
Lecture 2. Frequency problems

Ricard Gavaldà

MIRI Seminar on Data Streams, Spring 2015

1 / 43

Contents

1 Frequency problems in data streams

2 Approximating inner product

3 Computing frequency moments

4 Counting distinct elements

2 / 43

Frequency problems in data streams

3 / 43

The data stream model. Frequency problems

Input is sequence of items a1, a2, a3, . . .
Each ai is an element of a universe U of size n
n is large or infinity

At time t , the query returns something about a1 . . .at

4 / 43

Frequency problems, alternate view

At any time t , for any i ∈ U,
fi =(def.) number of appearances of i so far

Frequency problems: result depends on the fi ’s only

In particular, independent of the order

5 / 43

Frequency problems, alternate view

Stream at t defines implicit array F [1..n] with F [i] = fi

A new occurrence of i equivalent to “F [i]++”

Model extensions:

F [i]++, F [i]-- (additions and deletions)
F [i] += x , with x ≥ 0 (multiple additions)
F [i] += x , with any x (multiple additions and deletions)

6 / 43

Approximating inner product

7 / 43

Approximating inner product

Implicit vectors u[1..n], v [1..n]

Stream of instructions “add(ui ,x)”, “add(vj ,y)”, i , j = 1 . . .n
At every time, we want to output an approximation of

n

∑
i=1

ui ·vi

I’ll suppose the above is always > 0 for relative
approximation to make sense

8 / 43

Basic algorithm

Init:
Pick a very “good” hash function f : [n]→ [n]

For i ∈ [n], define (do not compute and store)

bi = (−1)f (i) mod 2 ∈ {1,−1}

S← 0; T ← 0;

Update:
When reading “add(ui ,x)”, do S += x ·bi

When reading ‘add(vj ,y)”, do T += y ·bj

Query:
return S ·T

9 / 43

Final algorithm

Run in parallel c1 ·c2 copies of the basic algorithm,
grouped in c2 groups of c1 each
When queried, compute the average of the results of each
group of c1 copies, then return the median of the averages
of the c2 groups

Theorem
For c1 = O(ε−2) and c2 = O(lnδ−1), the algorithm above
(ε,δ)-approximates u ·v

10 / 43

Why does this work?

Claim 1: S = ∑
n
i=1 uibi and T = ∑

n
i=1 vibi

Claim 2: E [S ·T] = IP(u,v)

Claim 3: Var [S ·T]≤ 2E [S ·T]2

Claim 4: The median-of-averages as described
(ε,δ)-approximates IP(u,v)

11 / 43

Claim 1

Claim 1: S = ∑
n
i=1 u[i]bi and T = ∑

n
i=1 v [i]bi

Update is:

When reading “add(ui ,x)”, do S += x ·bi

When reading ‘add(vj ,y)”, do T += y ·bj

12 / 43

Claim 2

Claim 2: E [S ·T] = IP(u,v)

Really? But

S =

(
∑
i

uibi

)
, T =

(
∑
i

vibi

)
yet(

∑
i

ui

)
·

(
∑
i

vi

)
=

(
∑
i ,j

uivj

)
6=

(
∑
i

uivi

)

So the trick has to be in the bi , bj

13 / 43

Claim 2 (II)

If i = j , E [bibj] = E [1] = 1
If i 6= j and h is “good”, bi and bj are independent, so

E [bibj] =
1
2

1 +
1
2

(−1) = 0

Then Claim 2 is by linearity of expectation:

E [S ·T] = E [

(
n

∑
i=1

u[i]bi

)(
n

∑
i=1

v [i]bi)

)
]

= E [∑
i ,j

u[i]v [j]bibj]

= ∑
i

u[i]v [i]E [bibi] + ∑
i 6=j

u[i]v [j]E [bibj]

= ∑
i

u[i]v [i]

14 / 43

Claim 3

Claim 3: Var [S ·T]≤ 2E [S ·T]2

Var [S ·T] = E [(S ·T)2]−E [S ·T]2

= (∑
i ,j
. . .bibj . . .) · (∑

k ,`
. . .bkb` . . .)

= ∑
i ,j ,k ,`

(. . .bibjbkb` . . .)

≤ 2(∑
i

u[i]v [i]) · (∑
j

u[j]v [j])

= 2E [S ·T]2

(you work it out)

15 / 43

Claim 4

Claim 4: Average c1 copies of S ·T
Let X be the output of the basic algorithm

E [X] = IP(u,v), Var(X)≤ 2E [X]2

Equivalently, σ(X) =
√

Var(X)≤
√

2E [X]

Want to bound Pr[|X −E [X]|> ε E [X]]

Pr[|X −E [X]|> ε E [X]]≤ Pr[|X −E [X]|>
√

2εσ(X)]

But applying Chebyshev requires
√

2ε > 1, not interesting
We need to reduce the variance first: averaging

16 / 43

Claim 4 (cont.)

Let Xi be the output of i-th copy of basic algorithm
E [Xi] = IP(u,v), Var(Xi)≤ 2E [Xi]

2

Let Y be the average of X1, . . . , Xc1

See that E [Y] = IP(u,v) and Var(Y)≤ 2E [Y]2/c1

By Chebyshev’s inequality, if c1 ≥ 16/ε2

Pr[|Y −E [Y]|> ε E [Y]] ≤ Var(Y)/(εE [Y])2

≤ 2E [Y]2/(c1ε
2E [Y]2)≤ 1/8

We could throw δ into this bound, but get dependence 1/δ

At this point, use Hoeffding to get ln(1/δ)

17 / 43

Claim 4 (cont.)

We have E [Y] = IP(u,v) and

Pr[(1− ε)E [Y]≤ Y ≤ (1 + ε)E [Y]]≥ 7/8

Now take the median Z of c2 copies of Y , Y1, . . . , Yc2

As in the exercise on computing medians (Hoeffding bound),

Pr[|Z −E [Y]| ≥ εE [Y]]≤ δ

if
c2 ≥

32
9

ln
2
δ

We get (ε,δ)-approximation with

c1 ·c2 = O
(

1
ε2 ln

2
δ

)
copies of the basic algorithm

18 / 43

Memory use & update time

c = O(1
ε2 ln 1

δ
) copies of algorithm

Each, 4 logn bits to store hash function
At most log∑i ui + log∑i vi bits to store S, T
Say, O(log t) if the ui , vi are bounded
Total memory proportional to

1
ε2 ln

1
δ

(logn + log t)

Update time: O(c) word operations

19 / 43

How do we get the “good” hash functions?

Solution 1: Generate b1, . . . , bn at random once, store
them

n bits, too much

Solution 2: E.g., linear congruential method: f (x) = a ·x + b

OK if a,b ≤ n, so O(logn) bits to store
But: h far from random: given h(x), h(y), get a, b by solving

h(x) = ax + b
h(y) = ay + b

20 / 43

Reducing Randomness

21 / 43

Reducing Randomness

Where did we use independence of the bi ’s, really? For
example, here:

E [bi bj] = E [bi] ·E [bj] = 0

For this, it is enough to have pairwise independence:

For every i , j , Pr[Ai |Aj] = Pr[Ai]

Much weaker than full independence:

For every i , j , Pr[Ai |A1, . . . ,Ai−1,Ai+1, . . . ,Am] = Pr[Ai]

22 / 43

Generating Pairwise Independent Bits

Choose f at random from a “small” family of pairwise
independent functions

f (x), f (y) guaranteed to be pairwise independent
Each f in the family can be stored with O(logn) bits

23 / 43

Generating Pairwise Independent Bits (details)

Work over finite field of size q ' n (say q prime or q = 2r)
Idea: Choose a,b ∈ [q] at random. Let f (x) = a ·x + b
2logq bits to store f
Study system of equations

ax + b = α, ay + b = β

Given x , y (x 6= y !), α, β , exactly one solution for a, b
Therefore, Prf [f (x) = α|f (y) = β] = Prf [f (x) = α] = 1/q
Likewise: There are families of k -wise independent hash
functions that can be stored in k logq ' k logn bits

24 / 43

Completing the proof

The proof of Claim 3 (bound on Var(S ·T)) needs 4-wise
independence
Algorithm initially chooses a random hash function f in a
4-wise independent family
Remembers it using 4logn bits
Each time it needs bi , it computes (−1)f (i) mod 2

25 / 43

About Pairwise Independence

Exercise 1
Verify that for pairwise independent variables Xi with
Var(Xi) = σ2 we have

Var(
1
k

k

∑
i=1

Xi) =
σ2

k

So: to reduce variance at a Chebyshev rate 1/k by averaging k
copies, pairwise independence

To have a Hoeffding-like rate exp(−c k) we need full
independence

26 / 43

Applications

Computing L2-distance

L2(u,v) =
n

∑
i=1

(u[i]−v [i])2 = IP(u−v ,u−v)

Computing second frequency moment:

F2 =
n

∑
i=1

f 2
i = IP(f , f)

27 / 43

Computing frequency moments

28 / 43

Frequency Moments

k -th frequency moment of the sequence:

Fk =
n

∑
i=1

f k
i

F0 = number of distinct symbols occurring in S
F1 = length of sequence
F2 = inner product of f with itself
Define

F∞ = lim
k→∞

(Fk)1/k = maxn
i=1fi

29 / 43

Computing moments

[AMS] Noga Alon, Yossi Matias, Mario Szegedy (1996):
“The space complexity of approximating the frequency
moments”

Considered to initiate “data stream algorithmics”
Studied the complexity of computing moments Fk

Proposed approximation, proved upper and lower bounds
Starting point for a large part of future work

30 / 43

Frequency Moments

Fk =
n

∑
i=1

f k
i

Obvious algorithm: One counter per symbol. Memory
n log t
[AMS] and many other papers, culminating in [Indyk,
Woodruff 05]

For k > 2, Fk can be approximated with Õ(n1−2/k) memory
This is optimal. In particular, F∞ requires Ω(n) memory
For k ≤ 2, Fk can be approximated with O(logn + log t)
memory
Dependence is θ̃(ε−2 ln(1/δ)) for relative approximation

31 / 43

Counting distinct elements

32 / 43

Counting distinct elements

Given a stream of elements from [n], approximate how many
distinct ones d have we seen at any time t

There are linear and logarithmic memory solutions
(in dmax ≤ n if known a priori)

[Metwaly+08] good overview

33 / 43

Linear counting [Whang+90] ' Bloom filters

Init:
choose a hash function h : [n]→ s;
choose load factor 0 < ρ ≤ 12;
build a bit vector B of size s = dmax/ρ

Update(x): B[h(x)]← 1

Query:
w = the fraction of 0’s in B;
return s · ln(1/w)

34 / 43

Linear counting [Whang+90] ' Bloom filters

w = Prob[a fixed bucket is empty after inserting d distinct
elements] = (1−1/s)d ' exp(−d/s)

E [Query]' d , σ(Query) = small!

35 / 43

Cohen’s algorithm [Cohen97]

E[gap between two 1’s in B] = (s−d)/(d + 1)' s/d

Query: return s / (size of first gap in B)

36 / 43

Cohen’s algorithm [Cohen97]

Trick: Don’t store B, remember smallest key inserted in B

Init: posmin = s; choose hash function h : [n]→ s

Update(x): if (h(x) < posmin) posmin← h(x)

Query: return s/posmin;

37 / 43

Cohen’s algorithm [Cohen97]

E [posmin]' s/d σ(posmin)' s/d

Space is logs plus space to store h, i.e. O(logn)

38 / 43

Probabilistic Counting

Flajolet-Martin counter [Flajolet+85]
+ LogLog + SuperLogLog + HyperLogLog

Observe the values of f (i) where we insert, in binary

Idea: To see f (i) = 0k−11 . . . , 2k distinct values inserted

And we don’t need to store B; just the smallest k

39 / 43

Flajolet-Martin probabilistic counter

Init: p = logn;
Update(x):

let b be the position of the leftmost 1 bit of h(x);
if (b < p) p← b;

Query: return 2p;

E [2p] = number of distinct elements
Space: logp = log logn bits

40 / 43

Flajolet-Martin: reducing the variance

Solution 1: Use k independent copies, average

Problem: runtime multiplied by k
Problem: now pairwise independent hash functions don’t
seem to suffice
We don’t know how to generate several fully independent
hash functions

In fact, we don’t know how to generate one fully independent
hash functions
But good quality crypto hash functions work in this setting -
even weaker ones (“2-universal hash functions”) with a
minimum of entropy. And use O(logn) bits

41 / 43

Flajolet-Martin: reducing the variance

Solution 2:

Divide stream into m = O(ε−2) substreams
Use first bits of h(x) to decide substream for x
Track p separately for each substream
Now a single h can be used for all copies
One sketch updated per item

Query: Drop top and bottom 20% of estimates, average
the rest

Space: O(m log logn + logn) = O(ε−2 log logn + logn)

42 / 43

Improving the leading constants

SuperLogLog [Durand+03]: Take geometric mean
HyperLogLog [Flajolet+07]: Take harmonic mean

“cardinalities up to 109 can be approximated within say 2% with
1.5 Kbytes of memory”

[Kane+10] Optimal O(ε−2 + logn) space, O(1) update time

43 / 43

	Frequency problems in data streams
	Approximating inner product
	Computing frequency moments
	Counting distinct elements

