INTRODUCTION

- Parts of speech (POS), word classes, morphological classes, or lexical tags give information about a word and its neighbors.

- Since the Greeks, 8 basic POS have been distinguished: Noun, verb, pronoun, preposition, adverb, conjunction, adjective, and article.

- Modern works use extended lists of POS: 45 in Penn Treebank corpus, 87 in Brown corpus.
PARTS OF SPEECH TAGGING

Tagging is the process of assigning a tag to a word in a corpus

Used for different tasks
- Speech recognition. Pronunciation may change: DIScount noun, disCOUNT verb,
- Information retrieval- morphological affixes
- Linguistic research- frequency of structures
PARTS OF SPEECH CATEGORIES

- **Closed class.** Function words: prepositions, pronouns, determiners, conjunctions, numerals, auxiliary verbs and particles (preposition or adverbs in phrasal verbs)

- **Open class:**
 - **Nouns:** people, place and things
 - proper nouns, common nouns, count nouns and mass nouns
 - **Verbs:** actions and processes. Main verbs, not auxiliaries
 - **Adjectives:** Properties
 - **Adverbs**
PARTS OF SPEECH TAGGING

PAVLOV N NOM SG PROPER
HAVE V PAST VFIN
SVO (verb with subject and object)
HAVE PCP2(past participle) SVO
Shown SHOW PCP2 SVO SV
SVOO (verb with subject and two complements)

that ADV
PRON DEM SG
DET CENTRAL DEM SG
CS (subordinating conjunction)
salivation N NOM SG
PARTS OF SPEECH TAGGING

ADVERBIAL - THAT RULE
Given input: “that”

if

(+1 A/ADV/QUANT); /* if next word is adj, adverb, or quantifier */
(+2 SENT-LIM); /* and following is a sentence boundary, */
(NOT -1 SVOC/A); /* and the previous word is not a verb like */
/* ‘consider’ which allows adjs as object complements */

then eliminate non-ADV tags

else eliminate ADV tag

Ex: In the sentence “I consider that odd “, that will not be tagged as adverb (ADV)
Brill’s set of templates
“Change tag a to tag b when: ..”
a,b,z and w are part of speech tags

The preceding (following) word is tagged z. The word two before (after) is tagged z. One of the two preceding (following) words is tagged z. One of the three preceding (following) words is tagged z. The preceding word is tagged z and the following word is tagged w. The preceding (following) word is tagged z and the word two before (after) is tagged w.
To find the most probable tag sequence given the observation sequence of n words \(w_1^n \), \(P(t_1^n|w_1^n) \) is highest.

But \(P(t_1^n|w_1^n) \) is difficult to compute and Bayesian classification rule is used:

\[
P(x|y) = \frac{P(x) \cdot P(y|x)}{P(y)}
\]

- When applied to the sequence of words, the most probable tag sequence would be

\[
P(t_1^n) \cdot \frac{P(w_1^n|t_1^n)}{P(w_1^n)}
\]

- where \(P(w_1^n) \) does not change and thus do not need to be calculated

- Thus, the most probable tag sequence is the product of two probabilities for each possible sequence:
 - Prior probability of the tag sequence. \(P(t_1^n) \) Only one previous tag is considered (bigrams)
 - Ex. Probability of noun after determiner
 - Likelihood of the word string. \(P(w_1^n|t_1^n) \) Probability of the word given a tag (independent of other words)
 - Ex. given the tag noun, probability of word dog