Lecture 3. Sampling. Finding frequent elements. The CM-sketch

Ricard Gavaldà

MIRI Seminar on Data Streams, Spring 2015

Contents

(9) Sampling
(2) Finding heavy hitters
(3) The CM-Sketch
(4) Applications of the CM-sketch

Sampling

Sampling

At time t, process element t with probability $\alpha(t)$
Compute your query on the sampled elements only
Example: computing an average

- $\alpha(t)=\alpha$, constant: error $\simeq 1 / \sqrt{\alpha t} \rightarrow 0$
- $\alpha(t) \simeq 1 /\left(\varepsilon^{2} t\right)$: error $\simeq \varepsilon$, constant over time

But a sampled element remains in the sample forever

Reservoir Sampling [Vitter85]

Uniform sampling

Fix k. We want to keep a sample of size k such that after t steps, each of the first t elements in the stream is in the sample with equal probability k / t

Reservoir Sampling [Vitter85]

- Add first k stream elements to the sample
- Choose to sample t-th item with probability k / t
- If sampled, replace any element in the sample with same probability

Reservoir Sampling: why does it work?

Claim: for every t, for every $i \leq t$,

$$
P_{i, t}=\operatorname{Pr}\left[s_{i} \text { in sample at time } t\right]=k / t
$$

Suppose true at time t. At time $t+1$,

$$
P_{t+1, t+1}=\operatorname{Pr}\left[s_{t+1} \text { sampled }\right]=k /(t+1)
$$

and for $i \leq t, s_{i}$ is in the sample if it was before, and not (s_{t+1} sampled and it kicks out exactly s_{i})

$$
\begin{aligned}
P_{i, t+1} & =\frac{k}{t} \cdot\left(1-\frac{k}{t+1} \cdot \frac{1}{k}\right)=\frac{k}{t} \cdot\left(1-\frac{1}{t+1}\right) \\
& =\frac{k}{t} \cdot \frac{t}{t+1}=\frac{k}{t+1}
\end{aligned}
$$

Skip counting [Vitter85]

Instead of deciding whether or not to sample each x_{t}

- suppose we sample x_{t}
- compute randomly $m=f(t, k)$
- skip next m records without any processing, process $(m+1)$-th

The distribution of m is computed so that it matches the equations in the previous page (somewhat tricky)
Avoids computation at each step, e.g. random number generation

Observation: $m \rightarrow \infty$ as t grows

Finding heavy hitters

Finding Frequent Elements

Heavy Hitters, Elephants, Hotlist analysis, Iceberg queries

Finding frequent elements

Given a sequence S of t elements, threshold θ,

- Heavy hitters: Find all elements with frequency $>\theta t$
- Top- k : Find the k most frequent elements

Good sources: [Berinde+09], [Cormode+08]

Finding Frequent Elements

Approximate versions:

- Find a list of elements including all those with frequency
$>\theta t$ and none with frequency $<(1-\varepsilon) \theta t$
- Find a list of L of k elements such that if $i \in L$ and $j \notin L$ then $f_{i}>(1-\varepsilon) f_{j}$

Sampling?

Intuition: Frequencies in sample \simeq frequencies in stream
Use e.g. reservoir sampling to keep uniform sample
Problems:

- Doesn't work for top- k queries
- For θ-heavy hitters, sample size $\simeq 1 / \theta^{2}$ is required (try it, using Hoeffding)

We present 3 solutions for θ-heavy hitters with memory $O(1 / \theta)$

KPS, a simple algorithm for heavy hitters

[Karp-Papadimitriou-Shenker03]
generalizing [Boyer-Moore80, Fischer-Salzberg82, Boyer-Moore82, Misra-Gries82]

- Def: x is a heavy hitter at time t if $f_{x, t}>\theta t$
- There are at most $1 / \theta$ of these
- Producing them exactly in 1 pass requires (the obvious) large memory
- Fact: A list containing all θ-heavy hitters of size at most $1 / \theta$ can be produced using $O(1 / \theta)$ words
- No false negatives; maybe false positives

A Simple Two-Pass Algorithm

$\operatorname{Init}(k)$:

```
Create associative table (K,count):
    - K = the empty set of keys
    - count is a vector of size k, indexed by K, initially 0
```

Update (x) :

```
if (x is in K) count[x]++
else
        insert x in K with count 1
        if (|K| = k+1) // K full; discount all items
            for (a in K) do
                        count[a]--
                        if (count[a] = 0) delete a from (K,count)
```

Query:

```
return the set K
```


Why Does This Work?

- Let $k=1 / \theta-1$
- Consider an item x not in K at the end of the algorithm
- Each occurrence of x was discounted together with k occurrences of other items
- So at least $(k+1) \cdot f_{x, t}$ items discounted in total
- But number of discounted items at time t can't exceed t
- Therefore $f_{x, t} / \theta=(k+1) \cdot f_{x, t} \leq t$, i.e., x is not θ-heavy hitter
- Contrapositive: all θ-heavy hitters are in K

KPS, memory and time

- k keys, k counts
- with some care, $O(k)$ words for hashing, lists, bookeeping
- $O(1)$ operations per update when no discounting
- there can be at most t / k discounting rounds up to time t (think why)
- and each one takes time $O(k)$
- so $O(1)$ time on average

The Space Saving sketch [Metwally+05]

- KPS followed by many other counter-based methods
- Lossy Counter, Frequent, Sticky Sampling, GroupTest, ...
- Space-saving:
- Good update time
- Some guarantee on count error
- No false negatives; may have false positives

The Space Saving sketch

Init(k): Create
set of keys $K:=\emptyset$
vector count, indexed by K
Update (x) :
if x is in K then count $[x]++$; else, if $|K|<k$, add x to K and set count $[x]=1$; else, replace an item with lowest count with x and increase its count by 1

Query:
return the set K;

Why Does This Work?

Claims:
(1) If $f_{t}(x) \geq t / k$, then $x \in K$ at time t
(2) For every $x \in K, f_{t}(x) \leq$ count $_{t}[x] \leq f_{t}(x)+t / k$

In particular, all items with frequency over t / k are in K
And non-heavy-hitters will have count at most $2 t / k$
The bound is most meaningful for frequencies $>t / k$

Why Does This Work?

Proof:

- At all times $t, \sum_{x} \operatorname{count}_{t}[x]=t$
- The minimum count at time t is $\leq t / k$
- Now suppose x not in K a time t
- Either x was never in K (so not frequent)
- Or it was in K but was removed from K. Let $t^{\prime} \leq t$ the last time it was removed
- Because it was removed, count $t_{t^{\prime}}[x] \leq t^{\prime} / k \leq t / k$
- I.e. part 1: x not $1 / k$-frequent at time t
- For 2, distinguish whether x was in K at time $t-1$ or not and assume (by induction) that 1, 2 true at time $t-1$

Exercise 1

Understand this proof, particularly completing the proof of 2. Not to be delivered.

More on Space Saving

- We omit discussion of efficient implementation StreamSummary data structure
- Appropriate for very skewed distributions
- Very frequent elements large counters; unfrequent elements low counters
- \rightarrow good approximation of frequent element frequencies
- Paper contains space analysis for powerlaw - Zipf distributions

Exercise 2

Without looking into the paper, propose a data structure to have fast update \& query time. Should still use $O(k)=O(1 / \theta)$ words, pointers, etc.

Top-k Elements

[Charikar-Chen-(Farach-Colton)04]

- Hash-based (like CM-sketch), not count-based (like Space-Saving)
- Assume $f_{1} \geq f_{2} \geq f_{3} \geq \cdots \geq f_{n}$
- Given (k, ε), finds a list of k elements such that

$$
\text { if } i \in L \text { then } f_{i} \geq(1-\varepsilon) f_{k}
$$

- Memory

$$
O\left(k \log \frac{t}{\delta}+\frac{\sum_{i=k+1}^{n} f_{i}^{2}}{\varepsilon^{2} f_{k}^{2}} \log \frac{t}{\delta}\right)
$$

- I.e., depends on tail. Better for more skewed distributions

The CM-Sketch

The Count-Min Sketch

[Cormode-Muthukrishnan 04]
Like Space Saving:

- Provides an approximation f_{x}^{\prime} to f_{x}, for every x
- Can be used (less directly) to find θ-heavy hitters
- Uses memory $O(1 / \theta)$

Unlike Space Saving:

- It is randomized - hash functions instead of counters
- Supports additions and deletions
- Can be used as basis for several other queries

The Count-Min Sketch

- Vector $F[n]$. Assumes $F[i] \geq 0$ for all i, at all times
- Provides estimations F^{\prime} of F such that
(1) $F[i] \leq F^{\prime}[i]$ for all i
(2) $F^{\prime}[i] \leq F[i]+\varepsilon|F|_{1}$ for all i, with probability $\geq 1-\delta$ where $|F|_{1}=\sum_{i} F[i]$
- Note: $|F|_{1}$ may be \ll stream length, if subtractions allowed
- Uses $O\left(\frac{1}{\varepsilon} \ln \frac{\eta}{\delta}\right)$ memory words, $O\left(\ln \frac{\eta}{\delta}\right)$ update time

The Count-Min Sketch

source: A. Bifet,
http://albertbifet.com/comp423523a-2012-stream-data-mining/

The Count-Min Sketch

- d independent hash functions $h_{1} \ldots h_{d}:[1 . . n] \rightarrow[1 . . w]$
- one "memory cell" for each $h_{j}(i)$
- On instruction " $F[i]+=v$ ", do $h_{j}(i)+=v$ for all $j \in 1 \ldots d$
- Estimation:

$$
F^{\prime}[i]=\min \left\{h_{j}(i) \mid j=1 . . d\right\}
$$

The Count-Min Sketch

$F^{\prime}[i]=\min \left\{h_{j}(i) \mid j=1 . . d\right\}$

- $F^{\prime}[i] \geq F[i]$

For each instruction involving i, we update all counts $h_{j}(i)$
$F[i] \geq 0$ at all times for all i

- $F^{\prime}[i]=F[i]$?

No: cell $h_{j}(i)$ is also incremented by $k \neq i$ if $h_{j}(k)=h_{j}(i)$

- But it is unlikely that this occurs very often
- min instead of average \rightarrow Markov instead of Chebyshev or Hoeffding

The Count-Min Sketch: Proof of main bound

- Fix j. Def random var $\iota_{i j k}=1$ if $h_{j}(i)=h_{j}(k), 0$ otherwise
- If h good hash function

$$
E\left[l_{i j k}\right] \leq 1 / \operatorname{range}\left(h_{j}\right)=1 / w
$$

- Def $X_{i j}=\sum_{k} l_{i j k} F[k]$. Then

$$
E\left[X_{i j}\right]=\sum_{k} E\left[\iota_{i j k}\right] F[k] \leq|F|_{1} / w
$$

The Count-Min Sketch: Proof of main bound (2)

Then by Markov's inequality and pairwise independence:

$$
\operatorname{Pr}\left[X_{i j} \geq \varepsilon|F|_{1}\right] \leq E\left[X_{i j}\right] /\left(\varepsilon|F|_{1}\right) \leq\left(|F|_{1} / w\right) /\left(\varepsilon|F|_{1}\right) \leq 1 / 2
$$

if $w=2 / \varepsilon$. Then:

$$
\begin{aligned}
& \operatorname{Pr}\left[F^{\prime}[i] \geq F[i]+\varepsilon|F|_{1}\right] \\
= & \operatorname{Pr}\left[\forall j: F[i]+X_{i j} \geq F[i]+\varepsilon|F|_{1}\right] \\
= & \operatorname{Pr}\left[\forall j: X_{i j} \geq \varepsilon|F|_{1}\right] \\
\leq & (1 / 2)^{d}=\delta \quad \text { if } d=\log (1 / \delta)
\end{aligned}
$$

for one fixed i. To have good estimates for all i simultaneously, use $d=\log (n / \delta)$ and use union bound

The Count-Min Sketch: Summary

- Memory is $\frac{2}{\varepsilon} \log \frac{1}{\delta}$ words
- Update time $O\left(\log \frac{1}{\delta}\right)$
- Replace $\log (1 / \delta)$ with $\log (n / \delta)$ if the bound needs to hold for all i simultaneously
"Pr[for all $i, \ldots] \leq \delta$ " instead of "for all $i, \operatorname{Pr}[\ldots] \leq \delta$ "
- Error for $F[i]$ is ε relative to $|F|_{1}$, not to $F[i]$
- This is bad for counts $F[i]$ small w.r.t. $|F|_{1}$
- Any problem where we care about large $F[i]$'s only?

Applications of the CM-sketch

Heavy Hitters, revisited

- i is a θ-heavy hitter if $F[i] \geq \theta t$
- The CM-sketch with width θ guarantees

$$
F[i] \leq F^{\prime}[i] \leq F[i]+\theta t
$$

- So: If we output all i s.t. $F^{\prime}[i] \geq \theta t$, we output all heavy hitters; no false negatives

But we can't cycle through all n candidates one by one!

Range-Sum queries

Range-sum query

Given a, b, return $\sum_{i=a}^{b} F[i]$
Example: how many packets received came from the IP range 172.16.xxx.xxx?

We show:

- A variant of CM-sketch supports range-sum queries efficiently
- Answering range-sum queries efficiently \longrightarrow finding heavy hitters efficiently

Fom CM-sketch to range-sum queries

For $p=0 \ldots \log n$, for each $j=\ldots$, keep the value of $\operatorname{sum}\left(j 2^{p} \ldots(j+1) 2^{p}-1\right)$

Any interval $[a, b]$ is the sum of $O(\log n)$ such values

From CM-sketch to range-sum queries

Keep

- One CM-sketch for each 2^{p} to store
$\operatorname{sum}\left(j 2^{p} \ldots(j+1) 2^{p}-1\right)$ for each j
- (Perhaps?) Or a single CM-sketch whose set of items is the set of intervals indexed by pairs (p, j)

From CM-sketch to range-sum queries

When receiving i, update the counts for ranges where i lies $=$ ancestors of i in the tree

When queried sum(a..b), decompose [a..b] as sum of such intervals, retrieve and add their sums

From Range-sum queries to heavy hitters

- Adaptively search for heavy hitters in the tree
- if a node has count $<\theta t$, do not explore its children: no heavy hitters below
- if a node has count $\geq \theta t$, explore both children
- when reaching a leaf, we know whether it's a heavy hitter
- the sum of counts at any one level of the tree is t
- no more than $1 / \theta$ of them may have frequency $\geq \theta t$
- Efficiency: no more than $1 / \theta$ nodes of each level are expanded

From Range-sum queries to heavy hitters

Exercise 3

Formalize the algorithms above:

- For computing range-sum queries given CM-sketch
- Form finding all heavy hitters using range-sum queries and tell their memory usage and update time

Inner product, revisited

Run CM-sketches for u and v using same hash functions
Estimate $\operatorname{IP}(u, v)=\sum_{i} u_{i} v_{i}$ by

$$
\min _{j} \sum_{r} \operatorname{count}^{u}(j, r) \cdot \operatorname{count}^{v}(j, r)
$$

Inner product, revisited

- Observe that

$$
u \cdot v=\sum_{i} u(i) v(i)=\sum_{r} \sum_{i: h_{j}(i)=r} u(i) v(i)
$$

- Let count ${ }^{u}(j, r)$, count $^{v}(j, r)$ be the cells for j-th function, r-th value in CM-sketches for u and v. Intuitively,

$$
\operatorname{count}^{u}(j, r) \cdot \operatorname{count}^{v}(j, r) \cong \sum_{i: h_{j}(i)=r} u(i) v(i)
$$

- So we estimate $u \cdot v$ by

$$
\min _{j} \sum_{r} \operatorname{count}^{u}(j, r) \cdot \operatorname{count}^{v}(j, r)
$$

in time $O\left(\frac{1}{\varepsilon} \log \frac{1}{\delta}\right)$

- Formally the proof is as in CM-sketch

Inner product, revisited

[AMS]

- $\mid A M S$ - $I P(u, v) \mid \leq \varepsilon I P(u, v)$
- memory $O\left(\frac{1}{\varepsilon^{2}} \ln \frac{1}{\delta}\right)$ words
- update time $O\left(\frac{1}{\varepsilon^{2}} \ln \frac{1}{\delta}\right)$
[CountMin]
- $|C M-I P(u, v)| \leq \varepsilon|u|_{1}|v|_{1}$
- memory $O\left(\frac{1}{\varepsilon} \ln \frac{1}{\delta}\right)$ words
- update time $O\left(\frac{1}{\varepsilon} \ln \frac{1}{\delta}\right)$
\therefore CM-Sketch better memory and update time, but absolute instead of relative, approximation

Quantile computation

Given i, θ, compute all the θ-quantiles
I.e., find for all k the $q(k)$ such that

$$
\sum_{i=1}^{q(k)} F[i]=k \theta \sum_{i=1}^{n} F[i]
$$

- Can be done from the CM-sketch with $O(n)$ estimation time
- Can be done faster using Range-Sum queries

Histogram Computation. Inverse distributions

- We have asked the question
"given i, what is the frequence of i ?"
- Inverse question:
"given f, how many i 's have frequence f ?"
- Can be done in space $O\left(\frac{1}{\varepsilon^{2}} \ln \frac{1}{\delta}\right)$
- The plot for all f's is a histogram

Sketches \& random linear projections

- AMS, CM-Sketch, Cohen's counter, ..., sketch vector F as

$$
\sum_{i=1}^{n} F[i] h_{j}(i) \text { for hash functions } h_{j}, j=1 \ldots d
$$

- Equivalently, $S=H F, F \in \mathbb{R}^{n}, H \in \mathbb{R}^{d \times n}, S \in \mathbb{R}^{d}$
- A linear projection from dimension n to dimension d
- Vectors that are close remain close
- Vectors that are far most likely remain far
- More next week

