Lecture 3. Sampling. Finding frequent elements. The CM-sketch

Ricard Gavaldà

MIRI Seminar on Data Streams, Spring 2015

- 2 Finding heavy hitters
- 3 The CM-Sketch
- Applications of the CM-sketch

Sampling

At time *t*, process element *t* with probability $\alpha(t)$ Compute your query on the sampled elements only

Example: computing an average

- $\alpha(t) = \alpha$, constant: error $\simeq 1/\sqrt{\alpha t} \rightarrow 0$
- $\alpha(t) \simeq 1/(\varepsilon^2 t)$: error $\simeq \varepsilon$, constant over time

But a sampled element remains in the sample forever

Uniform sampling

Fix *k*. We want to keep a sample of size *k* such that after *t* steps, each of the first *t* elements in the stream is in the sample with equal probability k/t

Reservoir Sampling [Vitter85]

- Add first k stream elements to the sample
- Choose to sample *t*-th item with probability k/t
- If sampled, replace any element in the sample with same probability

Reservoir Sampling: why does it work?

Claim: for every *t*, for every $i \le t$,

 $P_{i,t} = \Pr[s_i \text{ in sample at time } t] = k/t$

Suppose true at time *t*. At time t + 1,

$$P_{t+1,t+1} = \Pr[s_{t+1} \text{ sampled}] = k/(t+1)$$

and for $i \le t$, s_i is in the sample if it was before, and not (s_{t+1} sampled and it kicks out exactly s_i)

$$P_{i,t+1} = \frac{k}{t} \cdot \left(1 - \frac{k}{t+1} \cdot \frac{1}{k}\right) = \frac{k}{t} \cdot \left(1 - \frac{1}{t+1}\right)$$
$$= \frac{k}{t} \cdot \frac{t}{t+1} = \frac{k}{t+1}$$

Instead of deciding whether or not to sample each x_t

- suppose we sample x_t
- compute randomly m = f(t, k)
- skip next *m* records without any processing, process (*m*+1)-th

The distribution of *m* is computed so that it matches the equations in the previous page (somewhat tricky)

Avoids computation at each step, e.g. random number generation

Observation: $m \rightarrow \infty$ as *t* grows

Finding heavy hitters

Heavy Hitters, Elephants, Hotlist analysis, Iceberg queries

Given a sequence *S* of *t* elements, threshold θ ,

- Heavy hitters: Find all elements with frequency $> \theta t$
- Top-*k*: Find the *k* most frequent elements

Good sources: [Berinde+09], [Cormode+08]

Approximate versions:

- Find a list of elements including all those with frequency $> \theta t$ and none with frequency $< (1 \varepsilon)\theta t$
- Find a list of *L* of *k* elements such that if *i* ∈ *L* and *j* ∉ *L* then *f_i* > (1 − ε)*f_j*

Intuition: Frequencies in sample \simeq frequencies in stream

Use e.g. reservoir sampling to keep uniform sample

Problems:

- Doesn't work for top-k queries
- For θ -heavy hitters, sample size $\simeq 1/\theta^2$ is required (try it, using Hoeffding)

We present 3 solutions for θ -heavy hitters with memory $O(1/\theta)$

KPS, a simple algorithm for heavy hitters

[Karp-Papadimitriou-Shenker03]

generalizing [Boyer-Moore80, Fischer-Salzberg82, Boyer-Moore82, Misra-Gries82]

- Def: x is a heavy hitter at time t if $f_{x,t} > \theta t$
- There are at most $1/\theta$ of these
- Producing them exactly in 1 pass requires (the obvious) large memory
- Fact: A list containing all θ -heavy hitters of size at most $1/\theta$ can be produced using $O(1/\theta)$ words
- No false negatives; maybe false positives

Init(k):

```
Create associative table (K,count):

- K = the empty set of keys

- count is a vector of size k, indexed by K, initially 0
```

Update(x):

```
if (x is in K) count[x]++
else
    insert x in K with count 1
    if (|K| = k+1) // K full; discount all items
        for (a in K) do
            count[a]--
        if (count[a] = 0) delete a from (K,count)
```

Query:

return the set K

- Let $k = 1/\theta 1$
- Consider an item x not in K at the end of the algorithm
- Each occurrence of x was discounted together with k occurrences of other items
- So at least $(k+1) \cdot f_{x,t}$ items discounted in total
- But number of discounted items at time t can't exceed t
- Therefore $f_{x,t}/\theta = (k+1) \cdot f_{x,t} \le t$, i.e., x is not θ -heavy hitter
- Contrapositive: all θ -heavy hitters are in K

- k keys, k counts
- with some care, O(k) words for hashing, lists, bookeeping
- O(1) operations per update when no discounting
- there can be at most t/k discounting rounds up to time t (think why)
- and each one takes time O(k)
- so O(1) time on average

• KPS followed by many other counter-based methods

• Lossy Counter, Frequent, Sticky Sampling, GroupTest, ...

• Space-saving:

- Good update time
- Some guarantee on count error
- No false negatives; may have false positives

```
Init(k): Create

set of keys K := \emptyset

vector count, indexed by K

Update(x):

if x is in K then count[x]++;

else, if |K| < k, add x to K and set count[x] = 1;

else, replace an item with lowest count with x

and increase its count by 1
```

Query:

return the set K;

Claims:

- If $f_t(x) \ge t/k$, then $x \in K$ at time t
- **2** For every $x \in K$, $f_t(x) \leq count_t[x] \leq f_t(x) + t/k$

In particular, all items with frequency over t/k are in KAnd non-heavy-hitters will have count at most 2t/kThe bound is most meaningful for frequencies $\gg t/k$

Why Does This Work?

Proof:

- At all times t, $\sum_{x} count_t[x] = t$
- The minimum count at time t is $\leq t/k$
- Now suppose x not in K a time t
- Either x was never in K (so not frequent)
- Or it was in K but was removed from K. Let t' ≤ t the last time it was removed
- Because it was removed, $count_{t'}[x] \le t'/k \le t/k$
- I.e. part 1: x not 1/k-frequent at time t
- For 2, distinguish whether x was in K at time t − 1 or not and assume (by induction) that 1, 2 true at time t − 1

Exercise 1

Understand this proof, particularly completing the proof of 2. Not to be delivered.

More on Space Saving

- We omit discussion of efficient implementation -StreamSummary data structure
- Appropriate for very skewed distributions
- Very frequent elements large counters; unfrequent elements low counters
- ullet ightarrow good approximation of frequent element frequencies
- Paper contains space analysis for powerlaw Zipf distributions

Exercise 2

Without looking into the paper, propose a data structure to have fast update & query time. Should still use $O(k) = O(1/\theta)$ words, pointers, etc.

[Charikar-Chen-(Farach-Colton)04]

- Hash-based (like CM-sketch), not count-based (like Space-Saving)
- Assume $f_1 \ge f_2 \ge f_3 \ge \cdots \ge f_n$
- Given (k, ε) , finds a list of k elements such that

if $i \in L$ then $f_i \ge (1 - \varepsilon)f_k$

Memory

$$O\left(k\log\frac{t}{\delta} + \frac{\sum_{i=k+1}^{n} f_{i}^{2}}{\varepsilon^{2} f_{k}^{2}}\log\frac{t}{\delta}\right)$$

I.e., depends on tail. Better for more skewed distributions

The CM-Sketch

[Cormode-Muthukrishnan 04] Like Space Saving:

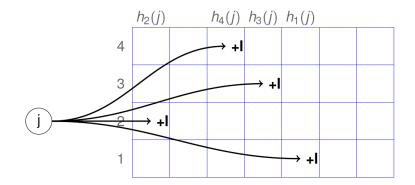
- Provides an approximation f'_x to f_x, for every x
- Can be used (less directly) to find θ-heavy hitters
- Uses memory $O(1/\theta)$

Unlike Space Saving:

- It is randomized hash functions instead of counters
- Supports additions and deletions
- Can be used as basis for several other queries

- Vector F[n]. Assumes $F[i] \ge 0$ for all *i*, at all times
- Provides estimations F' of F such that
 F[i] ≤ F'[i] for all i
 F'[i] ≤ F[i] + ε|F|₁ for all i, with probability ≥ 1 − δ where |F|₁ = Σ_i F[i]
- Note: $|F|_1$ may be \ll stream length, if subtractions allowed
- Uses $O(\frac{1}{\epsilon} \ln \frac{n}{\delta})$ memory words, $O(\ln \frac{n}{\delta})$ update time

The Count-Min Sketch



source: A. Bifet,

http://albertbifet.com/comp423523a-2012-stream-data-mining/

- *d* independent hash functions $h_1 \dots h_d$: $[1 \dots n] \rightarrow [1 \dots w]$
- one "memory cell" for each $h_j(i)$
- On instruction " $F[i] \neq v$ ", do $h_j(i) \neq v$ for all $j \in 1 \dots d$
- Estimation:

$$F'[i] = \min\{h_j(i) \mid j = 1..d\}$$

The Count-Min Sketch

$$F'[i] = \min\{h_j(i) \mid j = 1..d\}$$

•
$$F'[i] \geq F[i]$$

For each instruction involving *i*, we update all counts $h_j(i)$ $F[i] \ge 0$ at all times for all *i*

• F'[i] = F[i]?

No: cell $h_i(i)$ is also incremented by $k \neq i$ if $h_i(k) = h_i(i)$

- But it is unlikely that this occurs very often
- $\bullet\,$ min instead of average \to Markov instead of Chebyshev or Hoeffding

The Count-Min Sketch: Proof of main bound

- Fix *j*. Def random var $I_{ijk} = 1$ if $h_j(i) = h_j(k)$, 0 otherwise
- If *h* good hash function

$$E[I_{ijk}] \leq 1/\mathrm{range}(h_j) = 1/w$$

• Def
$$X_{ij} = \sum_k I_{ijk} F[k]$$
. Then $E[X_{ij}] = \sum_k E[I_{ijk}] F[k] \le |F|_1/w$

The Count-Min Sketch: Proof of main bound (2)

Then by Markov's inequality and pairwise independence:

 $\Pr[X_{ij} \ge \varepsilon |F|_1] \le E[X_{ij}]/(\varepsilon |F|_1) \le (|F|_1/w)/(\varepsilon |F|_1) \le 1/2$

if $w = 2/\epsilon$. Then:

$$\begin{aligned} & \Pr[F'[i] \ge F[i] + \varepsilon |F|_1] \\ &= & \Pr[\forall j : F[i] + X_{ij} \ge F[i] + \varepsilon |F|_1] \\ &= & \Pr[\forall j : X_{ij} \ge \varepsilon |F|_1] \\ &\le & (1/2)^d = \delta & \text{if } d = \log(1/\delta) \end{aligned}$$

for one fixed *i*. To have good estimates for all *i* simultaneously, use $d = \log(n/\delta)$ and use union bound

- Memory is $\frac{2}{\varepsilon} \log \frac{1}{\delta}$ words
- Update time $O(\log \frac{1}{\delta})$
- Replace log(1/δ) with log(n/δ) if the bound needs to hold for all *i* simultaneously

"Pr[for all $i, \ldots] \leq \delta$ " instead of "for all i, Pr[...] $\leq \delta$ "

- Error for F[i] is ε relative to $|F|_1$, not to F[i]
- This is bad for counts F[i] small w.r.t. $|F|_1$
- Any problem where we care about large *F*[*i*]'s only?

Applications of the CM-sketch

- *i* is a θ -heavy hitter if $F[i] \ge \theta t$
- The CM-sketch with width θ guarantees

 $F[i] \leq F'[i] \leq F[i] + \theta t$

So: If we output all *i* s.t. *F*'[*i*] ≥ θt, we output all heavy hitters; no false negatives

But we can't cycle through all *n* candidates one by one!

Range-sum query

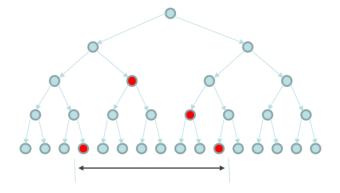
Given *a*, *b*, return $\sum_{i=a}^{b} F[i]$

Example: how many packets received came from the IP range 172.16.xxx.xxx?

We show:

- A variant of CM-sketch supports range-sum queries efficiently
- Answering range-sum queries efficiently \longrightarrow finding heavy hitters efficiently

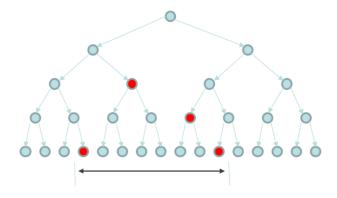
Fom CM-sketch to range-sum queries



For $p = 0 \dots \log n$, for each $j = \dots$, keep the value of $sum(j2^p \dots (j+1)2^p - 1)$

Any interval [a, b] is the sum of $O(\log n)$ such values

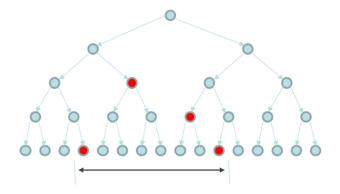
From CM-sketch to range-sum queries



Keep

- One CM-sketch for each 2^p to store sum(j2^p...(j+1)2^p-1) for each j
- (Perhaps?) Or a single CM-sketch whose set of items is the set of intervals indexed by pairs (p,j)

From CM-sketch to range-sum queries



When receiving *i*, update the counts for ranges where *i* lies = ancestors of *i* in the tree

When queried sum(a..b), decompose [a..b] as sum of such intervals, retrieve and add their sums

From Range-sum queries to heavy hitters

- Adaptively search for heavy hitters in the tree
- if a node has count < θt, do not explore its children: no heavy hitters below
- if a node has count $\geq \theta t$, explore both children
- when reaching a leaf, we know whether it's a heavy hitter
- the sum of counts at any one level of the tree is t
- no more than $1/\theta$ of them may have frequency $\geq \theta t$
- Efficiency: no more than 1/θ nodes of each level are expanded

Exercise 3

Formalize the algorithms above:

- For computing range-sum queries given CM-sketch
- Form finding all heavy hitters using range-sum queries

and tell their memory usage and update time

Run CM-sketches for u and v using same hash functions

Estimate $IP(u, v) = \sum_{i} u_{i}v_{i}$ by $\min_{j} \sum_{r} \operatorname{count}^{u}(j, r) \cdot \operatorname{count}^{v}(j, r)$

Inner product, revisited

Observe that

$$u \cdot v = \sum_{i} u(i)v(i) = \sum_{r} \sum_{i:h_j(i)=r} u(i)v(i)$$

 Let count^u(j, r), count^v(j, r) be the cells for j-th function, r-th value in CM-sketches for u and v. Intuitively,

$$\operatorname{count}^{u}(j,r) \cdot \operatorname{count}^{v}(j,r) \cong \sum_{i:h_{j}(i)=r} u(i)v(i)$$

So we estimate u · v by

$$\min_{j} \sum_{r} \operatorname{count}^{u}(j,r) \cdot \operatorname{count}^{v}(j,r)$$

in time $O(\frac{1}{\varepsilon}\log\frac{1}{\delta})$

Formally the proof is as in CM-sketch

[AMS]

- $|AMS IP(u, v)| \le \varepsilon IP(u, v)$
- memory $O(\frac{1}{\epsilon^2} \ln \frac{1}{\delta})$ words
- update time $O(\frac{1}{\varepsilon^2} \ln \frac{1}{\delta})$

[CountMin]

- $|CM IP(u, v)| \leq \varepsilon |u|_1 |v|_1$
- memory $O(\frac{1}{\varepsilon} \ln \frac{1}{\delta})$ words
- update time $O(\frac{1}{\varepsilon} \ln \frac{1}{\delta})$

 \therefore CM-Sketch better memory and update time, but absolute instead of relative, approximation

Given *i*, θ , compute all the θ -quantiles I.e., find for all *k* the q(k) such that

$$\sum_{i=1}^{q(k)} F[i] = k\theta \sum_{i=1}^{n} F[i]$$

- Can be done from the CM-sketch with O(n) estimation time
- Can be done faster using Range-Sum queries

• We have asked the question

"given *i*, what is the frequence of *i*?"

Inverse question:

"given f, how many i's have frequence f?"

- Can be done in space $O(\frac{1}{\epsilon^2} \ln \frac{1}{\delta})$
- The plot for all f's is a histogram

Sketches & random linear projections

• AMS, CM-Sketch, Cohen's counter, ..., sketch vector *F* as

$$\sum_{i=1}^{n} F[i]h_{j}(i) \text{ for hash functions } h_{j}, j = 1 \dots d$$

- Equivalently, S = HF, $F \in \mathbb{R}^n$, $H \in \mathbb{R}^{d \times n}$, $S \in \mathbb{R}^d$
- A linear projection from dimension *n* to dimension *d*
- Vectors that are close remain close
- Vectors that are far most likely remain far
- More next week