Welcome to the course!

Introduction to Natural Language Processing (NLP)

Professors: Marta Gatius Vila

Horacio Rodríguez Hontoria

- Hours per week: 2h theory + 1h laboratory Web page:
- http://www.cs.upc.edu/~gatius/engpln2017.html

Main goal

Understand the fundamental concepts of NLP

- Most well-known techniques and theories
- $\boldsymbol{\cdot}$ Most relevant existing resources
- Most relevant applications

Welcome to the course!

Introduction to Natural Language Processing

Content

- 1. Introduction to Language Processing
- 2. Applications.
- 3. Language models.
- 4. Morphology and lexicons.
- 5. Syntactic processing.
- 6. Semantic and pragmatic processing.
- 7. Generation

Welcome to the course! Introduction to Natural Language Processing Assesment

• Exams

Mid-term exam- November End-of-term exam – Final exams period- all the course contents

 Development of 2 Programs – Groups of two or three students

Course grade =

maximum (midterm exam*0.15 + final exam*0.45, final exam * 0.6) + assigments *0.4

Welcome to the course!

Introduction to Natural Language Processing

Related (or the same) disciplines:

- Computational Linguistics, **CL**
- Natural Language Processing, NLP
- Linguistic Engineering, LE
- Human Language Technology, HLT

Linguistic Engineering (LE)

- LE consists of the application of linguistic knowledge to the development of computer systems able to recognize, understand, interpretate and generate human language in all its forms.
- LE includes:
 - Formal models (representations of knowledge of language at the different levels)
 - Theories and algorithms
 - Techniques and tools
 - Resources (Lingware)
 - Applications

Linguistic knowledge levels

- Phonetics and phonology. Language models
- Morphology: Meaningful components of words.
 Lexicon

doors is plural

– Syntax: Structural relationships between words. Grammar

an utterance is a question or a statement

- Semantics: Meaning of words and how they combine. Grammar, domain knowledge open the door
- Pragmatics: How language is used to accomplish goals. Domain and Dialogue Knowledge to be polite
- Discourse: How single utterances are structured.
 Dialogue models

Linguistic Engineering (LE)

Examples of applications involving language models at those different levels

- Intelligent agents (e.g., HAL from the movie 2001: A space Odyssey)
- Web-based question answers
- Machine translation engines

Foundations of LE lie in:

 Linguistics, Mathematics, Electrical engineering and Phychology

Linguistic Engineering (LE)

Exciting time because of

- The increase of computer resources available
- The rise of the Web (a massive source of information)
- Wireless mobile access
- Intelligent phones

Revolutionary applications are currently in use

- Coversational agents for making travel reservations
- Speech systems for cars
- Cross-language information retrieval and tanslation
- Automate systems to analize students essays

Components of the Technology

NLP Introduction

9

This course is focused on Language Understanding

- Different levels of understanding
 - Incremental analysis
 - Shallow and partial analysis
 - Looking for the focus of interest (spotting)
 - In depth analysis of the focus of interest
- Linguistic, statistical, machine learning, hybrid approaches
- Main problems: ambiguity, unseen words, ungrammatical text

Language Generation

- Content planning
 - Semantic representation of the text
 - What to say, how to say
- Form planning
- Presentation of content
- Using rethorical elements

Dialogue

- Need of a high level of understanding
- Involve additional processes
- Identification of the illocutionary content of speaker utterances
- Speech acts
 - assertions, orders, askings, questions, etc.
- Direct and indirect speech acts

- Why NLP is difficult?
 - Language is alive (changing)
 - Ambiguity
 - Complexity
 - Knowledge is imprecise, probabilistic, fuzzy
- World knowledge (common sense) is needed
 - Language is embedded into a system of social interaction

Ambiguity

- Phonetical ambiguity
- Lexical ambiguity
- Syntactic ambiguity
- Semantic ambiguity
- Pragmatic ambiguity. References

Resolving ambiguous input

- Multiple alternative linguistic structures can be built
 I made her duck
 - I cooked waterfowl for her
 - I cooked waterfowl belonging to her
 - I created the (plaster?) duck she owns
 - I caused her to quickly lowed her head or body
 - I waved my magic wand and turned her into undifferentiated waterfowl

-Ambiguities in the sentence

- Duck can be noun(waterfowl) or a verb (go down) -> syntactic and semantic ambiguity
- Her can be a dative pronoun or a possessive pronoun -> syntactic ambiguity
- Make can be create or cook -> semantic ambiguity

LEXICAL AMBIGUITY

- There are several words that have more than one possible meaning (polysemous)
- Frequent words are more ambiguous

SYNTACTIC AMBIGUITY

- Grammars are usually ambiguous
- Usually, more than one parsed tree is correct for a sentence given a grammar
- Some kind of ambiguity (as *pp-attachment*) is at some level predictable

SEMANTIC AMBIGUITY

- More than one semantic interpretation is possible for a given sentence
- Peter gave a cake to the children
 - One cake for all them?
 - One cake for each?

Pragmatc ambiguity. Reference

- More than one semantic interpretation is possible for a given text. References between sentences.
- Later he asked her to put it above
- Later? When?
 - He?
 - Her?
 - It?
 - Above what?

Pragmatic Ambiguity

Ocular Trauma - by Wade Clarke ©2005

Pragmatic Ambiguity(II)

Which kind of ambiguity?

After explaining to a student through various lessons and examples that:

$$\lim_{x \to 8} \frac{1}{x-8} = \infty$$

I tried to check if she really understood that, so I gave her a different example. This was the result:

Resolving ambiguous input

- Using models and algorithms
- Using data-driven methods
- Semantic-guided processing
 - Restricting the domain. Considering only the language needed for accessing several services
 - Using context knowledge
 - (Shallow or Partial analysis)

Two types of models

- Rationalist model. Noam Chomsky
 - Most of the knowledge needed for NLP can be acquired previously, prescripted and used as initial knowledge for NLP.
- Empiricist model. Zellig Harris
 - Linguistic knowledge can be inferred from the experience, through textual corpora by simple means as the association or the generalization.
 - Firth "We can know a word by the company it owns"

Levels of linguistic description

- Phonetics
- Phonology
- Morphology. Lexical
- Syntax
- Semantics. Logical
- Pragmatics
- Discourse

Several formal models and theories:

- State machine
- Rule systems
- Logic
- Ontologies
- Probabilistic models
- Vector space models

State Machines

• Formal models that consist of state, transitions and input representations

- Variations
 - Deterministic/non deterministic
 - Finite-state automata
 - Finite-state transducers

Rule Systems

- Grammar formalisms
 - Regular grammars
 - Context free grammars
 - Feature grammars
- There are probabilistics variants of them
- They are used for phonology, morphology and syntax

Logic

- First order logic (Predicate calculus)
- Related formalism
 - Lambda calculus
 - Feature structures
 - Semantic primitives
- Used for modelling semantics and pragmatics and also for lexical semantics

Probabilistic Models

- State machine, rule systems and logic systems can be augmented with probabilities.
- State machine aumented with probabilities become Markov model and hidden Markov model.
 - Used in different processes: part-of-speech tagging, speech recognition, dialogue understanding, text-to-speech and machine translation.
- Ability to solve ambiguity problems

Vector-space Models

- Based on linear algebra
- Underlies information retrieval and applications involving word meaning

Architecture of NLP systems

- Architecture based on layers
 - Each layer owns specific classes in charge of solving some problems.
 - The objects of a layer request services to other objects from the same layer or from the layer of the immediate inferior level.
 - The objects of a layer provide services to other objects from the same layer or from the layer of the immediate superior level.
- Architecture based on pipes & filters
 - Each filter enriches the input stream and send it to the output stream

NLP Taks

- Three levels of increasing complexity
 - Basic level. Basic tasks:

(paragraph, sentence) Segmenters, language identificators, Name Entity Recognizer (NER), Name Entity Classification(NEC), NERC, tokenizers, morphological analyzers, taggers, parsers, chunkers, semantic analyzers.

- **Intermediate level.**Tasks implying the performance of basic components:
 - Document classification, summarization, information extraction and retrieval
- Application level.
 - Conversational systems

Language Processing and Intelligence

- The ability to process language is related to the intelligence of the machines.
- Turing test (1950) consists of convincing the interrogator the machine is a person (The machine tries to answer questions as a human would).

Q: Please write me a sonnet on the topic of the Forth Bridge

A: Count me on this one. I never could write poetry.

Q: Add 34957 to 70764 A: (Pause) 105621

Language Processing and Intelligence₂

- Eliza program (Weizenbaum, 1966)
- Very simple program (based on patternmatching).
- It does not understand humans but it seems it does.

User: You are like my father in some ways

Eliza: what resemblance you see

User: you don't argue with me

Eliza: Why do you think I don't argue with you

User: You are afraid of me

Eliza: Does it please to belive I am afraid of you?

Language Processing and Intelligence₃

- Loebner Prize competition based on Turing test. Some programs fool judges some of the time (Shieber, 1994)
- There are fun web robots trying to look human (Alice)
- There are dialogue systems that helps people to use different types of applications

Relevant Resources

- Conference and journals focus on LE: ACL, EACL, COLING, AI conferences.
- Competitions: TREC, CLEF, MUC, ACE, TAC
- Available resources:
 - Corpora, Ontologies
 - WordNet, EuroWordNet, Balkanet,
 - FrameNet, VerbNet, Propbank, OntoNotes

Resources for Language Understanding

- General Lexicons
- Dictionaries
- Specialized Lexicons
- Ontologies
- Grammars
- Textual Corpora
- Internet as an information source

General Lexicons

- Word repositories
 - Lemmaries, formaries, lists of words, phrasal lexicons
- Knowledge on words
 - Phonology
 - Morphology: part of specch, agreement
 - Syntax: category, subcategorization, argument structure, valency co-occurrence patterns
 - Semantics: semantic class, selectional restrictions
 - Pragmatics: use, register, domain

Dictionaries

- MRDs (Machine Readable Dictionaires)
- Types: general, normative, learner, mono/bilingual
- Size, content, organization
 entry, sense, relations,
- Lexical databases
 - •e.g. Acquilex LDB
- Other sources: enciclopaedias, thesaurus

Specialized Lexicons

- Onomasticae
- Terminoligical databases
- Gazetteers
- Dictionaries of locutions, idioms
- Wordnets
- Acronyms, idioms, jaergon
- Date, numbers, quantities+units, currencies

Morpholexical Relations U. Las Palmas (Santana)

Example: Using Gazetteers in Q&A systems

- Multitext (U.Waterloo)
 - Clarke et al, 2001, 2002
 - Structured data
 - Biographies (25,000), Trivial Q&A (330,000), Country locations (800), acronyms (112,000), cities (21,000), animals (500), previous TREC Q&A (1393), ...
 - 1 Tb of Web data
 - Altavista
- AskMSR (Microsoft)
 - Brill, 2002

Grammars

- Morphological Grammars
- Syntactic Grammars
 - constituents
 - dependency
 - case
 - transformational
 - systemic
- Phrase-strucure vs Unification Grammars
- Probabilistic Grammars
- Coverage, language, tagsets

Ontologies

- Lexical vs conceptual ontologies
- General vs domain restricted ontologies
- Task ontologies, meta-ontologies
- Content, granularity, relations
- Interlinguas: KIF, PIF
- CYC, Frame-Ontology, WordNet, EuroWordNet, GUM, MikroKosmos
- Protegeé

Raw Corpora

- Textual vs Speech
- Size (1Mw 1Gw 1TW)
- Few estructure (if any)
- Provide information not available in a more treatable way:
 - colocations, argumental structure, context of occurrence, grammatical induction, lexical relations, selectional restrictions, idioms, examples of use

Tagged Corpora

- Pos tagged (all tags are disambiguated)
- Lemma
- Sense (granularity of tagset, WN)
- Parenthised
 - parsed
- Parallel corpora
- Balanced, pyramidal, oportunistic corpora

Some examples of Corpora

- Brown Corpus
- ACL/DCI (Wall Street Journal, Hansard, ...)
- ACL/ECI (European Corpus Initiative)
- USA-LDC (Linguistic Data Consortium)
- LOB (ICAME, International Computer Archive of Modern English)
- BNC (British National Corpus)
- SEC (Lancaster Spoken English Corpus)
- Penn Treebank
- Susanne
- SemCor
- Trésor de la Langue Française (TLF)

Some examples of Spanish Corpora

- Oficina del Español en la Sociedad de la Información OESI
 - http://www.cervantes.es/default.htm
- CREA, RAE. 200 Mw.
- CRATER, (sp, en, fr), U.A.Madrid, 5.5Mw, aligned, Part of speech tagged
- ALBAYZIN. Speech, isolated sentences, queries to a geographic database
- LEXESP, 5Mw, Pos taged, lemmatized
- Ancora, Spanish & Catalan, Extremelly rich annotation, 500Kw

Internet as an information source 1

- Huge volume
 - Millions of pages, tenths of Tetrabytes,
 - expansion (doubles size each two years)
- Heterogeneity
 - content, language (70% Englsih), formats
 - redundancy
 - hidden Web
- General Information servers
 - (Medialinks)
 - More than 14,000 servers (5,000 newspapers, 70 in Spain)

Internet as an information source ²

- Internet today
 - Documents HTML
 - Built for human use (visualization)
 - Pages automatically generated by applications
 - Access through
 - known URLs
 - searchers of general purpose
 - specific searchers for a site
- Limitations
 - Access (by applications) to HTML codified text
 - Building (and maintaining!) wrappers

Internet as an information source 3

- Software agents
 - crawlers, spiders, softbots, infobots ...
- Wikipedia

Applications

- Two main areas
 - Massive management of textual information sources
 - for human use
 - for automatic collection of linguistic resources
 - Person/Machine interaction

Massive management of textual information sources

- Machine Translation
- Information Management
 - Automatic Summarization
 - Information {Retrieval, Extraction, Filtering Routing, Harvesting, Mining}
 - Document Classification
 - Question Answering
 - Conceptual searchers

Automatic collection of linguistic resources

- Aligned corpora (various levels)
- Grammars
- Gazetteers
- Resources including
 - Morphology bases
 - Selectional restrictions
 - Subcategorization patterns
 - Topic Signatures