#### APPLICATIONS IN NATURAL LANGUAGE PROCESSING

# NATURAL LANGUAGE INTERFACES AND DIALOGUE SYSTEMS

## Natural Language Interfaces and Dialogue Systems

### Introduction

- Tasks of the dialogue systems
  - -Interpreting user intervention
  - -Dialogue Management
  - Generating system's intervention
- Architecture
- Development and evaluation

# Introduction

#### Main goal in humam/machine communication

Help users perform specific tasks according their objectives

#### • Two metaphores

- Human conversation question/answering, menu systems, forms, command language dialogue
- World model
  - Direct access to the domain objects ( the icons representing them). WYSWYG

### **Using the Natural Language Mode**

- <u>Advantages</u>
  - Human Language (natural, friendly)
  - Complex ideas can be expressed
  - References to other entities are easy to express
- <u>Disadvantages</u>
  - High cost
  - Ambiguity -- mistakes
  - Limitations for accessing several applications (such as graphics)
- Appropriate for occasional access to applications that need to express complex operations (especially when domain can be restricted)

### **Using the Natural Language Mode**

- <u>Advantages</u> of the speech mode
  - Convenient
  - Typing is not needed
    - Small devices
    - Hands cannot be used (i.e.: driving cars, airplanes)
    - Handicapped
- <u>Disadvantages</u> of the speech mode
  - Technical limitations to recognize voice
  - Ambiguity, mistakes
  - High cost
  - Not appropriate for specific applications
- Appropriate for expressing simple operations on restricted domains

 User cannot express a requirement in only one intervention

 User need the system intervention to make the communication friendlier

- System: Welcome to the informaton service, what do you want?
- User: I want to go from Barcelona to Valencia
- System: When do you want to go?
- User: Next Tuesday
- System: At what time, morning or afternoon?
- User: Morning, please
- System: There are 3 Euromed trains on Tuesday morning

# **The Terms**

- Human Computer Interfaces
- Natural Language Interfaces
- Speech Based Interfaces
- Conversational Interfaces
- Conversational Agents
- Dialogue Systems
- Spoken Dialogue Systems
- Spoken Language Systems

# Basic cycle in an interaction question/answering



- Evolution parallel to Language Engenieering
- Improving adaptability and friendliness
- Portable (or adaptable) interfaces.
  - They are usually developed for a specific domain or application.

- They use domain (or application) restricted knowledge (domain model)

 They are usually developed for one (or more) specific languages

#### Main trends in Natural Language Interfaces

- Improving portability: Reusability of basic components
  - Speech recognizer
  - Language interpretation and generation: lexicon, parsers, grammars
- Improving friendliness
  - Multimodality
  - Friendly systems

# **Improving friendliness**

- Quality of the interaction
- Supporting possible mistakes in the user intervention
  - Spelling and grammar mistakes
  - Short names, colloquial expressions, other language words
- Mixed and user initiative
- User models

# Multimmodality

- Integration of graphics and language for input and output expressions.
- Supporting complex references across graphics and text.
- Integration of gestures and text
- Considering the content, the context and the user model to choose the best presentation of the output (and the best way to combine different modes of interaction)

#### General Schema of a Natural Language Interface



#### **First Natural Language Interfaces**

- NLI to Databases
  - 70s : LUNAR (Woods), RENDEZVOUS (Codd, 1974)
  - 80s: LADDER (Hendrix), TEAM (Grosz), CHAT-80 (Warren, Pereira), DATALOG (Hafner)
- Accessing other applications
  - Operating systems, experts systems, tutoring systems, consulting systems, ...
  - Research systems
    - LDC, TELI, XTRA, INKA, XCALIBUR, UC, GISE
  - Comertial systems
    - INTELLECT, PARLANCE, HAL, Q&A, LOQUI, NAT, NL, SESAME

### **Complex Natural Language Interfaces**

- Multimodal systems
  - MMI2 (Multimodal Interface for Man Machine Interaction), MATIS (Multimodal Airline Travel Information System), ALFRESCO
- Using voice
  - Dictation systems, telephone interfaces
  - VOYAGER (MIT), Office Manager (CMU), MASK (Multimodal Multimedia Automated Service Kiosk), ATIS (MIT, CMU), Railtel, Sundial, Verbmobil
  - VoiceXML

#### Architecture of a Dialogue System



# **Tasks of the Dialogue Systems**

- Interpreting the user's intervention
  - Using dialog and domain knowledge
- Dialogue Management
  - Determine next system actions considering user's intention
- Answer Generation
  - Generate the system's sentences most appropriate at each state of the dialogue

- Goal: understanding user's intention
- Knowledge involved
  - Phonetics and phonology
  - Morphology
  - Syntax
  - Semantics (lexical and compositional)
  - Pragmatics
  - Discourse

- Goal: understanding the user's intention
- Precise information from the user is required
- The complexity of this process depends on the system
  - Complete (deep) syntactic and semantic analysis
  - -Partial (shallow) syntactic and semantic analysis
  - Processing key words
- This process is restricted by considering limited applications tasks

- Main tasks
  - Reference resolution
  - Intention recognition
- The use of the context
  - Dialogue history
  - Domain knowledge

- Main problems
  - Processing syntactic relations
  - Quantification
  - Coordination and subordination
  - References
  - Ellipsis
  - Ungrammatical expressions

## **Reference resolution**

- U: Where the movie Heroes is shown in Sant Cugat?
- S: Heroes is shown at Cinema Cinesa in Sant Cugat
- U: At what time is it shown?
- S: It is shown at 8:30pm, 10pm and 11:30pm.
- U: I want 2 tickets for adults and 2 for children for first session How much is it?

- Knowledge Sources:
  - Domain Knowledge
  - Dialogue Knowledge
  - Domain (world) knowledge

- There is no reference resolution
- Only simple references are processed
  - A stack with the entities that are the possible focus is used
  - No discourse structure is used

## **Reference resolution**

- Central elements of the sentences have to be selected
  - They are grammatically related to the main verb (subject, object,...)
  - They can connect a sentence with previous
  - They can connect a sentence with next
- When pronouns are found several rules are used to rank and filter the possible central elements

# **Reference resolution**

- Most references are solved using knowledge discourse
- Central elements (focus) are stored in a stack
  - Only lasts nominal groups are stored
- Objects satisfying syntactic, semantic and pragmatic restrictions are selected
  - Starting by the stack top
    - "There " is a place
  - Considering discourse structure
    - Relating objects and subdialogs

# Intention Recognition

- User's interventions are interpreted as one (or more) dialogue act (speech act or dialogue move)
- Examples of dialogue moves
  - Switchboard DAMSL
    - Ini/final conventional
    - Opinion
    - Confirming/Accepting
    - Recognizance
    - Question/Answer/Yes-No
    - No-verbal
    - Quit
- Efforts for standard definition

- Verbmobil
  - Greet/Thank you/Goodbay
  - Suggestion
  - Accepting/Not accepting
  - Confirmation
  - Question/ Clarification/Answer
  - Giving the reason
  - Thinking

# **Intention Recognition**

- Dialogue grammars (finite state machine) Greet—•Question  $\overrightarrow{}$  Answer —• Thankyou —• Goodbay
- Plans
  - Receipts: General frames to perform actions
  - Inference rules
    - Planification rules (Artifitial Intelliegence)

- The system infers the application task the user is asking for
  - Application: Giving information on cultural events
    - *Time or place where a specific event takes place*
    - Events that take place in a specific place
  - Application: Giving information on trains
    - Schedule for a specific train
- The system asks the user the information the application needs
  - The system ignores the information not useful for the application

- System initiative
- User initiative very limited
  - Not allowed in complex acts such as confirmation, clarification and indirect answers
  - S1: Which is your account number? U1: My account number in Online Bank?

S2: Would you want to transfer 1500 euros to your new account? U2: If I have this amount, ok

- Content obtained from the user's intervention
  - The application task that has to be performed
    - Information on classical music concerts in Barcelona
  - The information needed to perform the specific task
    - The specific date and place
    - The next Saturday on the Auditori

Several methods can be used

- Frames representing the information needed for each task
  - Trains schedule: departure and destination
- Similarity mesurement based on vectors

#### Using frames

- Representing tasks as frames described by attributes that correspond to input and output task parameters
  - Representing the tasks of giving information about a specific train as a frame where
    - departure and destination station are represented as attributes which value has to be provided by the user
    - time and price are the attributes obtained from the application and presented to the user

#### Representation of a user intervention asking for a ticket



Ticket\_re ->initial, quantification, ticket, [mods] initial -> "I want" | "I want to make" quantification -> "one" | "two" | 1 ticket -> "tickets" | "tickets" | "reservation" mods -> mod, [mods] mod -> "from", city| "to", city|"on", typetrain city -> barcelona|valencia typetrain ->euromed

U: At what time Madagascar is shown in Sant Cugat?

Intention: asking for information about a particular movie

#### Frame: Movie\_information **Attributes which value is given by the user** *Movie:Madagascar Place:* **Sant Cugat Attributes which value is obtained by the** *application: time*

# Intention Recognition (Real systems)

- Using keywords and mesures based on similarity vectors
- Representing questions and goals (answers) as vectors
- Searching the goal vector most simlar to the question
- Similarity metrics
  - cosinus of the angle between the two vectors

# **Tasks of the Dialogue Systems**

- Interpreting user intervention
  - Using dialog and domain knowledge
- Dialogue Management
  - Determine next system actions considering user's intention
- Answer Generation
  - Generate the system's sentences most appropriate at each state of the dialogue

- Controlling dialog to help the user to achieve his goals
  - At each step of the conversation
    - Who can speak
    - What can be said
    - Used information
      - Interpretation of the user intervention
      - Application (domain) knowledge

- Determine the next system's action(s)
  - Answer user's questions
  - -Ask the user for more information
  - Confirm/Clarify user's interventions
  - Notify problems when accessing the application
  - Suggest alternatives
- Generation of the system's messages
  - The content
  - The presentation

| <b>Example: Application giving information on flights</b> |                                |
|-----------------------------------------------------------|--------------------------------|
| <u>Attribute</u>                                          | <b>Optional question</b>       |
| DepartureAirport                                          | "From which airport do you     |
|                                                           | leave?"                        |
| ArrivalAirport                                            | "Where do you want to flight?" |
| DepartureTime                                             | "At what time do you flight"   |
| ArrivalTime                                               | "At what time it arrives?"     |
| Class                                                     |                                |
| Company                                                   |                                |

Preparing next system's intervention Obtaining information from the user:

- Ambiguities because recognition problems Did you said Barcelona o Badalona ?
- Uncompleted specification
  - On which day do you want to travel ?
- Giving an answer to the user's question
  - Asking the user to restrict the question when many results are found :
    - I found 10 flights, do you prefer any special flight?
  - Asking the user to relax the question when no results are found
    - The are flight on the morning, would you mind flying at night?

- Guiding the user about accessible information

   Presenting new goals
   Do you want to know the flight price?

   Presenting alternatives

   There is no information about Girona airport, only about Barcelona airport
- Guiding the user about the system's limitations:
  - When there is user's initiative there are more problemes caused by the lack of information of:
    - Application tasks
    - $\cdot$  Domain information
    - $\cdot$  Language recognized by the system
- Helping guides: initial indications, system's messages

- Errors recovery
  - Different causes: noise envoirment, accents, vocabulary
  - Several strategies to deal with problematic input
    - Directed dialog
    - Explicit confirmation: asking to confirm only what has not been completly understood
    - Using statistics
    - · Others
- Dealing with interruptions

- Main design decisions
  - Functionality: The tasks the system has to perform
  - Processing: How these tasks have to be performed
- Considerations
  - Task complexity
  - Dialogue complexity: Which dialogue phenomena will be allowed
    - User initiative ?
- Results
  - Robustness
  - Natural

- Content of dialogues
  - Restricted to the information related to the application
  - Subdialogs: clarification, confirmation
  - Meta-dialogs (about the dialog)
    - Are you still here?
- Who can initiate different types of dialogues
  - Only the system
  - Only the user
  - Both

## Functionality of dialogue manager

- Determine the set of possible goals the system can select at each turn
- Conditioned
  - Task complexity
  - Dialogue complexity

Are subdialogues allowed? Who is allowed to use them?

Are meta-dialogues allowed? Who is allowed to use them?

#### Funtionality of dialogue manager(Research)

- Task complexity: from medium to complex
  - Travel planning
- Dialogue complexity
  - Subdialogues supporting complex features
    - Mixed initiative
    - Collaboration to solve tasks
  - Meta-dialogues

#### Functionality of dialogue manager (Real systems)

- Tasks complexity: from simple to moderate
  - Information about the weather
  - Information about train schedule
- Dialogue complexity
  - Tasks restricted
  - System initiative
    - Limited subdialogues

#### **Processing of dialogue manager**

- Initiative strategies
  - System
  - User
  - Mixed
  - Variable
- Mechanisms for modeling initiative
  - System and mixed initiative: finite state machine
  - Variable initiative, depending on:
    - Dialogue history
      - $\cdot$  Understanding errors
      - $\cdot$  Others

### **Knowledge sources**

- Dialogue Manager can use
  - Dialogue models
    - Define general dialogue phenomena
  - Tasks models
    - Define specific application tasks
    - Frame based systems. Obtain parameter values Flight information: departure, arrival, date
  - •Domain models
    - Concepts and relations in a specific domain
    - Apropriate for complex domain
  - These models can be implicit
    - Finite state systems

### **Dialogue Model**

- Dialogue model
  - Define the framework under which the user interventions have to be interpreted
- Dialogue state
  - Reference entities, relationship between them

### **Dialogue Management (Abstract)**

- Decide system's respond to user's intervention
  - Inferring user's needs
    - Dealing with ambiguity and not complete information
  - Accessing the application (or knowledge source)
  - Presenting the answer to the user

### **Dialogue Management (Abstract)**

- Research systems
  - Focused on the development of models and algorithms for supporting several dialogue phenomena for complex tasks
- Real systems
  - Focused on the development of robust strategies, to deal efficiently with most common dialogue phenomena for simple applications

# **Tasks of the Dialogue Systems**

- Interpreting user's intervention
  - -Using dialog and domain knowledge
- Dialogue Management
  - Determine next system actions considering user's intention
- Answer Generation
  - Generate the system's sentences most appropriate at each state of the dialogue

# **Answer Generation**

- Generation of sentences to achieve the goals the dialogue manager has selected
- Tasks
  - Content selection: what has to be said
    - Belongs to the discourse plan
  - Superficial realization: how has to be said
    - Presenting content correctly

# **Content Selection**

- Determine the content of the system sentences in order to achieve the goals
- Examples:
  - Madagascar is not shown in Sant Cugat [Nucleus]
    - It is shown in Barcelona [Satellite]
  - Would you like a suite? [Nucleus]
    - It is the same price than the doble room [Satellite]
  - Magic Flaute is not shown this year at Liceu [Nucleus]
    - But Figaro Wedding is [Satellite]

## **Content selection (Research)**

- Knowledge Bases
  - Domain knowledge
  - User believes
  - User model: preferences, language.
  - Dialogue history
- Mechanisms for content selection
  - Schemes patterns
    - First object name, then attributes
  - Rules
  - Plans
  - Reasoning

### **Content selection (Real systems)**

- Knowledge sources
  - Domain knowledge
  - Dialogue history
- Strategies pre-defined for content selection
  - Only nucleus, not satellite
  - Nucleus + satellite fixed

# **Superficial realization**

- Goal: to determine how content selected is presented
- Examples:

#### Madagascar is shown at CINESA cinema in Sant Cugat

- Tasks
  - Construction of phrases
  - Lexical selection

# **Superficial realization (Research)**

- The generator input is
  - Semantic representation
  - Phrase structures

• The generator uses a grammar and a lexicon for generating the sentence

# Superficial realization (Real systems)

- Predefined (canned) sentences
  - Sentences to achieve specific goals
    - Initial and final sentences
    - Ask the user to repeat
  - Specially appropriate for speech
- Patterns
  - Patterns for goals
    - Notification: You have been assigned number X.
    - Information: A,B,C and D are shown at cinema E.
    - Clarification: Did you said X or Y?

### **Components of spoken dialogue systems**

#### **Voice input: From acustic signal to meaning**

Conversion of the signal to a set of words Obtention of meaning from words

#### **Voice output: From content to acustic signal**

Conversion of content to text sentences Conversion from text to signal

#### **Dialogue Manager**

#### Transforming the signal to a set of words

- Disfluences
  - Pauses, expressions like: umm, aah
  - Fragments of words
  - Models using pauses
- Words that do not appear in the lexicon used
  - Models that can learn new words
- Mobile: more difficult

#### Obtention of meaning from words

Probabilistic model (i.e. n-gram)

- It specifies the probability of a particular word once previous word has been recognized
- It is not understanding
- Probability of previous word is not one : many alternative hypothesis

- Example: *Euthanasia* o youth in Asia

• Not gramaticaly correct, fragments, disfluencies

#### Obtention of meaning from words

- NLP is based in a complete syntactic analysi
- The approach in voice is different
  - Many recognition mistakes, unknown words
- Semantic approach (in restricted domain systems)

### **VOICEXML: A VOICE STANDARD**

- System development easy and fast
  - Low level details are transparent
- Internet access
  - Client/Server architecture
- Multilinguality
  - More than a language

Example:Català and Castellà can be mixed

- " Plaza Sants"
- " Calle Manuel Girona"

### **VOICEXML: A VOICE STANDARD**

### Limitations

- Only voice
  - Touch-tone DTMF
- The dialog has to be defined for each application
- System initiative
  - No user initiative

# Design of dialogue systems

Gould and Lewis principles (1985)

- Study users and application tasks
  - Interviews to users
  - Obtaining person-person dialogues
- Development of a prototype
  - Using *Wizard-of-Oz* method. A person substitutes the machine
- Interactive design
  - Users have to prove the system. Incorporation of new information

- Goal: to determine how well the system is working
- Difficulties
  - Determine correct and incorrect dialogues
  - Comparing strategies and dialogs
  - Metrics selection
    - Efficiency versus correctness
  - Determine the relationship between different metrics
    - Long or short dialogues?
  - High cost

- Only system's initiative
  - More successful dialogues
  - Less recognition errors
- Only user's initiative
  - More natural
  - Shorter (advantage?)
  - More subdialogs for detecting errors

- Evaluation paradigm
  - Evaluation of the final result success
  - Evaluation of the final result success and also the process
    - Different metrics for different components
    - Only one function to evaluate the set

- Evaluation only of the success of final result
- Appropriate for question/answering systems
- Easy to define correct answers
- For each question
  - Obtaining the correct answer
  - Obtaining system's answer
  - Comparing answers
  - Quantification of the processing of the system
- Advantages: simple
- Disadvantages: ignore other important

# Evaluation of the final result and the process

- Different metrics for different components
- Voice recognition
  - errors in word recognition (WER)
- Interpretation: attribute-value matrix
- Dialogue Manager
  - Quality of system's responds
  - Strategies for recovery of errors
- Dialogue system
  - Success of final result
  - Number of turns
  - Time

### Different metrics for each component

- Advantages:
  - Considering all the process to complete the task
- Limitations:
  - The metrics may not be independent from each other
  - Difficulties for comparing different dialogue systems

- Only one function to evaluate all the process
- PARADISE [Walker et al]
- Maximizes user's satisfaction
  - Maximizes task success
  - Minimizes cost
- Efficiency measurements
  - Number of interventions
  - Waiting time
- Quality measurements
  - Ratio of errors recovery

### PARADISE

- Function of measurements
  - Values on user satisfaction
    - Questionnaires
  - Values of several metrics
  - Applying multiple linear regression to obtain a function that relates user satisfaction and other metrics

- Advantages
  - It compares different systems
  - It specifies the contribution of each system component to the global performance
  - It can be used for predicting future versions
- Disadvantages
  - High cost for obtaining the function
  - High cost for adapting the function to other systems.



#### An example of conversation in a Dialogue System

| С      |                                                                       |
|--------|-----------------------------------------------------------------------|
| D      | {tema: bienvenida }                                                   |
| Interc | {objetivo: saludar} S> Welcome to the informaton service, what do you |
| Interv | want                                                                  |
| D      | {tema: viaje en tren de Barcelona a Valencia}                         |
| Interc | {objetivo: petición de una información}                               |
| Interv | U> Quisiera ir de Barcelona a Valencia                                |
| Sub    | {tema: fecha del viaje}                                               |
| Interc | {objetivo: precisión}                                                 |
| Interv | S> En qué fecha?                                                      |
| Interv | U> el martes que viene                                                |
| Sub    | {tema: hora del viaje}                                                |
| Interc | {objetivo: precisión}                                                 |
| Interv | S > iqué horario, mañana o tarde?                                     |
| Interv | U> a primera hora                                                     |
| Interv | S> Hay 3 trenes, el Euromed                                           |
| Interc | {objetivo: petición de una información}                               |
| Interv | U> ¿Cuánto vale el billete en segunda?                                |
| Interv | S > 8000 pesetas                                                      |
| D      | {tema: despedida}                                                     |
| Interc | {objetivo: despedirse}                                                |
| Interv | U> Gracias, buenas tardes                                             |
| Interv | U> Gracias a Vd, buenas tardes                                        |
|        |                                                                       |