Lecture 5. Graph streams

Ricard Gavalda

MIRI Seminar on Data Streams, Spring 2014

Q Counting subgraphs

9 Connectivity and distances
@ Spanning forests
@ Graph spanners

e HyperANF: Approximating distance distributions

e Clustering

Graph streams

Two main models:

@ Adjacency model: Stream is a list of edges (u,v) € Gin
arbitrary order

@ Incidence model: Stream is a list of tuples (u, v1,..., vk)
where the (u,v1),...,(u, vk) are all edges leaving uin G

In fully dynamic models, edge deletions are allowed

Counting subgraphs

Counting triangles

Simplest instance of “counting subgraph occurrences”
Interesting for e.g. “clustering coefficient” and communities

[Bar-Yossef+02]: reduction to computing moments
[Buriol+06] better space & update time bounds

Counting triangles

@ T;(i=0...3) = set/ number of tuples (u, v, w) for which i
out of the 3 possible edges are present

@ We want to approximate T3

@ Reduction:
For every edge (u, v) in stream, produce all tuples (u, v, w)

@ Observation: (u,v,w) is generated i times iff it is in T;

Counting triangles via moments

In the generated stream:
Fr=1-T, +2k- T2—|-3k- T3

Therefore

Invertible matrix

Counting triangles via moments

So T3 is a linear combination of Fy, Fy, F»
And we can approximate Fy, Fq, F2 in O(e~2In(|V|3/$§))

Looks like we're done. But there’s a glitch

Counting triangles via moments, end

The linear combination is
T3=Fy—1.5F +0.5F
So good approximations may cancel into a bad approximation

We need to average O((T; + T2 + T3)/T3)? copies of the
algorithm

— space O(%(1+ 1£2)2log(| V|/8))

Counting triangles, another solution

Let m=|E|, n=|V|, and assume T3 > t. Note T3 < m(n—2)

Pick an edge e; = (u, v) at random from stream
Pick w uniformly at random from V — {u, v}

If there are edges e; = (u,w) and ex = (v,w), for j,k > iin
stream, return 3m(n—2), else return 0

Eloutput] = T3

Var[output] = T3(3m(n—2) — T3)

Repeat O(¢~2mn/t) times in parallel and average
Note use of reservoir sampling

Counting arbitrary subgraphs

[Kane+12]

@ Stream for graph G on n vertices, t edges
@ Fixed graph H, m vertices, k edges

@ Want to approximate #H(G), the number of occurrences
of Hin G

Counting arbitrary subgraphs

Theorem
For each € > 0 there is an algorithm that e-approximates
#H(G) using

° O(Iogn) bits if 6(H) >

& #H(Gy

°©0 (27% log n) bits for every H

Here A() and &() denote maximum and minimum degrees

(My, not your) homework: understand this algorithm

Counting arbitrary subgraphs

Example: H = undirected triangle, G = G(n, p) random graph
® E[#H(G)] ~n’p®
® E[|Egl~rPp
@ Space = O(e~213/#H(G)?logn) = O(e?p~3log n)

Counting arbitrary subgraphs

Init: For each edge (a,b) € H, set Z,, =0
Update((u, v)): For each (a,b) € H,

Zap += Xa(U) - Xp(v) - QY (W)/degu(a) . QY(v)/degn(b)
Query: return the real part of

tt
- - . 7
1! auto(H) alb—EIH a
where
@ Qis a t-th root of unity, T =2k —1
@ Y and X are complex-valued 4k-wise independent hash
functions

Counting arbitrary subgraphs

Intuition:

@ X maps u, v to random potential images a, bin H

@ Y randomly indicates whether the corresponding H edge
exists in G

@ This is done separately for all edges in H. Presumably all
cross-terms cancel by independence

@ Basic algorithm with expected value #H(G) and large
variance

@ Run many copies and average

Connectivity and distances

Connectivity and spanning forests

Adjacency stream model
Undirected graphs

Spanning trees (forests) solve connectivity problems
@ Are vertices u, v connected?
@ How many connected components?

Building a spanning forest

H <« 0;
for each edge (u, v) in stream
add (u, v) to H iff it does not create a cycle

Exercise 5. Prove this claim

At all times, H is a spanning forest of the graph G seen so far.
l.e., H is a set of trees and there is a path in G between any two

vertices iff there is a path in H

Building minimum weight spanning forests

Consider weighted, undirected graphs
H «+ 0;
for each edge (u, v) in stream
add (u,v) to H,
if (H has a cycle) remove heaviest edge in the cycle

Claim

At all times, H is a minimum weight spanning forest of the
graph G seen so far

Distances and graph spanners

Consider unweighted, undirected graphs

Each such graph defines a distance between vertices, by
shortest paths

If we can compute t-spanners, we can t-approximate distances

Spanner Graph
A graph H is a t-spanner of graph G if for every u,v € G

dG(U7 V) < dH(U7 V) <t dG(U7 V)'

(Typically, Vy = Vg and Ey C Eg)

Computing spanners

H «+ 0;
For each edge (u,v) in the stream for G
if (dy(u,v) < t)ignore (u,v), else add itto H

@ Suppose there is an edge (u,v) in G

@ If we added it to H, fine

@ If not, there was (and still is) a path of length <tin H
@ Hence H is a t-spanner of G

Note: condition = “adding (u, v) creates a cycle of length
<t+1inH”

Computing spanners

How large will H be?

Lemma (see e.g. [McGregor])

A graph H on n nodes with no cycles of length < 2t has
O(n'+1/1) edges

Computing spanners

With this idea and clever data structures, [Baswana08,EIkin08]:

Theorem

There is a algorithm that, given an integer t, and a streamed
graph builds a (2t — 1)-spanner in space O(n'*t1/t). Time per
edge is (amortized) O(1)

Note that as 2t — 1 “tends to 17, space tends to O(r?)

Distance distributions

For a directed graph G=(V,E) and u € V, the neighborhood
functions

B(u,t) = set of vertices at distance <t from u
N(u,t) = [B(u,1)]
N(t) = number of pairs (u, v) at (one-way) distance <t

Useful, but costly to compute exactly for large G

HyperANF

ANF [Palmer,Gibbons,Faloutsos02]: Memory O(nlogn)

@ 2 bilion links graph — 30 minutes on 90 machines

HyperANF [Boldi,Rosa,Vigna11]: Memory O(nloglog n)

@ 15 minutes on a laptop

HyperANF

Key observation 1:

B(u,t)=B(u,t—1)u | J B(v,t—1)

u—v

Obvious algorithm stores sets B(u, t) in disk, repeats passes,
random access. Slow

Idea: don’t store B(u, t), just an approximation of its cardinality
with a HyperLogLog counter

But then, how do we compute cardinality of union with only
cardinalities?

HyperANF

Key observation 2:
HyperLoglog is well-behaved w.r.t unions

Fix a number of registers r in HyperLoglLog.
The HyperLoglLog counter associated to S1S; is obtained
maximizing the counters for S; and S, register for register

HyperANF

Other ideas:

@ Broadword programming: Resisters are short than
machine words. Pack several in a word and use bitwise
opserations to speedup maximumization

@ Try to maximize only changed counters. Large savings
near the end, when most counters have stabilized.

@ Systolic computation: A modified counter signals its
predecessors that they must update

HyperANF: applications

Distinguishing Web-like and social-network-like networks
[Boldi+11]

@ Shortest-path-index of dispersion: Variance-to-mean ratio
of distances
@ < 1 for social networks, > 1 for web-like networks

Diameter of the Facebook graph [Backstrom+11]
@ 720M active users, 69B friendship links
@ Average distance is 4.74 (= 3.74 degrees of separation)
@ 92% of users are at distance <5
@ 10 hours on 256Gb RAM machine

Clustering

k-center clustering: The problem

Just a taster of a large body of work on geometric problems ...

k-center clustering

Fix a metric space (X, d)

Input: an integer k, a stream of points S = x4, o, . ..
Output: aset Y C X, |Y| < k, minimizing

maxmind(x;, y)
i yey

k-center clustering: Greedy algorithm

Suppose we know optimal value OPT with k centers. Then:

r=20PT;

repeat over the stream:
wait for a point y at distance > r from all previous centers
add y as new center

Claim: This algorithm uses space k and returns a solution with
value <20PT

BTW, (2 — ¢)-approximation is impossible if P £ NP

(even non-streaming)

k-center clustering: Greedy algorithm

Why does this work?

@ Each center is at distance > r from previous ones
@ Suppose the value of returned solution is > r

@ . One point in stream is still at distance > r from all k
centers

@ We have k + 1 points at distance > r =20PT from each
other

@ X cannot be covered with any k balls of radius OPT

k-center clustering: Streaming algorithm

[McCutchen-Khuller08], [Guha09]

@ Now we don’t know OPT
@ We could get approximation (1+¢) if we knew OPT(1+¢)

@ Let’s run parallel copies of with guesses OPT < (1 +¢)/,
i=0,1,2,...
@ ... carefully not to exceed space bounds

k-center clustering: Streaming algorithm

@ Cluster first k 4+ 1 points in S; gives a lower bound a < OPT

@ Run parallel copies with radius (1 +¢€)a,
@ j so that radius ranges from ato a/¢

@ While k centers suffice, the smallest radius that goes well
is a 2(1+ €)-approximation

k-center clustering: Streaming algorithm

@ We have a problem when the algorithm tries to open a
(k +1)-th center, after picking say y1, ...y«

@ This is because x;, is at distance g > a/¢ from existing
centers

@ We realize we should have guessed OPT > g

k-center clustering: Streaming algorithm

But we have not worked in vain:

Claim
If OPT(x1,...X},Xj11,...) = OPT, then
OPT (1, ¥k Xj+1,--.) < OPT +2g

Forget all previous point but the y;’s, restart again with a = g,
seeds y;'s

k-center clustering: Streaming algorithm

@ Deterministic!
@ 2(1-+¢) approximation algorithm

@ Space & update time: O(k/e-log(1/¢))
e run i copies, with (1+¢)'a=a/e
e i~(1/¢)-log(1/¢€)

	Counting subgraphs
	Connectivity and distances
	Spanning forests
	Graph spanners

	HyperANF: Approximating distance distributions
	Clustering

