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0 Dimensionality reduction
@ Matrix product
@ Metric space embeddings
@ Linear regression
@ k-means clustering

e Matrix sketches
@ SVD
@ Frequent Directions
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Dimensionality reduction

29



Dimensionality reduction

Out there, there is a large matrix M € R™™

Dimensionality reduction

Can we instead keep a smaller M’ € R”*™ with n’ < nor
m’ < m or both, so that computing on M’ gives results similar to
computing on M?

Applications:

@ Information Retrieval - bag of words models for documents
@ Machine learning - reducing instances or attributes

@ PCA - Principal Component Analysis

@ Clustering with many objects or many dimensions

@ Image Analysis



Matrix product

Approximate matrix product, nonstreaming

@ Matrices Ac R™P and B € RP*™ want AB

@ Build “random matrix” S € {+1,—1}k*P
(we called this “k hash functions” before)

@ Approximate AB by (AST)-(SB)

o le., (AB)[i,f] = L(AST)[i,(SB)[L.]]

Saves computation if kK < p, n, m because

npk + kom+ nkm < npm
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Matrix product

Claim
If k= O(e~'In(n/§)), with probability 1 — &

IAB—(AST)(SB)|IF < e||Allr|IBlIF

where [|AllF = |/¥;;A?; is the Frobenius norm

We have already seen the proof before (essentially)
Here absolute, instead of relative, error k ~1/¢
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Matrix product

Goal:
|IAB—(AST)(SB)||F < €| Allr|| Bl

Q@ E[(Sx,Sy)] = (x,y), for every x, y
@ Then E[(AST)(SB)] = AB
Q Var[(Sx, Sy)] < 2¢?|x||Z|ly |7
(averaging of k rows & Chebyshev hidden here!)
@ Then Var[||AB—(AS7)(SB)||r] < 2¢?| Al|Z| B

© Median trick: Run O(In(1/68)) copies of the above

Complication: “median of matrices” is undefined

Idea: Find an estimate that is close to most others
Estimate d = || A||2| B||% for each, from sketches

Return an estimate closer than d/2 to more than half the
rest



Matrix product

Approximate AB by (AST)-(SB), streaming:

@ build sketches for every row of A and every column of B
@ Easy to update sketch AST when new entry of A arrives

@ Easy to update sketch SB when new entry of B arrives
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Metric space embeddings

@ We are mapping a large space to a smaller space
@ Variance is reduced using min or median-of-averages
@ This is not a metric: does not preserve usual distances

@ More general ways of saying

“We embed our dimension k space into a dimension k’
space, k' < k that preserves metrics”

@ More problem-independent, geometric (and interesting)



Metric space embeddings

Reminder: a metrid d satisfies d(x,y) = d(y, x) > 0, with d(x, x) = 0 only,
and triangle inequality d(x,y)+d(y,z) > d(x,z)

An embedding f from metric space (X, dx) to metric space
(Y,dy) has distortion ¢ if for every a,b € X

(1—¢)dx(a,b) < dy(f(a),f(b)) < (1+¢)dx(a,b)
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Metric space embeddings

[Johnson-Lindenstrauss 84]

Every n-point metric space can be embedded into ¢5 with &
distortion, for k = O(¢~2logn)

@ In words, the embedding is a map X — R¥
@ Independent of dimension of original space!

@ Basically only possible for Ly, not other L,. We may still be
able to approximate:

forallx,y €S, [x—yllp € (1+€)d(x,y)
but then d is not a metric
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Metric space embeddings

[Johnson-Lindenstrauss 84]

Every n-point metric space can be embedded into ¢4 with &
distortion, for k = O(¢~2log n)

@ Not just existential result: holds for most mappings defined
by 1) independent {+1,—1} entries, 2) independent
N(0,1) entries

@ But such matrices are not sparse: updates are
computationally costly

@ Many deep papers on computationally lighter variants
(Fast Johnson-Lindenstrauss, enforcing sparsity, ... )
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Linear regression (least squares)

Given n pairs (x;,y;) € R4+, find r € RY that minimizes

(vi—r-x)?

oh

i=
Alternatively,

Given Ac R™% and b € R, find x that minimizes ||Ax — b||2
Method:

@ Minimize in sketch space
@ Memory O(d?/e?In(n/§))
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k-means clustering

Given xy,...,x, € RY,
i
argmin } ||x; — Cx.||2
C17“'7Ck i=1 I

Use random S € R9*r

@ Minimize in sketch space

@ Can be shown to preserve value of optimal solution to
factor 1+ ¢ for r = O(k/e2log(n/§))
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Matrix sketches
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Singular Value Decomposition

At the heart of many techniques:

Principal Component Analysis
Spectral Clustering

Data Compression

Latent Semantic Indexing
Latent Dirichlet Allocation
Spectral methods for HMM

16/29



Singular Value Decomposition

For A= UDVT e R™"

Intuition: If Ais a document - term incidence matrix:

@ (at most n) hidden topics

@ U tells how close each document is to each topic
@ V tells how close each term is to each topic

@ D measures the presence of each topic
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Singular Value Decomposition

SVD theorem
Let Ac R™™, There are matrices U € R™", D € R™"™ and
V € R™M such that:

e A=UDVT

@ U and V are orthonormal: UTU = | € R™" and
VTV =/eRrmm

@ D is a diagonal matrix of non-negative real numbers
e Additionally, A=Y, c;u;v;”

@ The diagonal values of D, denoted o4, oo, ..., are the
singular values of A; w.lL.o.g. 61 > 0> > ...

@ It follows that rank(A) = rank(D) is the number of non-zero
singular values

@ Column vectors of U (V) are its left (right) singular vectors
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SVD and low-rank approximation

Choose k< n,m

Let Dy be the result of keeping retaining the first k diagonal
values in D and zeroing the rest,

That leaves only the heaviest k “components”

Fact
Ax = UDyV is the best rank-k approximation of A.
Le., Ax minimizes ||A— B||r among all rank-k matrices B
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Singular Value Decomposition

The SVD decomposition can be computed in time O(nm?)
But the power method is often preferred:

@ Define M=ATA

@ Take repeated powers of M

@ If oy > 02, M! approaches c2!v/ vy

@ which leads to o7 and v4

@ Subtract, repeat, to get other values
So a sketch for AT A is good for sketching SVD(A), which is
good for sketching A
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Matrix sketches

Given € and a matrix A € R™<" want to keep a sketch B € Rk*”
such that e.g.
IB"TB—ATA|lF <e|Allz

Approaches:

@ Dimensionality reduction - hashing. Space O(n/&?)
@ Column or row sampling. Space O(n/&?)
@ Frequent directions [Liberty13]. Space O(n/¢)
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Remember: Random Sampling for frequent elements?

Take a random sample from the stream, estimate item
frequency in sample, compute hotlist

@ Problem 1. Bad for top-k. Misses many small elements
@ Problem 2. Anyway, how to keep a uniform sample?

@ (Solution to 2.) Reservoir sampling [Vitter85]
o ...

@ Even for heavy hitters, required sample size is O(1/¢?)
@ But O(1/¢) solutions exist
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Matrix sketches by sampling

@ Fix k, number of rows (or columns) to keep

@ Decide each row (or column) with probability proportional
to its L, norm

@ If k= 0O(1/€?), this gives a matrix B such that
IB"TB—ATA|F <e| Az

@ Quite nontrivial to get tight bounds
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Simple deterministic matrix sketching - Frequent

Directions

[Liberty13]
@ Inspired by the heavy hitter algorithms - [KPS] in particular
@ Gets memory bound O(n/¢) instead of O(n/e?)
@ |s deterministic

@ Performs better (accuracy-wise) than hashing and
sampling for given memory; slightly slower updates

Idea:

Instead of storing “frequent items” we store “frequent directions”
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A variant of [KPS]

Table (K, count); it's never full
Update(x):
if x € K then count[x] + +
else
add x to K with count 1;
if |K| = k then
remove the k/2 elements with lowest counts;

Intuition: each symbol occurrence discounts k occurrences.
Therefore, at most t/k occurrences of any a not counted in
count
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A variant of [KPS]

Table (K, count); it's never full
Update(x):
if x € K then count[x]++
else
add x to K with count 1;
if |K| = k then
remove the k/2 elements with lowest counts;

Fact: At any time t, for every x, not even in K,

freqgi(x) — count[x] < 2t/k
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The spirit of Frequent Directions

Matrix B, initially all O
Update(A;): // A;jis ithrow of A
insert A; into zero-valued row of B;
if (B has no zero-valued rows)
rotate rows of B so that they are orthogonal;
remove the k/2 lightest rows

Intuition [Liberty13]: ‘The algorithm “shrinks” k orthogonal
vectors by roughly the same amount. This means that during
shrinking steps, the squared Frobenius norm of the sketch
reduces k times faster than its squared projection on any single
direction’
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Frequent Directions

Matrix B, initially all O
Update(A;): // A;jis ithrow of A
insert A; into zero-valued row of B;
if (B has no zero-valued rows)
[U,D, V]« SVD(B);
0 < 02;
D'« /max(D? — Ixc,0);
B« D'VT;// at least half the rows of B are setto 0

Fact: At any time t,

IBTB—ATAllr < 2||AllZ/k
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Frequent Directions

Running time

@ dominated by SVD(B) computation, O(nk?)
@ but this is every k/2 rounds

@ . amortized O(nk) per row

@ (reasonable: nis row size)

Observation: Easy to parallelize

@ Sketch separately disjoint sets of rows
@ Then stack sketches and sketch that matrix
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