Statistical Language Models

- Language Models, LM
- Noisy Channel model
- Simple Markov Models
- Smoothing

Two Main Approaches to NLP

 Knowlege (AI)- Statistical models
- Inspired in speech recognition :
probability of next word based on previous
- Others statistical models

Probability Theory

- X be uncertain outcome of some event.

Called a random variable

- $V(X)$ finite number of possible outcome (not a real number)
- $P(X=x)$, probability of the particular outcome $x(x$ belongs $V(X))$
- X desease of your patient, $V(X)$ all possible diseases,

Probability Theory

Conditional probability of the outcome of an event based upon the outcome of a second event

We pick two words randomly from a book. We know first word is the, we want to know probability second word is dog

$$
\mathrm{P}\left(\mathrm{~W}_{2}=\text { dog } \mid \mathrm{W}_{1}=\text { the }\right)=\mid \mathrm{W}_{1}=\text { the }, W_{2}=\text { dog }|/| W_{1}=\text { the } \mid
$$

Bayes's law: $P(x \mid y)=P(x) P(y \mid x) / P(y)$

Probability Theory

Bayes's law: $P(x \mid y)=P(x) P(y \mid x) / P(y)$
$P($ desease /symptom $)=$ P (desease) $\mathrm{P}($ symptom/desease)/P(symptom)
$P\left(w_{1, n} \mid\right.$ speech signal $)=$ $P\left(w_{1, n}\right) P\left(\right.$ speech signal \| $\left.w_{1, n}\right) / P($ speech signal $)$

We only need to maximize the numerator
P (speech signal \| $w_{1, n}$) expresses how well the speech signal fits the sequence of words $\mathrm{w}_{1, \mathrm{n}}$

Probability Theory

Useful generalizations of the Bayes's law

- To find the probability of something happening calculate the probability that it hapens given some second event times the probability of the second event
- $P(w, x \mid y, z)=P(w, x) P(y, z \mid w, x) / P(y, z)$

Where x, y, y, z are separates events (i.e. take a word)
$-\mathrm{P}\left(\mathrm{w}_{1}, \mathrm{w}_{2}, . ., \mathrm{w}_{\mathrm{n}}\right)=\mathrm{P}\left(\mathrm{w}_{1}\right) \mathrm{P}\left(\mathrm{w}_{2} \mid \mathrm{w}_{1}\right) \mathrm{P}\left(\mathrm{w}_{3} \mid \mathrm{w}_{1}, \mathrm{w}_{2}\right), \ldots \mathrm{P}\left(\mathrm{w}_{\mathrm{n}} \mid \mathrm{w}_{1} . . . \mathrm{w}_{\mathrm{n}-1}\right)$
also when conditioned on some event
$P\left(w_{1}, w_{2}, . ., w_{n} \mid x\right)=P\left(w_{1} \mid x\right) P\left(w_{2} \mid w_{1}, x\right) \ldots P\left(w_{n} \mid w_{1} . ., w_{n-1}, x\right)$

Statistical Model of a Language

- Statistical models of words of sentences - language models
- Probability of all possible sequences of words .
- For sequences of words of length n,
- assign a number to $P\left(W_{1, n}=W_{1, n}\right)$, being $\mathrm{w}_{1, \mathrm{n}}$ a sequence of words

Ngram Model

- Simple but durable statistical model
- Useful to indentify words in noisy, ambigous input.
- Speech recognition, many input speech sounds similar and confusable
- Machine translation, spelling correction, handwriting recognition, predictive text input
- Other NLP tasks: part of speech tagging, NL generation, word similarity

CORPORA

- Corpora (singular corpus) are online collections of text or speech.
- Brown Corpus: 1 million word collection from 500 written texts
- from different genres (newspaper,novels, academic).
- Punctuation can be treated as words.

Switchboard corpus: 2430 Telephone conversations averaging 6 minutes each, 240 hour of speech and 3 million words

Training and Test Sets

- Probabilities of N -gram model come from the corpus it is trained for
- Data in the corpus is divided into training set (or training corpus) and test set (or test corpus).
- Perplexity: compare statistical models

Ngram Model

- How can we compute probabilities of entire sequences $\mathrm{P}\left(\mathrm{w}_{1}, \mathrm{w}_{2}, . ., \mathrm{w}_{\mathrm{n}}\right)$
- Descomposition using the chain rule of probability
$P\left(w_{1}, w_{2}, . ., w_{n}\right)=P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) P\left(w_{3} \mid w_{1}, w_{2}\right), \ldots P\left(w_{n} \mid w_{1} . ., w_{n-1}\right)$
- Assigns a conditional probability to possible next words considering the history.
- Markov assumption : we can predict the probability of some future unit without looking too far into the past.
- Bigrams only consider previous usint, trigrams, two previous unit, n-grams, n previous unit

Ngram Model

- Assigns a conditional probability to possible next words.Only n-1 previous words have effect on the probabilities of next word
- For $\mathrm{n}=3$, Trigrams $\mathrm{P}\left(\mathrm{w}_{\mathrm{n}} \mid \mathrm{w}_{1} . ., \mathrm{w}_{\mathrm{n}-1}\right)=\mathrm{P}\left(\mathrm{w}_{\mathrm{n}} \mid \mathrm{w}_{\mathrm{n}-2}, \mathrm{w}_{\mathrm{n}-1}\right)$
- How we estimate these trigram or N -gram probabilities? To maximize the likelihood of the training set T given the model M (P(T/M)
- To create the model use training text (corpus), taking counts and normalizing them so they lie between 0 and 1.

Ngram Model

- For $\mathrm{n}=3$, Trigrams

$$
P\left(w_{n} \mid w_{1} \ldots, w_{n-1}\right)=P\left(w_{n} \mid w_{n-2}, w_{n-1}\right)
$$

- To create the model use training text and record pairs and triples of words that appear in the text and how many times $\mathbf{P}\left(\mathbf{w}_{\mathbf{i}} \mid \mathbf{w}_{\mathbf{i}-2}, \mathbf{w}_{\mathbf{i}-1}\right)=\mathbf{C}\left(\mathbf{w}_{\mathbf{i}-2, i}\right) / \mathbf{C}\left(\mathbf{w}_{\mathbf{i}-2, i-1}\right)$
$P($ submarine|the, yellow $)=C($ the, yellow, submarine)/C(the,yellow)

Relative frequency: observed frequency of a particular sequence divided by observed fequency of a prefix

Language Models

- Statistical Models
- Language Models (LM)
- Vocabulary (V), word
- w \in V
- Language (L), sentence
- $s \in L$
- $\mathrm{L} \subset \mathrm{V}^{*}$ usually infinite
- $\mathrm{s}=\mathrm{W}_{1}, \ldots \mathrm{~W}_{\mathrm{N}}$
- Probability of s
- P(s)

Noisy Channel Model

Noisy Channel Model in NLP

In NLP we do not usually act on coding. The problem is reduced to decode for getting the most likely input given the output,

real Language X

§
 noisy channel $X \rightarrow Y$
 §

Observed Language Y

We want to retrieve X from Y

real Language X

Correct text

 noisy channel $X \rightarrow Y$

errors

Observed Language Y
Sext with errors

real Language X
 Correct text

Observed Language Y

real Language X

text

spelling

Observed Language \mathbf{Y}

real Language X

 Source Language $\underset{\substack{\text { noisy channel } \mathbf{X} \boldsymbol{Y} \\ \text { Observed Language } \mathbf{Y}}}{\substack{\sqrt{2} \\ \text { Obanslation } \\ \hline}}$
Target Language

Example: ASR Automatic Speech Recognizer

Acoustic chain word chain

$$
s_{\mathrm{opT}}=\underset{\mathrm{s}}{\operatorname{argmax}} \mathrm{P}(\mathrm{~s} \mid \mathrm{a})=\underset{\mathrm{s}}{\operatorname{argmax}} \mathrm{P}(\mathrm{~s}) \cdot \mathrm{P}(\mathrm{a} \mid \mathrm{s})=\underset{\mathrm{s}}{\operatorname{argmax} P\left(\mathrm{w}_{1}^{\mathrm{N}}\right)} \cdot \mathrm{P}\left(\mathrm{X}_{1}^{\mathrm{T}} \mid \mathrm{w}_{1}^{\mathrm{N}}\right)
$$

Example: Machine Translation

$$
O_{\mathrm{OFT}}=\underset{0}{\operatorname{argmax} \mathrm{P}(\mathrm{o} \mid \mathrm{f})=\underset{0}{\operatorname{argmax}} \mathrm{P}(\mathrm{o}) \cdot \mathrm{P}(\mathrm{f} \mid \mathrm{O})}
$$

- Naive Implementation
- Enumerate $s \in L$
- Compute p(s)
- Parameters of the model |L|
- But...
- L is usually infinite
- How to estimate the parameters?
- Simplifications
- History

$$
P(s)=P\left(w_{1}^{4}\right)=\prod_{1=1}^{n} P\left(w_{1} \mid h_{1}\right)
$$

- $h_{i}=\left\{w_{i}, \ldots w_{i-1}\right\}$
- Markov Models
- Markov Models of order $\mathrm{n}+1$
- $\mathrm{P}\left(\mathrm{w}_{\mathrm{i}} \mid \mathrm{h}_{\mathrm{i}}\right)=\mathrm{P}\left(\mathrm{w}_{\mathrm{i}} \mid \mathrm{w}_{\mathrm{i}-\mathrm{n}+1}, \ldots \mathrm{w}_{\mathrm{i}-1}\right)$
- 0-gram

$$
\forall i \quad \mathrm{P}(\mathrm{w})=\frac{1}{|V|}
$$

- 1-gram
- $\mathrm{P}\left(\mathrm{w}_{\mathrm{i}} \mid \mathrm{h}_{\mathrm{i}}\right)=\mathrm{P}\left(\mathrm{w}_{\mathrm{i}}\right)$
- 2-gram
- $P\left(w_{i} \mid h_{i}\right)=P\left(w_{i} \mid w_{i-1}\right)$
- 3-gram
- $\mathrm{P}\left(\mathrm{w}_{\mathrm{i}} \mid \mathrm{h}_{\mathrm{i}}\right)=\mathrm{P}\left(\mathrm{w}_{\mathrm{i}} \mid \mathrm{w}_{\mathrm{i}-2}, \mathrm{w}_{\mathrm{i}-1}\right)$
- n large:
- more context information (more discriminative power)
- n small:
- more cases in the training corpus (more reliable)
- Selecting n :
- ej. for $|\mathrm{V}|=20.000$

n	num. parameters
$\mathbf{2}$ (bigrams)	$400,000,000$
$\mathbf{3}$	$8,000,000,000,000$
(trigrams)	
$\mathbf{4}$ (4-grams)	1.6×10^{17}

- Parameters of an n-gram model
- |V| ${ }^{n}$
- MLE estimation
- From a training corpus
- Problem of sparseness
- 1-gram Model

$$
P_{M L E}(w)=\frac{C(w)}{|V|}
$$

- 2-gram Model

$$
P_{M L E}\left(w_{i} \mid w_{i-1}\right)=\frac{C\left(w_{i-1} w_{i}\right)}{C\left(w_{i-1}\right)}
$$

- 3-gram Model

$$
P_{M L E}\left(w_{i} \mid w_{i-1}, w_{i-2}\right)=\frac{C\left(w_{i-2} w_{i-1} w_{i}\right)}{C\left(w_{i-2} w_{i-1}\right)}
$$

True probability distribution

The seen cases are overestimated the

 unseen ones have a null probability

Save a part of the mass probability from seen cases and assign it to the unseen ones

SMOOTHING

- Some methods perform on the countings:
- Laplace, Lidstone, Jeffreys-Perks
- Some methods perform on the probabilities:
- Held-Out
- Good-Turing
- Descuento
- Some methods combine models
- Linear interpolation
- Back Off

Laplace (add 1)

$P_{\text {laplace }}\left(w_{1} \cdots w_{n}\right)=\frac{C\left(w_{1} \cdots w_{n}\right)+1}{N+B}$
$P=$ probability of an n-gram
$\mathrm{C}=$ counting of the n -gram in the training corpus
$\mathrm{N}=$ total of n -grams in the training corpus
$B=$ parameters of the model (possible $n-$ grams)

Lidstone (generalization of Laplace)

$$
P_{L i d}\left(w_{1} \cdots w_{n}\right)=\frac{C\left(w_{1} \cdots w_{n}\right)+\lambda}{N+B \cdot \lambda}
$$

$\lambda=$ small positive number
M.L.E: $\lambda=0$

Laplace: $\lambda=1$
Jeffreys-Perks: $\lambda=1 / 2$

Held-Out

- Compute the percentage of the probability mass that has to be reserved for the n-grams unseen in the training corpus
- We separate from the training corpus a held-out corpus
- We compute howmany n-grams unseen in the training corpus occur in the held-out corpus
- An alternative of using a held-out corpus is using Cross-Validation
- Held-out interpolation
- Deleted interpolation

Held-Out

Let a n-gram $\mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{n}}$
$r=C\left(w_{1} \ldots w_{n}\right)$
$\mathrm{C}_{1}\left(\mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{n}}\right)$ counting of the n -gram in the training set $\mathrm{C}_{2}\left(\mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{n}}\right)$ counting of the n -gram in the held-out set N_{r} number of n -grams with counting r in the training set

$$
\begin{aligned}
& T_{r}=\sum_{\left\{w_{1} \cdots w_{n}: C_{1}\left(w_{1} \cdots w_{n}\right)=r\right\}} C_{2}\left(w_{1} \cdots w_{n}\right) \\
& P_{h o}\left(w_{1} \cdots w_{n}\right)=\frac{T_{r}}{N_{r} N}
\end{aligned}
$$

Good-Turing

$$
r=(r+1) \frac{E\left(N_{r+1}\right)}{E\left(N_{r}\right)} \quad P_{G T}=r / N
$$

$r^{*}=$ adjusted count
$\mathrm{N}_{\mathrm{r}}=$ number of n-gram-types occurring r times
$E\left(N_{r}\right)=$ expected value
$E\left(N_{r+1}\right)<E\left(N_{r}\right)$
Zipf law

Combination of

models:

Linear combination
(interpolation)

$$
\begin{gathered}
P_{l i}\left(w_{n} \mid w_{n-2}, w_{n-1}\right)= \\
\lambda_{1} P_{1}\left(w_{n}\right)+\lambda_{2} P_{2}\left(w_{n} \mid w_{n-1}\right)+\lambda_{1} P_{3}\left(w_{n} \mid w_{n-2}, w_{n-1}\right)
\end{gathered}
$$

- Linear combination of de 1-gram, 2-gram, 3-gram, ...
- Estimation of λ using a development corpus

Katz's Backing-Off

- Start with a n-gram model
- Back off to n-1 gram for null (or low) counts
- Proceed recursively
- Performing on the history

$$
h_{1}=\Phi\left(\mathrm{w}_{1}^{-1}\right)
$$

- Class-based Models
- Clustering (or classifying) words into classes
- POS, syntactic, semantic
- Rosenfeld, 2000:
- $\mathrm{P}($ wi \mid wi-2,wi-1 $)=\mathrm{P}($ wi $\mid \mathrm{Ci}) \mathrm{P}(\mathrm{Ci} \mid$ wi-2,wi-1 $)$
- $\mathrm{P}($ wi \mid wi-2,wi-1 $)=\mathrm{P}($ wi $\mid \mathrm{Ci}) \mathrm{P}(\mathrm{Ci} \mid$ wi-2, $\mathrm{Ci}-1)$
- $\mathrm{P}($ wi \mid wi-2,wi-1 $)=\mathrm{P}($ wi $\mid \mathrm{Ci}) \mathrm{P}(\mathrm{Ci} \mid \mathrm{Ci}-2, \mathrm{Ci}-1)$
- $\mathrm{P}($ wi|wi-2,wi-1 $)=\mathrm{P}($ wi|Ci-2,Ci-1 $)$
- Structured Language Models
- Jelinek, Chelba, 1999
- Including the syntactic structure into the history

$$
\mathrm{P}\left(\mathrm{w}_{1} \mid \mathrm{h}_{1}\right)=\sum_{\mathrm{T}_{1}} \mathrm{P}\left(\mathrm{w}_{1}, \mathrm{~T}_{1} \mid \mathrm{w}_{1}^{-1}\right)
$$

- T_{i} are the syntactic structures
- binarized lexicalized trees

