
Lecture 5. Dimensionality Reduction. Linear
Algebra

Ricard Gavaldà

MIRI Seminar on Data Streams, Spring 2015

1 / 29

Contents

1 Dimensionality reduction
Matrix product
Metric space embeddings
Linear regression
k -means clustering

2 Matrix sketches
SVD
Frequent Directions

2 / 29

Dimensionality reduction

3 / 29

Dimensionality reduction

Out there, there is a large matrix M ∈ Rn×m

Dimensionality reduction

Can we instead keep a smaller M ′ ∈ Rn′×m′ with n′� n or
m′�m or both, so that computing on M ′ gives results similar to
computing on M?

Applications:

Information Retrieval - bag of words models for documents
Machine learning - reducing instances or attributes
PCA - Principal Component Analysis
Clustering with many objects or many dimensions
Image Analysis

4 / 29

Matrix product

Approximate matrix product, nonstreaming

Matrices A ∈ Rn×p and B ∈ Rp×m, want AB
Build “random matrix” S ∈ {+1,−1}k×p

(we called this “k hash functions” before)
Approximate AB by (AST) · (SB)

I.e., (AB)[i , j]' ∑`(AST)[i , `](SB)[`, j]

Saves computation if k � p,n,m because

npk +kpm+nkm� npm

5 / 29

Matrix product

Claim
If k = O(ε−1 ln(n/δ)), with probability 1−δ

‖AB− (AST)(SB)‖F ≤ ε‖A‖F‖B‖F

where ‖A‖F =
√

∑i ,j A2
i ,j is the Frobenius norm

We have already seen the proof before (essentially)
Here absolute, instead of relative, error k ' 1/ε

6 / 29

Matrix product

Goal:
‖AB− (AST)(SB)‖F ≤ ε‖A‖F‖B‖F

1 E [〈Sx ,Sy〉] = 〈x ,y〉, for every x , y
2 Then E [(AST)(SB)] = AB
3 Var [〈Sx ,Sy〉]≤ 2ε2‖x‖2F‖y‖

2
F

(averaging of k rows & Chebyshev hidden here!)
4 Then Var [‖AB− (AST)(SB)‖F]≤ 2ε2‖A‖2F‖B‖

2
F

5 Median trick: Run O(ln(1/δ)) copies of the above
Complication: “median of matrices” is undefined
Idea: Find an estimate that is close to most others
Estimate d = ‖A‖2F‖B‖

2
F for each, from sketches

Return an estimate closer than d/2 to more than half the
rest

7 / 29

Matrix product

Approximate AB by (AST) · (SB), streaming:

build sketches for every row of A and every column of B

Easy to update sketch AST when new entry of A arrives

Easy to update sketch SB when new entry of B arrives

8 / 29

Metric space embeddings

We are mapping a large space to a smaller space
Variance is reduced using min or median-of-averages
This is not a metric: does not preserve usual distances

More general ways of saying
“We embed our dimension k space into a dimension k ′

space, k ′ < k that preserves metrics”
More problem-independent, geometric (and interesting)

9 / 29

Metric space embeddings

Reminder: a metrid d satisfies d(x ,y) = d(y ,x)≥ 0, with d(x ,x) = 0 only,
and triangle inequality d(x ,y)+d(y ,z)≥ d(x ,z)

An embedding f from metric space (X ,dX) to metric space
(Y ,dY) has distortion ε if for every a,b ∈ X

(1− ε)dX (a,b)≤ dY (f (a), f (b))≤ (1+ ε)dX (a,b)

10 / 29

Metric space embeddings

[Johnson-Lindenstrauss 84]

Every n-point metric space can be embedded into `k
2 with ε

distortion, for k = O(ε−2 logn)

In words, the embedding is a map X → Rk

Independent of dimension of original space!
Basically only possible for L2, not other Lp. We may still be
able to approximate:

for all x ,y ∈ S, ‖x−y‖p ∈ (1± ε)d(x ,y)
but then d is not a metric

11 / 29

Metric space embeddings

[Johnson-Lindenstrauss 84]

Every n-point metric space can be embedded into `k
2 with ε

distortion, for k = O(ε−2 logn)

Not just existential result: holds for most mappings defined
by 1) independent {+1,−1} entries, 2) independent
N(0,1) entries
But such matrices are not sparse: updates are
computationally costly
Many deep papers on computationally lighter variants
(Fast Johnson-Lindenstrauss, enforcing sparsity, . . .)

12 / 29

Linear regression (least squares)

Given n pairs (xi ,yi) ∈ Rd+1, find r ∈ Rd that minimizes

n

∑
i=1

(yi − r ·xi)
2

Alternatively,

Given A ∈ Rn×d and b ∈ Rn, find x that minimizes ‖Ax−b‖2

Method:

Minimize in sketch space
Memory O(d2/ε2 ln(n/δ))

13 / 29

k -means clustering

Given x1, . . . ,xn ∈ Rd ,

argmin
C1,...,Ck

n

∑
i=1
‖xi −Cxi‖2

Use random S ∈ Rd×r

Minimize in sketch space
Can be shown to preserve value of optimal solution to
factor 1± ε for r = O(k/ε2 log(n/δ))

14 / 29

Matrix sketches

15 / 29

Singular Value Decomposition

At the heart of many techniques:

Principal Component Analysis
Spectral Clustering
Data Compression
Latent Semantic Indexing
Latent Dirichlet Allocation
Spectral methods for HMM
. . .

16 / 29

Singular Value Decomposition

For A = UDV T ∈ Rn×n

A =

 u1 . . . un


 σ1

. . .
σn


 v1

...
vn


Intuition: If A is a document - term incidence matrix:

(at most n) hidden topics
U tells how close each document is to each topic
V tells how close each term is to each topic
D measures the presence of each topic

17 / 29

Singular Value Decomposition

SVD theorem
Let A ∈ Rn×m. There are matrices U ∈ Rn×n, D ∈ Rn×m and
V ∈ Rm×m such that:

A = UDV T

U and V are orthonormal: UT U = I ∈ Rn×n and
V T V = I ∈ Rm×m

D is a diagonal matrix of non-negative real numbers
Additionally, A = ∑i σiuivT

i

The diagonal values of D, denoted σ1, σ2, . . . , are the
singular values of A; w.l.o.g. σ1 ≥ σ2 ≥ . . .

It follows that rank(A) = rank(D) is the number of non-zero
singular values
Column vectors of U (V) are its left (right) singular vectors

18 / 29

SVD and low-rank approximation

Choose k ≤ n,m
Let Dk be the result of keeping retaining the first k diagonal
values in D and zeroing the rest,
That leaves only the heaviest k “components”

Fact
Ak = UDkV is the best rank-k approximation of A.
I.e., Ak minimizes ‖A−B‖F among all rank-k matrices B

19 / 29

Singular Value Decomposition

The SVD decomposition can be computed in time O(nm2)
But the power method is often preferred:

Define M = AT A
Take repeated powers of M
If σ1 > σ2, M t approaches σ2t

1 vT
1 v1

which leads to σ1 and v1

Subtract, repeat, to get other values

So a sketch for AT A is good for sketching SVD(A), which is
good for sketching A

20 / 29

Matrix sketches

Given ε and a matrix A ∈ Rm×n, want to keep a sketch B ∈ Rk×n

such that e.g.
‖BT B−AT A‖F ≤ ε‖A‖2F

Approaches:

Dimensionality reduction - hashing. Space O(n/ε2)

Column or row sampling. Space O(n/ε2)

Frequent directions [Liberty13]. Space O(n/ε)

21 / 29

Remember: Random Sampling for frequent elements?

Take a random sample from the stream, estimate item
frequency in sample, compute hotlist

Problem 1. Bad for top-k . Misses many small elements

Problem 2. Anyway, how to keep a uniform sample?

(Solution to 2.) Reservoir sampling [Vitter85]
...

Even for heavy hitters, required sample size is O(1/ε2)

But O(1/ε) solutions exist

22 / 29

Matrix sketches by sampling

Fix k , number of rows (or columns) to keep
Decide each row (or column) with probability proportional
to its L2 norm
If k = O(1/ε2), this gives a matrix B such that

‖BT B−AT A‖F ≤ ε‖A‖2F

Quite nontrivial to get tight bounds

23 / 29

Simple deterministic matrix sketching - Frequent
Directions

[Liberty13]

Inspired by the heavy hitter algorithms - [KPS] in particular
Gets memory bound O(n/ε) instead of O(n/ε2)

Is deterministic
Performs better (accuracy-wise) than hashing and
sampling for given memory; slightly slower updates

Idea:

Instead of storing “frequent items” we store “frequent directions”

24 / 29

A variant of [KPS]

Table (K ,count); it’s never full

Update(x):
if x ∈ K then count [x]++

else
add x to K with count 1;
if |K |= k then

remove the k/2 elements with lowest counts;

Intuition: each symbol occurrence discounts k occurrences.
Therefore, at most t/k occurrences of any a not counted in
count

25 / 29

A variant of [KPS]

Table (K ,count); it’s never full

Update(x):
if x ∈ K then count [x]++

else
add x to K with count 1;
if |K |= k then

remove the k/2 elements with lowest counts;

Fact: At any time t , for every x , not even in K ,

freqt(x)−count [x]≤ 2t/k

26 / 29

The spirit of Frequent Directions

Matrix B, initially all 0

Update(Ai): // Ai is i th row of A
insert Ai into zero-valued row of B;
if (B has no zero-valued rows)

rotate rows of B so that they are orthogonal;
remove the k/2 lightest rows

Intuition [Liberty13]: ‘The algorithm “shrinks” k orthogonal
vectors by roughly the same amount. This means that during
shrinking steps, the squared Frobenius norm of the sketch
reduces k times faster than its squared projection on any single
direction’

27 / 29

Frequent Directions

Matrix B, initially all 0

Update(Ai): // Ai is i th row of A
insert Ai into zero-valued row of B;
if (B has no zero-valued rows)

[U,D,V]← SVD(B);
σ ← σ2

k ;

D′←
√

max(D2− Ik σ ,0);
B← D′V T ; // at least half the rows of B are set to 0

Fact: At any time t ,

‖BT B−AT A‖F ≤ 2‖A‖2F/k

28 / 29

Frequent Directions

Running time

dominated by SVD(B) computation, O(nk2)

but this is every k/2 rounds
∴ amortized O(nk) per row
(reasonable: n is row size)

Observation: Easy to parallelize

Sketch separately disjoint sets of rows
Then stack sketches and sketch that matrix

29 / 29

	Dimensionality reduction
	Matrix product
	Metric space embeddings
	Linear regression
	k-means clustering

	Matrix sketches
	SVD
	Frequent Directions

