Summary

• Parsing can be viewed as a search problem
• Two common architectural approaches for this search are
 • Top-down: Starting with the root S and growing trees down to the input words
 • Bottom-up: Starting with the words and growing trees up toward the root S.

• Ambiguity combined with the repeated parsing of sub-trees are a difficulty for parsing algorithms. Those algorithms use simple backtracking mechanisms.
Summary

- A sentence is structurally ambiguous if the grammar assigns it more than one possible parse.
- Common kinds of structural ambiguity include:
 - PP-attachment
 - Coordination ambiguity
- The dynamic programming parsing algorithms use a table of partial parsers to efficiently parse ambiguous sentences. The CKY, Earley and Chart-Parsing algorithms all use dynamic-programming to solve repeated parsing of subtrees problem.
Summary

- A feature structure is a set of features-value pairs, where features are atomic symbols and values are either atomic symbols or feature structure.
- Feature structures can be represented
 - Attribute-value matrices
 - Directed acyclic graphs, where features are labeled edges and values are nodes.
- Unification is the operation for
 - Combining information. Merging the information content of two features structures.
 - Comparing information. Rejecting the merger of incompatible features.
Summary

• A phrase-structure rule can be augmented with feature structures and with constraints expressing relations among the features structures of the constituents of the rule.

• Features structures can be typed. Typed feature structures place constraints on which type of values a given feature can take. They can be organized into a type hierarchy.
Summary

- Partial parsing and chunking are methods for identifying shallow syntactic constituents in a text.

- High accuracy partial parsing can be achieved either through rule-based or machine learning-based methods.
Summary

• Probabilistic grammars assign a probability to a sentence or string of words. Usually they capture more general syntactic information than the N-gram grammars.

• A probabilistic context-free grammar (PCFG) is a context-free grammar in which every rule is annotated with the probability of choosing that rule. Each PCFG rule is treated as if it were conditionally independent; thus the probability of a sentence is computed by multiplying the probabilities of each rule in the parse of the sentence.
Summary

• There are probabilistic versions of parsers like the CYK and the Earley algorithm.

• Probabilistic lexicalized context-free grammars are another solution where each rule in the PCFG is augmented with a lexical head. The probability of a rule can then be conditioned on the lexical head or nearby heads.

• Parsers are evaluated considering three metrics: labeled recall, labeled precision and cross-brackets.