Lecture 5. Dimensionality Reduction. Linear Algebra

Ricard Gavaldà

MIRI Seminar on Data Streams, Spring 2015

Contents

- Dimensionality reduction
 - Matrix product
 - Metric space embeddings
 - Linear regression
 - k-means clustering
- Matrix sketches
 - SVD
 - Frequent Directions

Dimensionality reduction

Dimensionality reduction

Out there, there is a large matrix $M \in \mathbb{R}^{n \times m}$

Dimensionality reduction

Can we instead keep a smaller $M' \in \mathbb{R}^{n' \times m'}$ with $n' \ll n$ or $m' \ll m$ or both, so that computing on M' gives results similar to computing on M?

Applications:

- Information Retrieval bag of words models for documents
- Machine learning reducing instances or attributes
- PCA Principal Component Analysis
- Clustering with many objects or many dimensions
- Image Analysis

Approximate matrix product, nonstreaming

- Matrices $A \in \mathbb{R}^{n \times p}$ and $B \in \mathbb{R}^{p \times m}$, want AB
- Build "random matrix" $S \in \{+1, -1\}^{k \times p}$ (we called this "k hash functions" before)
- Approximate AB by $(AS^T) \cdot (SB)$
- I.e., $(AB)[i,j] \simeq \sum_{\ell} (AS^{T})[i,\ell](SB)[\ell,j]$

Saves computation if $k \ll p, n, m$ because

$$npk + kpm + nkm \ll npm$$

Claim

If
$$k = O(\varepsilon^{-1} \ln(n/\delta))$$
, with probability $1 - \delta$
$$\|AB - (AS^T)(SB)\|_F \le \varepsilon \|A\|_F \|B\|_F$$
 where $\|A\|_F = \sqrt{\sum_{i,j} A_{i,j}^2}$ is the Frobenius norm

We have already seen the proof before (essentially) Here absolute, instead of relative, error $k \simeq 1/\varepsilon$

Goal:

$$||AB - (AS^T)(SB)||_F \le \varepsilon ||A||_F ||B||_F$$

- **3** $Var[\langle Sx, Sy \rangle]$ ≤ $2\varepsilon^2 ||x||_F^2 ||y||_F^2$ (averaging of k rows & Chebyshev hidden here!)
- Then $Var[\|AB (AS^T)(SB)\|_F] \le 2\varepsilon^2 \|A\|_F^2 \|B\|_F^2$
- **o** Median trick: Run $O(\ln(1/\delta))$ copies of the above
 - Complication: "median of matrices" is undefined
 - Idea: Find an estimate that is close to most others
 - Estimate $d = ||A||_F^2 ||B||_F^2$ for each, from sketches
 - Return an estimate closer than d/2 to more than half the rest

Approximate AB by $(AS^T) \cdot (SB)$, streaming:

- build sketches for every row of A and every column of B
- Easy to update sketch AS^T when new entry of A arrives
- Easy to update sketch SB when new entry of B arrives

- We are mapping a large space to a smaller space
- Variance is reduced using min or median-of-averages
- This is not a metric: does not preserve usual distances
- More general ways of saying
 - "We embed our dimension k space into a dimension k' space, k' < k that preserves *metrics*"
- More problem-independent, geometric (and interesting)

Reminder: a metrid d satisfies $d(x,y) = d(y,x) \ge 0$, with d(x,x) = 0 only, and triangle inequality $d(x,y) + d(y,z) \ge d(x,z)$

An embedding f from metric space (X, d_X) to metric space (Y, d_Y) has distortion ε if for every $a, b \in X$

$$(1-\varepsilon)d_X(a,b) \leq d_Y(f(a),f(b)) \leq (1+\varepsilon)d_X(a,b)$$

[Johnson-Lindenstrauss 84]

Every *n*-point metric space can be embedded into ℓ_2^k with ε distortion, for $k = O(\varepsilon^{-2} \log n)$

- In words, the embedding is a map $X \to \mathbb{R}^k$
- Independent of dimension of original space!
- Basically only possible for L_2 , not other L_p . We may still be able to approximate:

for all
$$x, y \in S$$
, $||x - y||_p \in (1 \pm \varepsilon)d(x, y)$

but then d is not a metric

[Johnson-Lindenstrauss 84]

Every *n*-point metric space can be embedded into ℓ_2^k with ε distortion, for $k = O(\varepsilon^{-2} \log n)$

- Not just existential result: holds for most mappings defined by 1) independent {+1,-1} entries, 2) independent N(0,1) entries
- But such matrices are not sparse: updates are computationally costly
- Many deep papers on computationally lighter variants (Fast Johnson-Lindenstrauss, enforcing sparsity, ...)

Linear regression (least squares)

Given *n* pairs $(x_i, y_i) \in \mathbb{R}^{d+1}$, find $r \in R^d$ that minimizes

$$\sum_{i=1}^{n} (y_i - r \cdot x_i)^2$$

Alternatively,

Given $A \in \mathbb{R}^{n \times d}$ and $b \in R^n$, find x that minimizes $||Ax - b||_2$

Method:

- Minimize in sketch space
- Memory $O(d^2/\varepsilon^2 \ln(n/\delta))$

k-means clustering

Given
$$x_1, \ldots, x_n \in \mathbb{R}^d$$
,

$$\underset{C_1,...,C_k}{\operatorname{argmin}} \sum_{i=1}^{n} \|x_i - C_{x_i}\|_2$$

Use random $S \in \mathbb{R}^{d \times r}$

- Minimize in sketch space
- Can be shown to preserve value of optimal solution to factor $1 \pm \varepsilon$ for $r = O(k/\varepsilon^2 \log(n/\delta))$

Matrix sketches

At the heart of many techniques:

- Principal Component Analysis
- Spectral Clustering
- Data Compression
- Latent Semantic Indexing
- Latent Dirichlet Allocation
- Spectral methods for HMM
- ...

For
$$A = UDV^T \in \mathbb{R}^{n \times n}$$

$$A = \left(\begin{array}{c|c} u_1 & \dots & u_n \end{array}\right) \left(\begin{array}{cc} \sigma_1 & \dots & \\ & \ddots & \\ & & \sigma_n \end{array}\right) \left(\begin{array}{cc} & v_1 & \dots \\ & \vdots & \\ & & v_n \end{array}\right)$$

Intuition: If A is a document - term incidence matrix:

- (at most n) hidden topics
- U tells how close each document is to each topic
- V tells how close each term is to each topic
- D measures the presence of each topic

SVD theorem

Let $A \in \mathbb{R}^{n \times m}$. There are matrices $U \in \mathbb{R}^{n \times n}$, $D \in \mathbb{R}^{n \times m}$ and $V \in \mathbb{R}^{m \times m}$ such that:

- $A = UDV^T$
- U and V are orthonormal: $U^T U = I \in \mathbb{R}^{n \times n}$ and $V^T V = I \in \mathbb{R}^{m \times m}$
- D is a diagonal matrix of non-negative real numbers
- Additionally, $A = \sum_i \sigma_i u_i v_i^T$
- The diagonal values of D, denoted $\sigma_1, \sigma_2, \ldots$, are the singular values of A; w.l.o.g. $\sigma_1 \ge \sigma_2 \ge \ldots$
- It follows that rank(A) = rank(D) is the number of non-zero singular values
- Column vectors of U (V) are its left (right) singular vectors

SVD and low-rank approximation

Choose $k \le n, m$

Let D_k be the result of keeping retaining the first k diagonal values in D and zeroing the rest,

That leaves only the heaviest *k* "components"

Fact

 $A_k = UD_k V$ is the best rank-k approximation of A. I.e., A_k minimizes $||A - B||_F$ among all rank-k matrices B

The SVD decomposition can be computed in time $O(nm^2)$ But the power method is often preferred:

- Define $M = A^T A$
- Take repeated powers of M
- If $\sigma_1 > \sigma_2$, M^t approaches $\sigma_1^{2t} v_1^T v_1$
- which leads to σ_1 and v_1
- Subtract, repeat, to get other values

So a sketch for A^TA is good for sketching SVD(A), which is good for sketching A

Matrix sketches

Given ε and a matrix $A \in \mathbb{R}^{m \times n}$, want to keep a sketch $B \in \mathbb{R}^{k \times n}$ such that e.g.

$$\|B^TB - A^TA\|_F \le \varepsilon \|A\|_F^2$$

Approaches:

- Dimensionality reduction hashing. Space $O(n/\varepsilon^2)$
- Column or row sampling. Space $O(n/\varepsilon^2)$
- Frequent directions [Liberty13]. Space $O(n/\varepsilon)$

Remember: Random Sampling for frequent elements?

Take a random sample from the stream, estimate item frequency in sample, compute hotlist

- Problem 1. Bad for top-k. Misses many small elements
- Problem 2. Anyway, how to keep a uniform sample?
- (Solution to 2.) Reservoir sampling [Vitter85]
- Even for heavy hitters, required sample size is $O(1/\varepsilon^2)$
- But $O(1/\varepsilon)$ solutions exist

Matrix sketches by sampling

- Fix k, number of rows (or columns) to keep
- Decide each row (or column) with probability proportional to its L₂ norm
- If $k = O(1/\varepsilon^2)$, this gives a matrix B such that

$$||B^TB - A^TA||_F \le \varepsilon ||A||_F^2$$

Quite nontrivial to get tight bounds

Simple deterministic matrix sketching - Frequent Directions

[Liberty13]

- Inspired by the heavy hitter algorithms [KPS] in particular
- Gets memory bound $O(n/\varepsilon)$ instead of $O(n/\varepsilon^2)$
- Is deterministic
- Performs better (accuracy-wise) than hashing and sampling for given memory; slightly slower updates

Idea:

Instead of storing "frequent items" we store "frequent directions"

A variant of [KPS]

```
Table (K, count); it's never full 
Update(x): 
 if x \in K then count[x] + + 
 else 
 add x to K with count 1; 
 if |K| = k then 
 remove the k/2 elements with lowest counts;
```

Intuition: each symbol occurrence discounts k occurrences. Therefore, at most t/k occurrences of any a not counted in count

A variant of [KPS]

```
Table (K, count); it's never full  \begin{tabular}{l} Update(x): \\ if $x \in K$ then $count[x]$++ \\ else \\ add $x$ to $K$ with count 1; \\ if $|K| = k$ then \\ remove the $k/2$ elements with lowest counts; \\ \end{tabular}
```

Fact: At any time t, for every x, not even in K,

$$freq_t(x) - count[x] \le 2t/k$$

The spirit of Frequent Directions

```
Matrix B, initially all 0

Update(A_i): // A_i is ith row of A

insert A_i into zero-valued row of B;

if (B has no zero-valued rows)

rotate rows of B so that they are orthogonal;

remove the k/2 lightest rows
```

Intuition [Liberty13]: 'The algorithm "shrinks" k orthogonal vectors by roughly the same amount. This means that during shrinking steps, the squared Frobenius norm of the sketch reduces k times faster than its squared projection on any single direction'

Frequent Directions

```
Matrix B, initially all 0

Update(A_i): // A_i is ith row of A

insert A_i into zero-valued row of B;

if (B has no zero-valued rows)

[U, D, V] \leftarrow SVD(B);
\sigma \leftarrow \sigma_k^2;
D' \leftarrow \sqrt{\max(D^2 - I_k \sigma, 0)};
B \leftarrow D' V^T; // at least half the rows of B are set to 0
```

Fact: At any time t,

$$||B^TB - A^TA||_F \le 2||A||_F^2/k$$

Frequent Directions

Running time

- dominated by SVD(B) computation, O(nk²)
- but this is every k/2 rounds
- ∴ amortized O(nk) per row
- (reasonable: *n* is row size)

Observation: Easy to parallelize

- Sketch separately disjoint sets of rows
- Then stack sketches and sketch that matrix