SEMANTICS

- Introduction
- Meaning Representation
- Meaning Interpretation
Introduction

Semantics is about the meaning of the sentences. Semantic Interpretation is the process of obtaining the sentence meaning.

Sentence in NL → Logic Form

Contextual Information

Meaning Representation

Determining the correct meaning for each word

Combination of the meaning of the words to build a logical form
Introduction

• The semantic representation of an object is obtained from the semantic interpretation of its components.
• The semantic interpretation process must be based in a theory, not in an "ad-hoc" process. This theory must support:
 • - lexical and syntactic ambiguity
 • - complex phenomena: negation, quantification, inferences, etc.
• An interface mechanism between syntax and semantic must be defined.
Composition of meaning from the meaning of parts

• Incorporating the feature **sem** to each CFG rule
 • \(S \rightarrow NP \text{ loves } NP \)
 • \(S[\text{sem}=\text{loves}(x,y)] \rightarrow NP[\text{sem}=x] \text{ loves } NP[\text{sem}=y] \)
 • The meaning of \(S \) is obtained from the meaning of the NPs

![Diagram](image-url)
Adding **sem** feature

Example Rule 1
- S • NP loves NP
 - \(S[\text{sem}=\text{loves}(x,y)]\) • NP[sem=x] loves NP[sem=y]

Example Rules 2
- V[sem=loves] • loves
- VP[sem=v(obj)] • V[sem=v] NP[sem=obj]
- S[sem=vp(subj)] • NP[sem=subj] VP[sem=vp]

Example of resulting analysis
- George loves Laura
- \(\text{sem}=\text{loves(Laura)(George)}\)
Composition of meaning from the meaning of parts

- Simple semantic interpretation
 - IS bottom-up
 - Grammar is in CNF
 - Each node two sons: 1 function & 1 argument

- To obtain semantic interpretation: application of the function to argument
input: ¿Who organizes the party?

logical form:
(question
 (referent (X))
 (X instance (X, persona)
 (el1 (Y instance(Y, party))
 (· · · Z instance(Z, organizes)
 present(Z)
 value_prop(Z, agent, X)
 value_prop(Z, patient,Y)))))))
• This form includes four different types of knowledge:
 • Logical
 • Conceptual
 • Speech act
 • Pragmatics
• The semantic formalism must support these different types of knowledge.
Representations Based on Logic

- A finite set of **functions** with arguments.

- A finite set of **predicates** (functions that return a boolean value) with arguments.

- **A finite set of constants** and **variables**.

- A finite set of logical **connectors**.
- A finite set of **quantifiers**, that will be applied over the predicates.
Objects

• Three types:
 • Boolean
 • True or false
 • Entities
 • Classes and their elements. For example, NPs
 • Especifications of space and time
 • Functions
Functions

- Use of λ expressions in functions
 - names
 - the cat
 \[\forall \lambda g \text{ cat}(g) \]
 - adjectives
 - The cat black and fat
 \[\forall \lambda g \text{ cat}(g) \land \text{black}(g) \land \text{fat}(g) \]
 - Other modifiers
 - Peter's cat
 \[\forall \lambda g \text{ cat}(g) \land \text{belongs_to}(g, \text{peter}) \]
Functions

- Arity of predicates

 Unary predicate: over entities
 \[\forall \lambda g \text{ cat}(g) \]

 Binary predicate over 2 entities
 \[\forall \lambda g \text{ belong}_\text{to}(g,\text{pepe}) \]

 Binary predicate over 2 unary predicates over entities

 • Almost all cats see.

 • almost(\[\lambda g \text{ cat}(g), \lambda g \text{ see}(g) \])
Basic problems of Representation

- Quantification
- Intrasentencial reference
- Subordination
- Negation
- Conjuntion
- Ambiguity

A cat eats a fish

\((\exists \, X:\text{cat} \ (\exists \, Y:\text{fish} \ \text{eats} \ (X, Y)))\)
Which information has to be represented?
All information that can be obtained from the sentenced and it could be useful.

For example, Allen states that to represent a nominal phrase four different types of information is necessary:

1. Operator
2. Variable
3. Type
4. Modifiers
The boy (DEF/SING N1 BOY)

The big boy (DEF/SING N1 BOY (BIG N1))

Each boy eat a big cake
(PAST C1 EAT
 (AGENT C1 (EACH N1 BOY))
 (THEME C1 (INDEF/SING P1 CAKE (BIG P1))))

JOHN ARRIVED AT THE STATION
(PAST L1 ARRIVE
 (AGENT L1 (NAME J1 PERSONA "JOHN")))
 (TO-LOC L1 (DEF/SING E1 STATION)))
The logical forms are associated with the verb, the central part of the sentence. They included the modifiers representing the different cases: *agentive, instrument, thema, patient, locative, temporal, etc...*
The Semantic Networks

• Labeled directed graphs
 • nodes ==> concepts (classes or types) / objects (instancias)
 • edges ==> binary relations (binary predicates) between concepts.
• Quillian (1968), Simmons (1973)
• Knowledge Representation Systems based on semantic networks
 • NePS (Shapiro), Partitioned network (Hendrix)
 • KL-ONE (Brachman)
• Global organization of the Knowledge Base.
• Inference rules (basically, inheritance)
The Semantic Networks

• Advantages
 • Visibility.
 • Associative representation. Efficient access.
 • Appropriate for knowledge searching and inference.
 • Representation of both general and specific knowledge.
 • Supporting complex matching processes.
The Semantic Networks

• Disadvantages

• Representation of relations of arity higher than two is difficult (unary and binary relations are easily represented).

• Representation of logic operations such as negation, implication and disjunction is difficult.

• Representation of quantification is difficult.
Frames

- Representation of stereotypes
- Descriptors
- Classes and instances
- Descriptors (attributes) and relationships.
- Facetts
- trawberrys
- Semantic objects and relations predefined
- Not standard objects.
Frames

- Inheritance of properties
- Other forms of inferences
 - “The red car”: The car is not completely red but only the external part.
 - “one coffee spoon of sugar = the quantity of sugar that corresponds to that in a coffee spoon”
- Procedimental information
- Different levels of granularity and abstraction
 - 350 gr. of beans, two pieces of fruit, plenty of
Frames

- Sets of simple objects:
 - Enumeration:
 - three potatoes, salt and pepper
 - Global reference:
 - Fresh fruit, garlic
 - Quantification:
 - A tee spoon of sugar
 - Disjunction:
 - "one big potato or two small ones"
- Not exhaustive lists:
 - Apples, bananas, oranges, etc...
Frames

Objects not quantified.

- Mass:
 - 3 Kg de rice
- Not formal metrics:
 - A cup of rice
- Not specific quantities:
 - A little bit of salt, some sugar
• Properties
 • Describing the content:
 • Mature fruit
 • Describing the de form:
 • A big apple
 • Describing what it is not:
 • Olives without bones
• States, process, actions, success
 • Fry the sliced onion until golden brown
Graphs of conceptual dependency

- Semantic graphs where nodes and edges belong to the set of predefined semantic objects and relationships (Schanck).
- Understanding a text \Rightarrow following (logical) causal chain
- The elements in the chain are *conceptualizations* and are linked by (logic) *causal relationships*.
- Schanck’s formalism is a *dependency grammar*.
- Representation based on actions and associated with *deep structure* based on:
 - PP Names, ACT Actions
 - PA Adjetives, AA Adverbs
Conceptualizations

Actor: An actor acts (agentivo act)

\[
\text{PP} \leftrightarrow \text{ACT}
\]

Goal: An action achieves a goal (objective)

\[
\text{O} \\
\text{ACT} \leftarrow \text{PP}
\]

Place: Change in the owner of an object:

\[
\text{ACT} \leftarrow \text{R} \quad \text{PP} \\
\text{PP} \\
\text{PP}
\]
Directive: Initial and final points of an action:

Instrument:
Predefined Semantic Actions

Physical actions: MOVE, PROPEL, EXPEL, GRASP, INGEST

Ingest: An actor X moves an object Y from an external position W to an internal position (in a physical body) Z.

![Diagram](image)

Changes in the state:
- **PTRANS**: Physical movement
- **ATRANS**: Change in the abstract relationship

Instruments:
- **SPEAK**: Making a sound
- **ATTEND**: Direct a sense towards an stimulus

Mental actions:
- **MTRANS**: Transferring information
- **MBUILD**: Combination
"Juan is running"