Lecture 1. The data stream model. Counting. Probability tools

Ricard Gavaldà

MIRI Seminar on Data Streams, Spring 2015

Data streams everywhere

Data streams everywhere

- Telcos phone calls
- Satellite, radar, sensor data
- Computer systems and network monitoring
- Search logs, access logs
- RSS feeds, social network activity
- Websites, clickstreams, query streams
- E-commerce, credit card sales

Thousands of visits / day

- Is this "customer" a robot?
- Does this customer want to buy?
- Is customer lost? Finding what s/he wants?
- What products should we recommend to this user?
- What ads should we show to this user?
- Should we get more machines from the cloud to handle incoming traffic?

Millions of queries / day

- What are the top queries right now?
- Which terms are gaining popularity now?
- What ads should we show for this query and user?

Hundreds of millions of calls/day

- Each call about 1000 bytes per switch
- I.e., about 1Tb/month; must keep for billing
- Is this call fraudulent?
- Why do we get so many call drops in area X?
- Should we reroute differently tomorrow?
- Is this customer thinking of leaving us?
- How to cross-sell / up-sell this customer?

Several Gb /minute at UPC's outlink Really impossible to store

- Detect abusive users
- Detect anomalous traffic patterns
- ... DDOS attacks, intrusions, etc.

- Social networks: Planet-scale streams
- Smart cities. Smart vehicles
- Internet of Things
- (more phones connected to devices than used by humans)
- Open data; governmental and scientific

• We generate far more data than we can store

- Data arrives as sequence of items
- At high speed
- Forever
- Can't store them all
- Can't go back; or too slow
- Evolving, non-stationary reality

The Data Stream axioms:

- One pass
- 2 Low time per item read, process, discard
- Sublinear memory only summaries or sketches
- Anytime, real-time answers
- The stream evolves over time

Part I:

- The data stream model. Probability tools
- Statistics on streams; frequent elements
- Sketches for linear algebra and graphs
- Dealing with change

Part II:

- Predictive models
- Evaluation
- Clustering
- Frequent pattern mining
- Distributed stream mining

The data stream model

- Approximate answers are often OK
- Specifically, in learning and mining contexts
- Often computable with surprisingly low memory, one pass

Main Ingredients: Approximation and Randomization

- Algorithms use a source of independent random bits
- So different runs give different outputs
- But "most runs" are "approximately correct"

$(arepsilon,\delta)$ -approximation

A randomized algorithm $A(\varepsilon, \delta)$ -approximates a function $f: X \to R$ iff for every $x \in X$, with probability $\geq 1 - \delta$

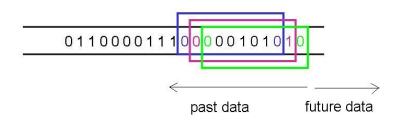
- (absolute approximation) $|A(x) f(x)| < \varepsilon$
- (relative approximation) $|A(x) f(x)| < \varepsilon f(x)$

Often ε , δ given as inputs to A ε = accuracy; δ = confidence $a \simeq b$ means "= up to lower order terms", $a \simeq a(1 + o(1))$ $a \sim b$ means whatever I find convenient at that point log is base 2 unless otherwise noted $\widetilde{O}(.)$ hides "polylog" terms, e.g. $\sqrt{n}\log^3 n \in \widetilde{O}(\sqrt{n})$ Four examples:

- Counting distinct elements
- Finding heavy hitters
- Counting in a sliding window

- How many distinct IP addresses has the router seen?
- An IP may have passed once, or many many times
- Fact: Any algorithm must use Ω(n) memory to solve this problem exactly on a data stream, where n is number of different IPs seen
- Fact: $O(\log n)$ suffices to approximate within 1%

- Which IP's have used over ε fraction of bandwidth (each)?
 (Note: There can't be more than 1/ε of these)
- Fact: Any algorithm must use Ω(n) memory to solve this problem exactly on a data stream, where n is number of distinct IPs seen
- Fact: O(1/ε) memory suffices if we allow a constant error factor



- Stream of bits; fixed n
- Question: "how many 1's were there among the last n"?
- Fact: Any algorithm must use Ω(n) memory to solve this problem exactly on a data stream
- Fact: O(log n) suffices to approximate within 1%

If we keep one count, it's ok to use a lot of memory If we have to keep many counts, they should use low memory

When learning / mining, we need to keep many counts

... Sketching is a good basis for data stream learning / mining

Approximate Counting

Most basic question?

How many items have we read so far in the data stream?

To count up to *t* elements *exactly*, log *t* bits are *necessary*

Next is an approximate solution using log log t bits

Saving k bits

Init: $c \leftarrow 0$;

Update:

draw a random number $x \in [0, 1]$; if $(x \le 2^{-k}) c^{++}$;

Query: return $2^k c$;

 $E[c] = t/2^k, \qquad \sigma[c] \simeq \sqrt{t/2^k}$ Space log $t - k \rightarrow$ we saved k bits!

Morris' counter

Init: $c \leftarrow 0$;

Update:

draw a random number $x \in [0, 1]$; if $(x \le 2^{-c}) c^{++}$;

Query: return $2^{c} - 2$;

$$\begin{split} E[c] &\simeq \log t \\ E[2^c] &= t+2 \\ \sigma[2^c] &\simeq t/\sqrt{2} \simeq 0.7 \, t \end{split}$$

- Memory = memory used to keep $c = \log c = \log \log t$
- Can count up to 1 billion with $\log \log 10^9 = 5$ bits
- Problem: large variance, O(t)

Use basis b < 2 instead of basis 2:

• Places *t* in the series $1, b, b^2, \dots, b^i, \dots$ ("resolution" *b*)

•
$$E[b^c] \simeq t, \, \sigma[b^c] \simeq t \cdot \sqrt{(b-1)/2}$$

- Space $\log \log t \log \log b$ (> $\log \log t$, because b < 2)
- For b = 1.2, 20% of original variance, 2 extra bits

- Run r parallel, independent copies of the algorithm
- On Query, average their estimates
- $E[Q] \simeq t, \, \sigma[Q] \simeq t/\sqrt{2r}$ (why?)
- Space r log log t
- Time per item multiplied by r

Worse performance, but more generic technique

In [VanDurme+09]

- Counting k-grams in a large text corpus
- Number of k-grams grows exponentially with k
- Highly diverse frequencies
- Use Morris' counters (5 bits) instead of standard counters

Exercise 1

Suppose in the Morris' counter I change

if $(x \le 2^{-c}) c^{++};$

to

if
$$(x \le 2^{-2^c}) c_{++};$$

I claim this gives an algorithm using logloglog t bits between updates (plus temporary loglog t memory during an update)
1) do you believe this?
2) if you do, think why this algorithm is not very useful, anyway Hint: resolution

Probability and Sampling

Probability and Sampling

- A, B events
- $\Pr[A|B] = \Pr[A \land B] / \Pr[B]$
- A and B independent iff $\Pr[A \land B] = \Pr[A] \cdot \Pr[B]$
- equivalently, iff Pr[A|B] = Pr[A]
- Union bound: $\Pr[A \lor B] = \Pr[A] + \Pr[B] - \Pr[A \land B] \le \Pr[A] + \Pr[B]$
- More in general, $\Pr[\bigvee_{i \in I} A_i] \leq \sum_{i \in I} \Pr[A_i]$

(Discrete distributions)

- X real-valued random variable
- Expectation of $X = E[X] = \sum_{x} \Pr[X = x] \cdot x$
- E[X E[X]] = 0
- Linearity of expectation: $E[X + Y] = E[X] + E[Y], \quad E[\alpha \cdot X] = \alpha \cdot E[X]$
- More in general, $E[\sum_{i \in I} \alpha_i \cdot X_i] = \sum_{i \in I} \alpha_i \cdot E[X_i]$
- If X and Y independent, $E[X \cdot Y] = E[X] \cdot E[Y]$

Variance

- Variance: $Var(X) = E[(X E[X])^2] = E[X^2] E[X]^2$
- $Var(\alpha \cdot X + \beta) = \alpha^2 \cdot Var(X)$
- If X and Y independent, Var(X + Y) = Var(X) + Var(Y)
- In general, if X_i are all independent and $Var(X_i) = \sigma^2$,

$$Var(\frac{1}{n}\sum_{i=1}^{n}X_i) = \frac{1}{n^2}(n\sigma^2) = \frac{\sigma^2}{n}$$

Equivalently,

$$\sigma(\frac{1}{n}\sum_{i=1}^n X_i) = \frac{\sigma}{\sqrt{n}}.$$

Markov's inequality

For a non-negative random variable X and every k

 $\Pr[X \ge k E[X]] \le 1/k$

Proof:

$$\Xi[X] = \sum_{x} \Pr[X = x] \cdot x \ge \sum_{x \ge k} \Pr[X = x] \cdot x$$
$$\ge \sum_{x \ge k} \Pr[X = x] \cdot k = k \Pr[X \ge k]$$

Markov does not mention variance But small variance implies concentration, no?

Chebyshev's inequality

For every X and every k

 $\Pr[|X - E[X]| > k] \le Var(X)/k^2$

Equivalently, $\Pr[|X - E[X]| \ge k \sigma(X)] \le 1/k^2$

Proof:

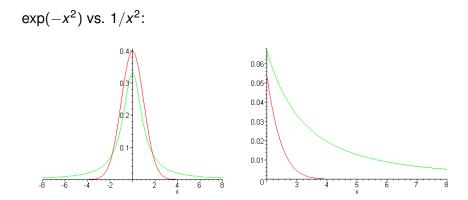
$$\begin{aligned} \Pr[|X - E[X]| > k] &= \Pr[(X - E[X])^2 > k^2] \le \text{ (Markov)} \\ &\le E[(X - E[X])^2]/k^2 = Var(X)/k^2 \end{aligned}$$

$$\Pr[|X - E[X]| > k\sigma]$$

<i>k</i> = 1	k = 2	k = 3	<i>k</i> = 4
<u>≤</u> 1	\leq 0.25	≤ 0.11	\leq 0.07

But if X is normally distributed,

$$k = 1$$
 $k = 2$
 $k = 3$
 $k = 4$
 ≤ 0.32
 ≤ 0.05
 ≤ 0.003
 $\leq 3 \cdot 10^{-5}$



Sums of Independent Variables

- Suppose X = ∑_{i=1}ⁿ X_i, E[X_i] = p, Var(X_i) = σ², all X_i independent and bounded
- By the Central Limit Theorem, Z_n = (X − np)/√nσ² tends to normal N(0,1) as n→∞,
- And approximating by the normal gives

$$\Pr[Z_n \ge \alpha] \approx \exp(-\alpha^2/2)$$

Chebyshev only gives

$$\Pr[Z_n \ge \alpha] \le \frac{1}{\alpha^2}$$

Let:

• $X_1, X_2, \ldots X_n$ be independent random variables,

•
$$X_i \in [0, 1], Var(X_i) = \sigma^2,$$

• $X = \frac{1}{n} \sum_{i=1}^n X_i$

Pernetain bound

Bernstein bound

For every $\varepsilon > 0$,

$$\Pr[|X - E[X]| > \varepsilon] < 2\exp\left(-\frac{\varepsilon^2 n}{2\sigma^2 + 2\varepsilon/3}\right)$$

Chernoff-Hoeffding bounds

- $X_1, X_2, \ldots X_n$ be independent random variables,
- $X_i \in [0, 1], E[X_i] = p$,

•
$$X = \sum_{i=1}^{n} X_i$$
, so $E[X] = pn$

Hoeffding bound (absolute deviation)

$$\Pr[X - pn > \varepsilon n] < \exp(-2\varepsilon^2 n)$$

$$\Pr[X - pn < -\varepsilon n] < \exp(-2\varepsilon^2 n)$$

Chernoff bound (relative deviation) For $\varepsilon \in [0, 1]$,

$$\Pr[X - pn > \varepsilon pn] < \exp(-\varepsilon^2 p n/3)$$

$$\Pr[X - pn < -\varepsilon pn] < \exp(-\varepsilon^2 p n/2)$$

Input: ε , δ , random variable $X \in [0, 1]$

Output: (ε , δ)-approximation of E[X]

Algorithm $A(\varepsilon, \delta)$

• Draw
$$n = \frac{1}{2\varepsilon^2} \ln \frac{2}{\delta}$$
 copies of X

• Output their average Y

Example: Approximating the Mean

- Let X_i be *i*th copy of X
- Then $Y = \frac{1}{n} \sum_{i=1}^{n} X_i$, and E[Y] = E[X]
- By Hoeffding,

$$\Pr[|Y - E[X]| > \varepsilon] = \Pr[\sum_{i=1}^{n} X_i - E[\sum_{i=1}^{n} X_i] > \varepsilon n]$$

<
$$2\exp(-2\varepsilon^2 n) = 2\exp(-\ln(2/\delta)) = \delta$$

 A different, sequential, algorithm gets (ε,δ) relative approximation using

(

$$O\left(\frac{1}{\varepsilon^2 E[X]} \ln \frac{1}{\delta}\right)$$

samples of *X* [Dagum-Karp-Luby-Ross 95, Lipton-Naughton 95] Input: ε , δ , set $S \subseteq [0, 1]$

Output: an element $s \in S$ whose rank in S is in $(1/2 \pm \varepsilon)|S|$

Algorithm $A(\varepsilon, \delta)$

• Draw
$$n = \frac{1}{2\varepsilon^2} \ln \frac{2}{\delta}$$
 random elements from *S*

Output the median of these n elements

Example: Approximating the Median

- Let X_i be 1 if *i*th sample has rank $\leq (1/2 \varepsilon)|S|$, 0 otherwise
- $E[X_i] = 1/2 \varepsilon$
- By Hoeffding,

 $\begin{aligned} & \Pr[\geq n/2 \text{ draws give elements with rank} \leq (1/2 - \varepsilon)|S|] \\ \leq & \Pr[\sum_{i=1}^{n} X_i \geq n/2] = \Pr[\sum_{i=1}^{n} X_i \geq E[\sum_{i=1}^{n} X_i] + \varepsilon n] \\ \leq & \exp(-2\varepsilon^2 n) = \delta/2 \end{aligned}$

- Therefore, with probability $< \delta/2$ we draw $\ge n/2$ elements of rank $\le (1/2 - \varepsilon)|S|$. Implies median of sample $> (1/2 - \varepsilon)|S|$
- Similarly the other side

Exercise 2.

Understand the algorithm and proof for the median (You don't have to deliver this exercise, but you have to do it)

Example use in Data Streams: Sampling rate

- Suppose items arrive at so high speed that we have to skip some
- Sample randomly:
 - Choose to process each element with probability α
 - Ignore each element with prob. 1α
- At any time *t*, if queried for the median, returned the median of the elements chosen so far

Exercise 3.

Given α , δ , determine the probability ε_t such that at time *t* the output of the algorithm above is an (ε_t, δ) -approximation of the median on the first *t* elements of the stream