Lecture 5. Dimensionality Reduction. Linear Algebra

Ricard Gavaldà

MIRI Seminar on Data Streams, Spring 2015
1 Dimensionality reduction
- Matrix product
- Metric space embeddings
- Linear regression
- k-means clustering

2 Matrix sketches
- SVD
- Frequent Directions
Dimensionality reduction
Out there, there is a large matrix $M \in \mathbb{R}^{n \times m}$

Dimensionality reduction

Can we instead keep a smaller $M' \in \mathbb{R}^{n' \times m'}$ with $n' \ll n$ or $m' \ll m$ or both, so that computing on M' gives results similar to computing on M?

Applications:

- Information Retrieval - bag of words models for documents
- Machine learning - reducing instances or attributes
- PCA - Principal Component Analysis
- Clustering with many objects or many dimensions
- Image Analysis
Matrix product

Approximate matrix product, nonstreaming

- Matrices $A \in \mathbb{R}^{n \times p}$ and $B \in \mathbb{R}^{p \times m}$, want AB
- Build “random matrix” $S \in \{+1, -1\}^{k \times p}$
 (we called this “k hash functions” before)
- Approximate AB by $(AS^T) \cdot (SB)$
- I.e., $(AB)[i,j] \approx \sum_\ell (AS^T)[i,\ell](SB)[\ell,j]$

Saves computation if $k \ll p, n, m$ because

$$npk + kpm + nkm \ll npm$$
Claim

If $k = O(\varepsilon^{-1} \ln(n/\delta))$, with probability $1 - \delta$

$$\|AB - (AS^T)(SB)\|_F \leq \varepsilon \|A\|_F \|B\|_F$$

where $\|A\|_F = \sqrt{\sum_{i,j} A_{i,j}^2}$ is the Frobenius norm

We have already seen the proof before (essentially)
Here absolute, instead of relative, error $k \approx 1/\varepsilon$
Goal:

\[\|AB - (AS^T)(SB)\|_F \leq \varepsilon \|A\|_F \|B\|_F \]

1. \(E[\langle Sx, Sy \rangle] = \langle x, y \rangle \), for every \(x, y \)
2. Then \(E[(AS^T)(SB)] = AB \)
3. \(\text{Var}[\langle Sx, Sy \rangle] \leq 2\varepsilon^2 \|x\|_F^2 \|y\|_F^2 \)
 (averaging of \(k \) rows & Chebyshev hidden here!)
4. Then \(\text{Var}[\|AB - (AS^T)(SB)\|_F] \leq 2\varepsilon^2 \|A\|_F^2 \|B\|_F^2 \)
5. Median trick: Run \(O(\ln(1/\delta)) \) copies of the above
 - Complication: “median of matrices” is undefined
 - Idea: Find an estimate that is close to most others
 - Estimate \(d = \|A\|_F^2 \|B\|_F^2 \) for each, from sketches
 - Return an estimate closer than \(d/2 \) to more than half the rest
Approximate AB by $(A S^T) \cdot (S B)$, streaming:

- build sketches for every row of A and every column of B
- Easy to update sketch $A S^T$ when new entry of A arrives
- Easy to update sketch $S B$ when new entry of B arrives
Metric space embeddings

- We are mapping a large space to a smaller space.
- Variance is reduced using min or median-of-averages.
- This is not a metric: does not preserve usual distances.
- More general ways of saying:
 “We embed our dimension k space into a dimension k' space, $k' < k$ that preserves metrics.”
- More problem-independent, geometric (and interesting).
Reminder: a metrid d satisfies $d(x, y) = d(y, x) \geq 0$, with $d(x, x) = 0$ only, and triangle inequality $d(x, y) + d(y, z) \geq d(x, z)$

An embedding f from metric space (X, d_X) to metric space (Y, d_Y) has distortion ε if for every $a, b \in X$

$$(1 - \varepsilon)d_X(a, b) \leq d_Y(f(a), f(b)) \leq (1 + \varepsilon)d_X(a, b)$$
[Johnson-Lindenstrauss 84]

Every n-point metric space can be embedded into ℓ^k_2 with ϵ distortion, for $k = O(\epsilon^{-2} \log n)$

- In words, the embedding is a map $X \rightarrow \mathbb{R}^k$
- Independent of dimension of original space!
- Basically only possible for L_2, not other L_p. We may still be able to approximate:

 for all $x, y \in S, \|x - y\|_p \in (1 \pm \epsilon)d(x, y)$

 but then d is not a metric
Metric space embeddings

[Johnson-Lindenstrauss 84]

Every n-point metric space can be embedded into ℓ^k_2 with ε distortion, for $k = O(\varepsilon^{-2} \log n)$

- Not just existential result: holds for most mappings defined by 1) independent $\{+1, -1\}$ entries, 2) independent $N(0, 1)$ entries
- But such matrices are not sparse: updates are computationally costly
- Many deep papers on computationally lighter variants (Fast Johnson-Lindenstrauss, enforcing sparsity, . . .)
Linear regression (least squares)

Given n pairs $(x_i, y_i) \in \mathbb{R}^{d+1}$, find $r \in \mathbb{R}^d$ that minimizes

$$\sum_{i=1}^{n} (y_i - r \cdot x_i)^2$$

Alternatively,

Given $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^n$, find x that minimizes $\|Ax - b\|_2$

Method:

- Minimize in sketch space
- Memory $O(d^2/\epsilon^2 \ln(n/\delta))$
Given $x_1, \ldots, x_n \in \mathbb{R}^d$,

$$\argmin_{C_1, \ldots, C_k} \sum_{i=1}^{n} \| x_i - C_{x_i} \|_2$$

Use random $S \in \mathbb{R}^{d \times r}$

- Minimize in sketch space
- Can be shown to preserve value of optimal solution to factor $1 \pm \varepsilon$ for $r = O(k/\varepsilon^2 \log(n/\delta))$
Matrix sketches
At the heart of many techniques:

- Principal Component Analysis
- Spectral Clustering
- Data Compression
- Latent Semantic Indexing
- Latent Dirichlet Allocation
- Spectral methods for HMM
- …
Singular Value Decomposition

For \(A = UDV^T \in \mathbb{R}^{n \times n} \)

\[
A = \begin{pmatrix} u_1 & \cdots & u_n \end{pmatrix} \begin{pmatrix} \sigma_1 & & \cdots & \sigma_n \end{pmatrix} \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}
\]

Intuition: If \(A \) is a document - term incidence matrix:

- (at most \(n \)) hidden topics
- \(U \) tells how close each document is to each topic
- \(V \) tells how close each term is to each topic
- \(D \) measures the presence of each topic
Singular Value Decomposition

SVD theorem
Let $A \in \mathbb{R}^{n \times m}$. There are matrices $U \in \mathbb{R}^{n \times n}$, $D \in \mathbb{R}^{n \times m}$ and $V \in \mathbb{R}^{m \times m}$ such that:

- $A = U D V^T$
- U and V are orthonormal: $U^T U = I \in \mathbb{R}^{n \times n}$ and $V^T V = I \in \mathbb{R}^{m \times m}$
- D is a diagonal matrix of non-negative real numbers
- Additionally, $A = \sum_i \sigma_i u_i v_i^T$

- The diagonal values of D, denoted $\sigma_1, \sigma_2, \ldots$, are the *singular values* of A; w.l.o.g. $\sigma_1 \geq \sigma_2 \geq \ldots$
- It follows that $\text{rank}(A) = \text{rank}(D)$ is the number of non-zero singular values
- Column vectors of U (V) are its *left (right) singular vectors*
SVD and low-rank approximation

Choose \(k \leq n, m \)

Let \(D_k \) be the result of keeping retaining the first \(k \) diagonal values in \(D \) and zeroing the rest,

That leaves only the heaviest \(k \) “components”

Fact

\(A_k = UD_k V \) is the best rank-\(k \) approximation of \(A \).

I.e., \(A_k \) minimizes \(\| A - B \|_F \) among all rank-\(k \) matrices \(B \)
Singular Value Decomposition

The SVD decomposition can be computed in time $O(nm^2)$
But the power method is often preferred:

- Define $M = A^T A$
- Take repeated powers of M
- If $\sigma_1 > \sigma_2$, M^t approaches $\sigma_1^{2t} v_1^T v_1$
- which leads to σ_1 and v_1
- Subtract, repeat, to get other values

So a sketch for $A^T A$ is good for sketching SVD(A), which is good for sketching A
Matrix sketches

Given ε and a matrix $A \in \mathbb{R}^{m \times n}$, want to keep a sketch $B \in \mathbb{R}^{k \times n}$ such that e.g.

$$\|B^T B - A^T A\|_F \leq \varepsilon \|A\|_F^2$$

Approaches:

- Dimensionality reduction - hashing. Space $O(n/\varepsilon^2)$
- Column or row sampling. Space $O(n/\varepsilon^2)$
- Frequent directions [Liberty13]. Space $O(n/\varepsilon)$
Remember: Random Sampling for frequent elements?

Take a random sample from the stream, estimate item frequency in sample, compute hotlist

- Problem 1. Bad for top-k. Misses many small elements
- Problem 2. Anyway, how to keep a uniform sample?
- (Solution to 2.) Reservoir sampling [Vitter85]
 - ...

- Even for heavy hitters, required sample size is $O(1/\varepsilon^2)$
- But $O(1/\varepsilon)$ solutions exist
Matrix sketches by sampling

- Fix k, number of rows (or columns) to keep
- Decide each row (or column) with probability proportional to its L_2 norm
- If $k = O(1/\varepsilon^2)$, this gives a matrix B such that
 \[\| B^T B - A^T A \|_F \leq \varepsilon \| A \|_F^2 \]
- Quite nontrivial to get tight bounds
Simple deterministic matrix sketching - Frequent Directions

[Liberty13]

- Inspired by the heavy hitter algorithms - [KPS] in particular
- Gets memory bound $O(n/\varepsilon)$ instead of $O(n/\varepsilon^2)$
- Is deterministic
- Performs better (accuracy-wise) than hashing and sampling for given memory; slightly slower updates

Idea:

Instead of storing “frequent items” we store “frequent directions”
A variant of [KPS]

Table \((K, \text{count})\); it’s never full

Update\((x)\):

\[
\text{if } x \in K \text{ then } \text{count}[x] + +
\]

\[
\text{else}
\]

\[
\text{add } x \text{ to } K \text{ with count 1;}
\]

\[
\text{if } |K| = k \text{ then}
\]

\[
\text{remove the } k/2 \text{ elements with lowest counts;}
\]

Intuition: each symbol occurrence discounts \(k\) occurrences. Therefore, at most \(t/k\) occurrences of any \(a\) not counted in count.
A variant of [KPS]

Table \((K, count)\); it’s never full

Update\(x\):

\[
\begin{align*}
&\text{if } x \in K \text{ then } count[x]++ \\
&\text{else} \\
&\quad \text{add } x \text{ to } K \text{ with count 1;}
&\quad \text{if } |K| = k \text{ then}
&\quad \quad \text{remove the } k/2 \text{ elements with lowest counts;}
\end{align*}
\]

Fact: At any time \(t\), for every \(x\), not even in \(K\),

\[
freq_t(x) - count[x] \leq 2t/k
\]
Matrix B, initially all 0

Update(A_i): // A_i is ith row of A

insert A_i into zero-valued row of B;
if (B has no zero-valued rows)

rotate rows of B so that they are orthogonal;
remove the $k/2$ lightest rows

Intuition [Liberty13]: ‘The algorithm “shrinks” k orthogonal vectors by roughly the same amount. This means that during shrinking steps, the squared Frobenius norm of the sketch reduces k times faster than its squared projection on any single direction’
Matrix B, initially all 0

Update(A_i): // A_i is ith row of A
 insert A_i into zero-valued row of B;
 if (B has no zero-valued rows)
 $[U, D, V] \leftarrow \text{SVD}(B)$;
 $\sigma \leftarrow \sigma_k^2$;
 $D' \leftarrow \sqrt{\max(D^2 - I_k \sigma, 0)}$;
 $B \leftarrow D' V^T$; // at least half the rows of B are set to 0

Fact: At any time t,

$$\|B^T B - A^T A\|_F \leq 2\|A\|_F^2 / k$$
Frequent Directions

Running time

- dominated by $\text{SVD}(B)$ computation, $O(nk^2)$
- but this is every $k/2$ rounds
- \therefore amortized $O(nk)$ per row
- (reasonable: n is row size)

Observation: Easy to parallelize

- Sketch separately disjoint sets of rows
- Then stack sketches and sketch that matrix