

- Introduction
- Chunking



NLP chunking

- Problems when parsing non restricted corpus
  - Adaptation of a grammar to a corpus or sublanguage
  - Selection of the correct (!?) parse between the ones allowed by the grammar.
  - Production of good parses for entries outside the coverage of the grammar (Robustness)

- Partial parsers
  - phrasal parsers
    - chunkers, spotters
    - Church,1988
  - coocurrence parsers
    - Church, Hanks, 1989, Brent, 1993
  - fragmental parsers
    - Fidditch, Hindle, 1994, MITFP, Abney, 1991
  - constraint-based parsers
    - Voutilainen,1995
- Probabilistic parsers
- Treebanks



- Definition of chunk
  - With linguistic basis: Abney
  - Only pragmatic:
    - Contiguous sequences of related tokens
      - Not confusing with terms
    - e.g. Base NP
- Approaches to chunking
  - Look for (include) information
  - Remove information
    - e.g. Chink

- Representing chunks
  - Labels
    - e.g. BIO tags
    - BEGIN, INSIDE, OUTSIDE
  - Trees
- Chunk parser
  - Looking for non overlapped chunks for reaching a maximal coverage

- Frecuently regular expressions over sequences of POS tags
- aglomerative (chunk rules) vs divisive (chink rules)
- Rules for fusion of adjacent chunks
- Rules for splitting a chunk in smaller components.
- Cascade approach for chunk detection

- Related tasks
  - Bracketing
  - Term candidate extraction
  - Named Entity Recognition (NER)
  - Named Entity Classification (NEC)
  - NERC

- Example Church chunker
- Statistical tagger followed by chunker
- Between any pair of contiguous tokens, a chunk delimiter can be inserted
- chunks delimeters have to satisfy consistency conditions probabilities of inserting any tag are learned using supervised learning
- The result is the string with maximum probability assuming independence.

