Lecture 1. The data stream model. Counting. Probability tools

Ricard Gavaldà

MIRI Seminar on Data Streams, Spring 2015

Contents

(9) Data streams everywhere
(2) The data stream model
(3) Approximate Counting
4. Probability and Sampling

Data streams everywhere

Data streams everywhere

- Telcos - phone calls
- Satellite, radar, sensor data
- Computer systems and network monitoring

- Search logs, access logs
- RSS feeds, social network activity
- Websites, clickstreams, query streams
- E-commerce, credit card sales

- ...

Example 1: Online shop

Thousands of visits / day

- Is this "customer" a robot?
- Does this customer want to buy?
- Is customer lost? Finding what s/he wants?
- What products should we recommend to this user?
- What ads should we show to this user?
- Should we get more machines from the cloud to handle incoming traffic?

Example 2: Web searchers

Millions of queries / day

- What are the top queries right now?
- Which terms are gaining popularity now?
- What ads should we show for this query and user?

Example 3: Phone company

Hundreds of millions of calls/day

- Each call about 1000 bytes per switch
- I.e., about $1 \mathrm{~Tb} /$ month; must keep for billing
- Is this call fraudulent?
- Why do we get so many call drops in area X?
- Should we reroute differently tomorrow?
- Is this customer thinking of leaving us?
- How to cross-sell / up-sell this customer?

Example 4: Network link

Several Gb /minute at UPC's outlink Really impossible to store

- Detect abusive users
- Detect anomalous traffic patterns
- ... DDOS attacks, intrusions, etc.

Others

- Social networks: Planet-scale streams
- Smart cities. Smart vehicles
- Internet of Things
- (more phones connected to devices than used by humans)
- Open data; governmental and scientific
- We generate far more data than we can store

Data Streams: Modern times data

- Data arrives as sequence of items
- At high speed
- Forever
- Can't store them all
- Can't go back; or too slow
- Evolving, non-stationary reality

In algorithmic words. . .

The Data Stream axioms:
(1) One pass
(2) Low time per item-read, process, discard
(3) Sublinear memory - only summaries or sketches
(4) Anytime, real-time answers
(5) The stream evolves over time

Course outline

Part I:

- The data stream model. Probability tools
- Statistics on streams; frequent elements
- Sketches for linear algebra and graphs
- Dealing with change

Part II:

- Predictive models
- Evaluation
- Clustering
- Frequent pattern mining
- Distributed stream mining

The data stream model

Computing in data streams

- Approximate answers are often OK
- Specifically, in learning and mining contexts
- Often computable with surprisingly low memory, one pass

Main Ingredients: Approximation and Randomization

- Algorithms use a source of independent random bits
- So different runs give different outputs
- But "most runs" are "approximately correct"

Randomized Algorithms

(ε, δ)-approximation
A randomized algorithm $A(\varepsilon, \delta)$-approximates a function $f: X \rightarrow R$ iff for every $x \in X$, with probability $\geq 1-\delta$

- (absolute approximation) $|A(x)-f(x)|<\varepsilon$
- (relative approximation) $|A(x)-f(x)|<\varepsilon f(x)$

Often ε, δ given as inputs to A
$\varepsilon=$ accuracy; $\delta=$ confidence

Notation

$a \simeq b$ means "= up to lower order terms", $a \simeq a(1+o(1))$
$a \sim b$ means whatever I find convenient at that point
log is base 2 unless otherwise noted
$\widetilde{O}($.$) hides "polylog" terms, e.g. \sqrt{n} \log ^{3} n \in \widetilde{O}(\sqrt{n})$

Three problems on Data Streams

Four examples:

- Counting distinct elements
- Finding heavy hitters
- Counting in a sliding window

Counting distinct elements

- How many distinct IP addresses has the router seen?
- An IP may have passed once, or many many times
- Fact: Any algorithm must use $\Omega(n)$ memory to solve this problem exactly on a data stream, where n is number of different IPs seen
- Fact: $O(\log n)$ suffices to approximate within 1%

Finding heavy hitters

- Which IP's have used over ε fraction of bandwidth (each)? (Note: There can't be more than $1 / \varepsilon$ of these)
- Fact: Any algorithm must use $\Omega(n)$ memory to solve this problem exactly on a data stream, where n is number of distinct IPs seen
- Fact: $O(1 / \varepsilon)$ memory suffices if we allow a constant error factor

Counts in a sliding window

- Stream of bits; fixed n
- Question: "how many 1's were there among the last n "?
- Fact: Any algorithm must use $\Omega(n)$ memory to solve this problem exactly on a data stream
- Fact: $O(\log n)$ suffices to approximate within 1%

My main argument for sketches

If we keep one count, it's ok to use a lot of memory
If we have to keep many counts, they should use low memory
When learning / mining, we need to keep many counts
\therefore Sketching is a good basis for data stream learning / mining

Approximate Counting

Counting

Most basic question?
How many items have we read so far in the data stream?

To count up to t elements exactly, $\log t$ bits are necessary
Next is an approximate solution using $\log \log t$ bits

Approximate counting

Saving k bits

Init: $c \leftarrow 0$;
Update: draw a random number $x \in[0,1]$; if $\left(x \leq 2^{-k}\right) c++$;
Query: return $2^{k} c$;

$$
E[c]=t / 2^{k}, \quad \sigma[c] \simeq \sqrt{t / 2^{k}}
$$

Space $\log t-k \rightarrow$ we saved k bits!

Morris' approximate counter [Morris 77]

Morris' counter
Init: $c \leftarrow 0$;
Update: draw a random number $x \in[0,1]$; if $\left(x \leq 2^{-c}\right) c++$;
Query: return $2^{C}-2$;

$$
\begin{aligned}
& E[c] \simeq \log t \\
& E\left[2^{c}\right]=t+2 \\
& \sigma\left[2^{c}\right] \simeq t / \sqrt{2} \simeq 0.7 t
\end{aligned}
$$

Morris' approximate counter

- Memory $=$ memory used to keep $c=\log c=\log \log t$
- Can count up to 1 billion with $\log \log 10^{9}=5$ bits
- Problem: large variance, $O(t)$

Reducing the variance, method I

Use basis $b<2$ instead of basis 2 :

- Places t in the series $1, b, b^{2}, \ldots, b^{i}, \ldots$ ("resolution" b)
- $E\left[b^{c}\right] \simeq t, \sigma\left[b^{c}\right] \simeq t \cdot \sqrt{(b-1) / 2}$
- Space $\log \log t-\log \log b \quad(>\log \log t$, because $b<2)$
- For $b=1.2,20 \%$ of original variance, 2 extra bits

Reducing the variance, method II

- Run r parallel, independent copies of the algorithm
- On Query, average their estimates
- $E[Q] \simeq t, \sigma[Q] \simeq t / \sqrt{2 r} \quad$ (why?)
- Space $r \log \log t$
- Time per item multiplied by r

Worse performance, but more generic technique

Morris' counter: A non-streaming application

In [VanDurme+09]

- Counting k-grams in a large text corpus
- Number of k-grams grows exponentially with k
- Highly diverse frequencies
- Use Morris' counters (5 bits) instead of standard counters

Morris' counter: An improvement?

Exercise 1

Suppose in the Morris' counter I change

$$
\text { if }\left(x \leq 2^{-c}\right) c++;
$$

to

$$
\text { if }\left(x \leq 2^{-2^{c}}\right) c++;
$$

I claim this gives an algorithm using $\log \log \log t$ bits between updates (plus temporary loglog t memory during an update)

1) do you believe this?
2) if you do, think why this algorithm is not very useful, anyway Hint: resolution

Probability and Sampling

Probability and Sampling

Probabilities

- A, B events
- $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A \wedge B] / \operatorname{Pr}[B]$
- A and B independent iff $\operatorname{Pr}[A \wedge B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B]$
- equivalently, iff $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A]$
- Union bound:
$\operatorname{Pr}[A \vee B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \wedge B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]$
- More in general, $\operatorname{Pr}\left[\bigvee_{i \in I} A_{i}\right] \leq \sum_{i \in I} \operatorname{Pr}\left[A_{i}\right]$

Expectation

(Discrete distributions)

- X real-valued random variable
- Expectation of $X=E[X]=\sum_{x} \operatorname{Pr}[X=x] \cdot x$
- $E[X-E[X]]=0$
- Linearity of expectation:

$$
E[X+Y]=E[X]+E[Y], \quad E[\alpha \cdot X]=\alpha \cdot E[X]
$$

- More in general, $E\left[\sum_{i \in I} \alpha_{i} \cdot X_{i}\right]=\sum_{i \in I} \alpha_{i} \cdot E\left[X_{i}\right]$
- If X and Y independent, $E[X \cdot Y]=E[X] \cdot E[Y]$

Variance

- Variance: $\operatorname{Var}(X)=E\left[(X-E[X])^{2}\right]=E\left[X^{2}\right]-E[X]^{2}$
- $\operatorname{Var}(\alpha \cdot X+\beta)=\alpha^{2} \cdot \operatorname{Var}(X)$
- If X and Y independent, $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$
- In general, if X_{i} are all independent and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$,

$$
\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)=\frac{1}{n^{2}}\left(n \sigma^{2}\right)=\frac{\sigma^{2}}{n}
$$

Equivalently,

$$
\sigma\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)=\frac{\sigma}{\sqrt{n}}
$$

Deviation Bounds

Markov's inequality
For a non-negative random variable X and every k

$$
\operatorname{Pr}[X \geq k E[X]] \leq 1 / k
$$

Proof:

$$
\begin{aligned}
E[X] & =\sum_{x} \operatorname{Pr}[X=x] \cdot x \geq \sum_{x \geq k} \operatorname{Pr}[X=x] \cdot x \\
& \geq \sum_{x \geq k} \operatorname{Pr}[X=x] \cdot k=k \operatorname{Pr}[X \geq k]
\end{aligned}
$$

Deviation Bounds

Markov does not mention variance
But small variance implies concentration, no?
Chebyshev's inequality
For every X and every k

$$
\operatorname{Pr}[|X-E[X]|>k] \leq \operatorname{Var}(X) / k^{2}
$$

Equivalently, $\operatorname{Pr}[|X-E[X]| \geq k \sigma(X)] \leq 1 / k^{2}$
Proof:

$$
\begin{aligned}
\operatorname{Pr}[|X-E[X]|>k] & =\operatorname{Pr}\left[(X-E[X])^{2}>k^{2}\right] \leq(\text { Markov }) \\
& \leq E\left[(X-E[X])^{2}\right] / k^{2}=\operatorname{Var}(X) / k^{2}
\end{aligned}
$$

Chebyshev gives (ε, δ)-approximations

$$
\operatorname{Pr}[|X-E[X]|>k \sigma]
$$

$k=1$	$k=2$	$k=3$	$k=4$
≤ 1	≤ 0.25	≤ 0.11	≤ 0.07

But if X is normally distributed,

$$
\begin{array}{|c|c|c|c|}
\hline k=1 & k=2 & k=3 & k=4 \\
\hline \leq 0.32 & \leq 0.05 & \leq 0.003 & \leq 3 \cdot 10^{-5} \\
\hline
\end{array}
$$

Sums of Independent Variables

$\exp \left(-x^{2}\right)$ vs. $1 / x^{2}:$

Sums of Independent Variables

- Suppose $X=\sum_{i=1}^{n} X_{i}, E\left[X_{i}\right]=p, \operatorname{Var}\left(X_{i}\right)=\sigma^{2}$, all X_{i} independent and bounded
- By the Central Limit Theorem, $Z_{n}=(X-n p) / \sqrt{n \sigma^{2}}$ tends to normal $N(0,1)$ as $n \rightarrow \infty$,
- And approximating by the normal gives

$$
\operatorname{Pr}\left[Z_{n} \geq \alpha\right] \approx \exp \left(-\alpha^{2} / 2\right)
$$

- Chebyshev only gives

$$
\operatorname{Pr}\left[Z_{n} \geq \alpha\right] \leq \frac{1}{\alpha^{2}}
$$

Bernstein Bound

Let:

- $X_{1}, X_{2}, \ldots X_{n}$ be independent random variables,
- $X_{i} \in[0,1], \operatorname{Var}\left(X_{i}\right)=\sigma^{2}$,
- $X=\frac{1}{n} \sum_{i=1}^{n} X_{i}$

Bernstein bound
For every $\varepsilon>0$,

$$
\operatorname{Pr}[|X-E[X]|>\varepsilon]<2 \exp \left(-\frac{\varepsilon^{2} n}{2 \sigma^{2}+2 \varepsilon / 3}\right)
$$

Chernoff-Hoeffding bounds

- $X_{1}, X_{2}, \ldots X_{n}$ be independent random variables,
- $X_{i} \in[0,1], E\left[X_{i}\right]=p$,
- $X=\sum_{i=1}^{n} X_{i}$, so $E[X]=p n$

Hoeffding bound (absolute deviation)

$$
\begin{gathered}
\operatorname{Pr}[X-p n>\varepsilon n]<\exp \left(-2 \varepsilon^{2} n\right) \\
\operatorname{Pr}[X-p n<-\varepsilon n]<\exp \left(-2 \varepsilon^{2} n\right)
\end{gathered}
$$

Chernoff bound (relative deviation)
For $\varepsilon \in[0,1]$,

$$
\begin{gathered}
\operatorname{Pr}[X-p n>\varepsilon p n]<\exp \left(-\varepsilon^{2} p n / 3\right) \\
\operatorname{Pr}[X-p n<-\varepsilon p n]<\exp \left(-\varepsilon^{2} p n / 2\right)
\end{gathered}
$$

Example: Approximating the Mean

Input: ε, δ, random variable $X \in[0,1]$

Output: (ε, δ)-approximation of $E[X]$

Algorithm $A(\varepsilon, \delta)$

- Draw $n=\frac{1}{2 \varepsilon^{2}} \ln \frac{2}{\delta}$ copies of X
- Output their average Y

Example: Approximating the Mean

- Let X_{i} be i th copy of X
- Then $Y=\frac{1}{n} \sum_{i=1}^{n} X_{i}$, and $E[Y]=E[X]$
- By Hoeffding,

$$
\begin{aligned}
\operatorname{Pr}[|Y-E[X]|>\varepsilon] & =\operatorname{Pr}\left[\sum_{i=1}^{n} X_{i}-E\left[\sum_{i=1}^{n} X_{i}\right]>\varepsilon n\right] \\
& <2 \exp \left(-2 \varepsilon^{2} n\right)=2 \exp (-\ln (2 / \delta))=\delta
\end{aligned}
$$

- A different, sequential, algorithm gets (ε, δ) relative approximation using

$$
O\left(\frac{1}{\varepsilon^{2} E[X]} \ln \frac{1}{\delta}\right)
$$

samples of X
[Dagum-Karp-Luby-Ross 95, Lipton-Naughton 95]

Example: Approximating the Median

Input: ε, δ, set $S \subseteq[0,1]$

Output: an element $s \in S$ whose rank in S is in $(1 / 2 \pm \varepsilon)|S|$

Algorithm $A(\varepsilon, \delta)$

- Draw $n=\frac{1}{2 \varepsilon^{2}} \ln \frac{2}{\delta}$ random elements from S
- Output the median of these n elements

Example: Approximating the Median

- Let X_{i} be 1 if i th sample has rank $\leq(1 / 2-\varepsilon)|S|, 0$ otherwise
- $E\left[X_{i}\right]=1 / 2-\varepsilon$
- By Hoeffding,

$$
\begin{aligned}
& \operatorname{Pr}[\geq n / 2 \text { draws give elements with rank } \leq(1 / 2-\varepsilon)|S|] \\
\leq & \operatorname{Pr}\left[\sum_{i=1}^{n} X_{i} \geq n / 2\right]=\operatorname{Pr}\left[\sum_{i=1}^{n} X_{i} \geq E\left[\sum_{i=1}^{n} X_{i}\right]+\varepsilon n\right] \\
\leq & \exp \left(-2 \varepsilon^{2} n\right)=\delta / 2
\end{aligned}
$$

- Therefore, with probability $<\delta / 2$ we draw $\geq n / 2$ elements of rank $\leq(1 / 2-\varepsilon)|S|$. Implies median of sample $>(1 / 2-\varepsilon)|S|$
- Similarly the other side

Example use in Data Streams: Sampling rate

Exercise 2.
Understand the algorithm and proof for the median (You don't have to deliver this exercise, but you have to do it)

Example use in Data Streams: Sampling rate

- Suppose items arrive at so high speed that we have to skip some
- Sample randomly:
- Choose to process each element with probability α
- Ignore each element with prob. $1-\alpha$
- At any time t, if queried for the median, returned the median of the elements chosen so far

Exercise 3.

Given α, δ, determine the probability ε_{t} such that at time t the output of the algorithm above is an $\left(\varepsilon_{t}, \delta\right)$-approximation of the median on the first t elements of the stream

