
INLP course 2015-2016 Spring Term. Laboratory
cases

The laboratory cases in this course consist of three exercises to be delivered
at the end of March, April, and May. The exercises should be programmed
using Python. The norms for the program and instructions for the material to
be delivered are placed in an attached document. The laboratory cases
should be performed preferably by groups of two students (groups of one or
three student are allowed too).

1 Basics Zipf’s Law Exercise

From WP:

Zipf's law /ˈzɪf/, an empirical law formulated using mathematical statistics,
refers to the fact that many types of data studied in the physical and social
sciences can be approximated with a Zipfian distribution, one of a family of
related discrete power law probability distributions.

Zipf's law states that given some corpus of natural language utterances, the
frequency of any word is inversely proportional to its rank in the frequency
table.

1. Use the text file corpus/en.txt (this is a fragment of the Brown Corpus, in English)
2. Write a program to read the corpus. Tokenize it using whatever tokenizer from

NLTK or write your own tokenizer.
3. Write a program to check Zipf’s first law (f = K/r) on this real corpus: Count word

frequencies, sort them by rank, and plot the curve.
4. Compute the proportionality constant (K) between rank and frequency for each

word. Compute its average and standard deviation. Discuss the results. Are
they consistent with Zipf’s Law ?

5. Perhaps you have found problems with the tokenization (Word case,
punctuation marks, numbers, etc. Try to fix them and repeat the items 3 and 4.

6. Now move to the char level. Repeat the items 3 and 4 using now as units not
words but chars (letters and punctuation marks).

2 Entropy - Language Models

Use the following corpora included in directory corpus/:

• en.txt A fragment of EFE corpus in English
• taggedBrown.txt A fragment of Brown corpus in English Pos-tagged
•

and a set of python functions in auxiliar.py (using these functions is not
mandatory but can simplify your task, especially if you are not fluent in
Python):

• getWordsFromFile(inF):
• "get a list of words from a text file"

https://en.wikipedia.org/wiki/Help:IPA_for_English
https://en.wikipedia.org/wiki/Inversely_proportional
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Text_corpus
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Power_law
https://en.wikipedia.org/wiki/Social_science
https://en.wikipedia.org/wiki/Physical_science
https://en.wikipedia.org/wiki/Mathematical_statistics
https://en.wikipedia.org/wiki/Empirical_law

• getTaggedWordsFromFile(inF):
• "get a list of pairs <word,POS> from a text file"
• getTagsFromTaggedWords(l):
• "from a list of tagged words build a list of tags"
• countNgrams(l,inic,end=0):
• From a list l (of words or pos), an inic position and an end

position
• a tuple(U,B,T) of dics corresponding to unigrams, bigrams and

trigrams
• is built

to answer to the following questions:

1. write a python function for computing the order 0 (unigram) model of
en.txt

2. write a python function for computing the order 1 (bigram) model of
en.txt

3. write a python function for computing the order 2 (trigram) model of
en.txt

4. Use now the taggedBrown.txt corpus. Compute the perplexity of the
trigram language model for three different sizes of the corpus (the full
corpus, half of it and a quarter of it).

5. Smooth the trigram language model going from the trigrams <x,y,z>,
to <x’,y,z> and to <x’,y’,z>, where x’ is the POS of x and y’ is the
POS of y. Compute the perplexity as in the previous case. Build the
following table and discuss the results. Some of the results could seen
counterintuitive at first glance. Try to justify the results.

perplexities Full corpus ½ corpus ¼ corpus

<x,y,z>

<x’,y,z>

<x’,y’,z>

3 Probabilistic parsing

1. Download NLTK, install the fragment of PTB-II treebank available in NLTK.
Reserve 10% of the sentences for testing and use the remaining 90% for
learning.

2. Write a program to read the corpus. Provide auxiliary functions for facilitating
the management of the trees. I suggest to use the tree class provided by NLTK.

3. Build a treebank grammar for performing chunking of nominal phrases (NP),
4. Transform the treebank grammar into a probabilistic one using counts in the

corpus.
5. Test your chunker against the test corpus

Barcelona, 21 February 2016

