#### Lecture 5. Graph streams

Ricard Gavaldà

MIRI Seminar on Data Streams, Spring 2014

#### Contents

- Counting subgraphs
- Connectivity and distances
  - Spanning forests
  - Graph spanners
- 3 HyperANF: Approximating distance distributions
- 4 Clustering

#### Graph streams

#### Two main models:

- Adjacency model: Stream is a list of edges (u, v) ∈ G in arbitrary order
- Incidence model: Stream is a list of tuples  $(u, v_1, ..., v_k)$  where the  $(u, v_1), ..., (u, v_k)$  are all edges leaving u in G

In fully dynamic models, edge deletions are allowed

## Counting subgraphs

#### Counting triangles

Simplest instance of "counting subgraph occurrences"

Interesting for e.g. "clustering coefficient" and communities

[Bar-Yossef+02]: reduction to computing moments [Buriol+06] better space & update time bounds

#### Counting triangles

- T<sub>i</sub> (i = 0...3) = set / number of tuples (u, v, w) for which i out of the 3 possible edges are present
- We want to approximate T<sub>3</sub>
- Reduction: For every edge (u, v) in stream, produce all tuples (u, v, w)
- Observation: (u, v, w) is generated i times iff it is in  $T_i$

## Counting triangles via moments

In the generated stream:

$$F_k = 1 \cdot T_1 + 2^k \cdot T_2 + 3^k \cdot T_3$$

Therefore

$$\begin{pmatrix} F_0 \\ F_1 \\ F_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix} \cdot \begin{pmatrix} T_1 \\ T_2 \\ T_3 \end{pmatrix}$$

Invertible matrix

## Counting triangles via moments

So  $T_3$  is a linear combination of  $F_0$ ,  $F_1$ ,  $F_2$ 

And we can approximate  $F_0$ ,  $F_1$ ,  $F_2$  in  $O(\varepsilon^{-2}\ln(|V|^3/\delta))$ 

Looks like we're done. But there's a glitch

## Counting triangles via moments, end

The linear combination is

$$T_3 = F_0 - 1.5F_1 + 0.5F_2$$

So good approximations may cancel into a bad approximation

We need to average  $O((T_1 + T_2 + T_3)/T_3)^2$  copies of the algorithm

$$ightarrow$$
 space  $O(rac{1}{arepsilon^2}(1+rac{T_1+T_2}{T_3})^2\log(|V|/\delta))$ 

#### Counting triangles, another solution

Let 
$$m = |E|$$
,  $n = |V|$ , and assume  $T_3 \ge t$ . Note  $T_3 \le m(n-2)$ 

- Pick an edge  $e_i = (u, v)$  at random from stream
- Pick w uniformly at random from  $V \{u, v\}$
- If there are edges  $e_j = (u, w)$  and  $e_k = (v, w)$ , for j, k > i in stream, return 3m(n-2), else return 0
- E[output] = T<sub>3</sub>
- $Var[output] = T_3(3m(n-2) T_3)$
- Repeat  $O(\varepsilon^{-2}mn/t)$  times in parallel and average
- Note use of reservoir sampling

#### [Kane+12]

- Stream for graph G on n vertices, t edges
- Fixed graph H, m vertices, k edges
- Want to approximate #H(G), the number of occurrences of H in G

#### **Theorem**

For each  $\varepsilon > 0$  there is an algorithm that  $\varepsilon$ -approximates # H(G) using

- $O\left(\frac{1}{\varepsilon^2} \frac{t^k}{\# H(G)^2} \log n\right)$  bits if  $\delta(H) \ge 2$
- $O\left(\frac{1}{\varepsilon^2} \frac{t^k \Delta(G)^k}{\# H(G)^2} \log n\right)$  bits for every H

Here  $\Delta()$  and  $\delta()$  denote maximum and minimum degrees

(My, not your) homework: understand this algorithm

Example: H = undirected triangle, G = G(n, p) random graph

- $E[\#H(G)] \simeq n^3 p^3$
- $E[|E_G|] \simeq n^2 p$
- Space =  $O(\varepsilon^{-2}t^3/\#H(G)^2\log n) = O(\varepsilon^{-2}p^{-3}\log n)$

Init: For each edge  $(a,b) \in H$ , set  $Z_{ab} = 0$ 

Update((u, v)): For each  $(a, b) \in H$ ,

$$Z_{ab} += X_a(u) \cdot X_b(v) \cdot Q^{Y(u)/deg_H(a)} \cdot Q^{Y(v)/deg_H(b)}$$

Query: return the real part of

$$\frac{t^t}{t! \cdot auto(H)} \cdot \prod_{a,b \in H} Z_{ab}$$

#### where

- Q is a  $\tau$ -th root of unity,  $\tau = 2^k 1$
- Y and X are complex-valued 4k-wise independent hash functions

#### Intuition:

- X maps u, v to random potential images a, b in H
- Y randomly indicates whether the corresponding H edge exists in G
- This is done separately for all edges in H. Presumably all cross-terms cancel by independence
- Basic algorithm with expected value #H(G) and large variance
- Run many copies and average

# Connectivity and distances

## Connectivity and spanning forests

Adjacency stream model

Undirected graphs

Spanning trees (forests) solve connectivity problems

- Are vertices u, v connected?
- How many connected components?

## Building a spanning forest

 $H \leftarrow \emptyset$ ; for each edge (u, v) in stream add (u, v) to H iff it does not create a cycle

#### Exercise 5. Prove this claim

At all times, H is a spanning forest of the graph G seen so far. I.e., H is a set of trees and there is a path in G between any two vertices iff there is a path in H

## Building minimum weight spanning forests

Consider weighted, undirected graphs

```
H \leftarrow \emptyset;
for each edge (u, v) in stream
add (u, v) to H;
if (H has a cycle) remove heaviest edge in the cycle
```

#### Claim

At all times, H is a minimum weight spanning forest of the graph G seen so far

#### Distances and graph spanners

Consider unweighted, undirected graphs

Each such graph defines a distance between vertices, by shortest paths

If we can compute t-spanners, we can t-approximate distances

#### Spanner Graph

A graph H is a t-spanner of graph G if for every  $u, v \in G$ 

$$d_G(u,v) \leq d_H(u,v) \leq t \cdot d_G(u,v).$$

(Typically,  $V_H = V_G$  and  $E_H \subseteq E_G$ )

#### Computing spanners

```
H \leftarrow \emptyset;
For each edge (u, v) in the stream for G
if (d_H(u, v) \le t) ignore (u, v), else add it to H
```

- Suppose there is an edge (u, v) in G
- If we added it to H, fine
- If not, there was (and still is) a path of length  $\leq t$  in H
- Hence H is a t-spanner of G

Note: condition = "adding (u, v) creates a cycle of length  $\leq t + 1$  in H"

#### Computing spanners

How large will *H* be?

Lemma (see e.g. [McGregor])

A graph H on n nodes with no cycles of length  $\leq 2t$  has  $O(n^{1+1/t})$  edges

#### Computing spanners

With this idea and clever data structures, [Baswana08,Elkin08]:

#### **Theorem**

There is a algorithm that, given an integer t, and a streamed graph builds a (2t-1)-spanner in space  $O(n^{1+1/t})$ . Time per edge is (amortized) O(1)

Note that as 2t-1 "tends to 1", space tends to  $O(n^2)$ 

#### Distance distributions

For a directed graph G = (V, E) and  $u \in V$ , the neighborhood functions

$$B(u,t)$$
 = set of vertices at distance  $\leq t$  from  $u$   
 $N(u,t) = |B(u,t)|$   
 $N(t)$  = number of pairs  $(u,v)$  at (one-way) distance  $\leq t$ 

Useful, but costly to compute exactly for large G

## HyperANF<sup>1</sup>

ANF [Palmer,Gibbons,Faloutsos02]: Memory  $O(n \log n)$ 

ullet 2 bilion links graph o 30 minutes on 90 machines

HyperANF [Boldi,Rosa,Vigna11]: Memory  $O(n \log \log n)$ 

15 minutes on a laptop

## **HyperANF**

Key observation 1:

$$B(u,t) = B(u,t-1) \cup \bigcup_{u \to v} B(v,t-1)$$

Obvious algorithm stores sets B(u,t) in disk, repeats passes, random access. Slow

Idea: don't store B(u,t), just an approximation of its cardinality with a HyperLogLog counter

But then, how do we compute cardinality of union with only cardinalities?

## **HyperANF**

Key observation 2: HyperLogLog is well-behaved w.r.t unions

Fix a number of registers r in HyperLogLog. The HyperLogLog counter associated to  $S_1 S_2$  is obtained maximizing the counters for  $S_1$  and  $S_2$ , register for register

## **HyperANF**

#### Other ideas:

- Broadword programming: Resisters are short than machine words. Pack several in a word and use bitwise opserations to speedup maximumization
- Try to maximize only changed counters. Large savings near the end, when most counters have stabilized.
- Systolic computation: A modified counter signals its predecessors that they must update

## HyperANF: applications

## Distinguishing Web-like and social-network-like networks [Boldi+11]

- Shortest-path-index of dispersion: Variance-to-mean ratio of distances
- < 1 for social networks, > 1 for web-like networks

#### Diameter of the Facebook graph [Backstrom+11]

- 720M active users, 69B friendship links
- Average distance is 4.74 (= 3.74 degrees of separation)
- 92% of users are at distance ≤ 5
- 10 hours on 256Gb RAM machine



#### k-center clustering: The problem

Just a taster of a large body of work on geometric problems ...

#### k-center clustering

Fix a metric space (X, d)

Input: an integer k, a stream of points  $S = x_1, x_2,...$ 

Output: a set  $Y \subseteq X$ ,  $|Y| \le k$ , minimizing

$$\max_{i} \min_{y \in Y} d(x_{i}, y)$$

#### k-center clustering: Greedy algorithm

*Suppose* we know optimal value *OPT* with *k* centers. Then:

r = 2OPT;

repeat over the stream:

wait for a point y at distance > r from all previous centers add y as new center

Claim: This algorithm uses space k and returns a solution with value  $\leq 2OPT$ 

BTW,  $(2-\varepsilon)$ -approximation is impossible if P  $\neq$  NP (even non-streaming)

#### *k*-center clustering: Greedy algorithm

#### Why does this work?

- Each center is at distance > r from previous ones
- Suppose the value of returned solution is > r
- ∴ One point in stream is still at distance > r from all k centers
- We have k + 1 points at distance > r = 2OPT from each other
- X cannot be covered with any k balls of radius OPT

#### [McCutchen-Khuller08], [Guha09]

- Now we don't know OPT
- We could get approximation  $(1+\varepsilon)$  if we knew  $OPT(1\pm\varepsilon)$
- Let's run parallel copies of with guesses  $OPT \le (1 + \varepsilon)^i$ , i = 0, 1, 2, ...
- ... carefully not to exceed space bounds

- Cluster first k+1 points in S; gives a lower bound  $a \le OPT$
- Run parallel copies with radius  $(1+\varepsilon)^i a$ ,
  - i so that radius ranges from a to  $a/\varepsilon$
- While k centers suffice, the smallest radius that goes well is a 2(1+ε)-approximation

- We have a problem when the algorithm tries to open a (k+1)-th center, after picking say  $y_1, \ldots y_k$
- This is because  $x_{j+1}$  is at distance  $g > a/\varepsilon$  from existing centers
- We realize we should have guessed OPT > g

But we have not worked in vain:

#### Claim

If 
$$OPT(x_1,...x_j,x_{j+1},...) = OPT$$
, then  $OPT(y_1,...y_k,x_{j+1},...) \le OPT + 2g$ 

Forget all previous point but the  $y_i$ 's, restart again with a = g, seeds  $y_i$ 's

- Deterministic!
- $2(1+\varepsilon)$  approximation algorithm
- Space & update time:  $O(k/\varepsilon \cdot \log(1/\varepsilon))$ 
  - run *i* copies, with  $(1+\varepsilon)^i a = a/\varepsilon$
  - $i \simeq (1/\varepsilon) \cdot \log(1/\varepsilon)$