ () denote maximum and minimum degrees

(My, not your) homework: understand this algorithm

Counting arbitrary subgraphs

Example: H = undirected triangle, G = G(n,p) random graph

E [#H(G)]' n3p3

E [|EG|]' n2p
Space = O(ε−2t3/#H(G)2 logn) = O(ε−2p−3 logn)

Counting arbitrary subgraphs

Init: For each edge (a,b) ∈ H, set Zab = 0
Update((u,v)): For each (a,b) ∈ H,

Zab += Xa(u) ·Xb(v) ·QY (u)/degH (a) ·QY (v)/degH (b)

Query: return the real part of

t t

t! ·auto(H)
· ∏

a,b∈H
Zab

where
Q is a τ-th root of unity, τ = 2k −1
Y and X are complex-valued 4k -wise independent hash
functions

Counting arbitrary subgraphs

Intuition:

X maps u, v to random potential images a, b in H
Y randomly indicates whether the corresponding H edge
exists in G
This is done separately for all edges in H. Presumably all
cross-terms cancel by independence
Basic algorithm with expected value #H(G) and large
variance
Run many copies and average

Connectivity and distances

Connectivity and spanning forests

Adjacency stream model

Undirected graphs

Spanning trees (forests) solve connectivity problems
Are vertices u, v connected?
How many connected components?

Building a spanning forest

H ← /0;
for each edge (u,v) in stream

add (u,v) to H iff it does not create a cycle

Exercise 5. Prove this claim
At all times, H is a spanning forest of the graph G seen so far.
I.e., H is a set of trees and there is a path in G between any two
vertices iff there is a path in H

Building minimum weight spanning forests

Consider weighted, undirected graphs

H ← /0;
for each edge (u,v) in stream

add (u,v) to H;
if (H has a cycle) remove heaviest edge in the cycle

Claim
At all times, H is a minimum weight spanning forest of the
graph G seen so far

Distances and graph spanners

Consider unweighted, undirected graphs
Each such graph defines a distance between vertices, by
shortest paths

If we can compute t-spanners, we can t-approximate distances

Spanner Graph
A graph H is a t-spanner of graph G if for every u,v ∈G

dG(u,v)≤ dH(u,v)≤ t ·dG(u,v).

(Typically, VH = VG and EH ⊆ EG)

Computing spanners

H ← /0;
For each edge (u,v) in the stream for G

if (dH(u,v)≤ t) ignore (u,v), else add it to H

Suppose there is an edge (u,v) in G
If we added it to H, fine
If not, there was (and still is) a path of length ≤ t in H
Hence H is a t-spanner of G

Note: condition = “adding (u,v) creates a cycle of length
≤ t + 1 in H”

Computing spanners

How large will H be?

Lemma (see e.g. [McGregor])
A graph H on n nodes with no cycles of length ≤ 2t has
O(n1+1/t) edges

Computing spanners

With this idea and clever data structures, [Baswana08,Elkin08]:

Theorem
There is a algorithm that, given an integer t, and a streamed
graph builds a (2t−1)-spanner in space O(n1+1/t). Time per
edge is (amortized) O(1)

Note that as 2t−1 “tends to 1”, space tends to O(n2)

Distance distributions

For a directed graph G = (V ,E) and u ∈ V , the neighborhood
functions

B(u, t) = set of vertices at distance ≤ t from u
N(u, t) = |B(u, t)|

N(t) = number of pairs (u,v) at (one-way) distance ≤ t

Useful, but costly to compute exactly for large G

HyperANF

ANF [Palmer,Gibbons,Faloutsos02]: Memory O(n logn)

2 bilion links graph→ 30 minutes on 90 machines

HyperANF [Boldi,Rosa,Vigna11]: Memory O(n log logn)

15 minutes on a laptop

HyperANF

Key observation 1:

B(u, t) = B(u, t−1)∪
⋃

u→v
B(v , t−1)

Obvious algorithm stores sets B(u, t) in disk, repeats passes,
random access. Slow

Idea: don’t store B(u, t), just an approximation of its cardinality
with a HyperLogLog counter

But then, how do we compute cardinality of union with only
cardinalities?

HyperANF

Key observation 2:
HyperLogLog is well-behaved w.r.t unions

Fix a number of registers r in HyperLogLog.
The HyperLogLog counter associated to S1S2 is obtained
maximizing the counters for S1 and S2, register for register

HyperANF

Other ideas:

Broadword programming: Resisters are short than
machine words. Pack several in a word and use bitwise
opserations to speedup maximumization

Try to maximize only changed counters. Large savings
near the end, when most counters have stabilized.

Systolic computation: A modified counter signals its
predecessors that they must update

HyperANF: applications

Distinguishing Web-like and social-network-like networks
[Boldi+11]

Shortest-path-index of dispersion: Variance-to-mean ratio
of distances
< 1 for social networks, > 1 for web-like networks

Diameter of the Facebook graph [Backstrom+11]
720M active users, 69B friendship links
Average distance is 4.74 (= 3.74 degrees of separation)
92% of users are at distance ≤ 5
10 hours on 256Gb RAM machine

Clustering

k -center clustering: The problem

Just a taster of a large body of work on geometric problems . . .

k -center clustering
Fix a metric space (X ,d)

Input: an integer k , a stream of points S = x1,x2, . . .

Output: a set Y ⊆ X , |Y | ≤ k , minimizing

max
i

min
y∈Y

d(xi ,y)

k -center clustering: Greedy algorithm

Suppose we know optimal value OPT with k centers. Then:

r = 2OPT ;
repeat over the stream:

wait for a point y at distance > r from all previous centers
add y as new center

Claim: This algorithm uses space k and returns a solution with
value ≤ 2OPT
BTW, (2− ε)-approximation is impossible if P 6= NP
(even non-streaming)

k -center clustering: Greedy algorithm

Why does this work?

Each center is at distance > r from previous ones
Suppose the value of returned solution is > r
∴ One point in stream is still at distance > r from all k
centers
We have k + 1 points at distance > r = 2OPT from each
other
X cannot be covered with any k balls of radius OPT

k -center clustering: Streaming algorithm

[McCutchen-Khuller08], [Guha09]

Now we don’t know OPT
We could get approximation (1 + ε) if we knew OPT (1± ε)

Let’s run parallel copies of with guesses OPT ≤ (1 + ε)i ,
i = 0,1,2, . . .
. . . carefully not to exceed space bounds

k -center clustering: Streaming algorithm

Cluster first k + 1 points in S; gives a lower bound a≤OPT

Run parallel copies with radius (1 + ε)ia,
i so that radius ranges from a to a/ε

While k centers suffice, the smallest radius that goes well
is a 2(1 + ε)-approximation

k -center clustering: Streaming algorithm

We have a problem when the algorithm tries to open a
(k + 1)-th center, after picking say y1, . . . yk

This is because xj+1 is at distance g > a/ε from existing
centers

We realize we should have guessed OPT > g

k -center clustering: Streaming algorithm

But we have not worked in vain:

Claim
If OPT (x1, . . .xj ,xj+1, . . .) = OPT , then
OPT (y1, . . .yk ,xj+1, . . .)≤OPT + 2g

Forget all previous point but the yi ’s, restart again with a = g,
seeds yi ’s

k -center clustering: Streaming algorithm

Deterministic!

2(1 + ε) approximation algorithm

Space & update time: O(k/ε · log(1/ε))

run i copies, with (1 + ε)ia = a/ε

i ' (1/ε) · log(1/ε)

	Counting subgraphs
	Connectivity and distances
	Spanning forests
	Graph spanners

	HyperANF: Approximating distance distributions
	Clustering

