APPLICATIONS IN NATURAL LANGUAGE PROCESSING

NATURAL LANGUAGE INTERFACES AND DIALOGUE SYSTEMS
Introduction

Tasks of the dialogue systems
- Interpreting user intervention
- Dialogue Management
- Generating system's intervention

Architecture

Development and evaluation
Introduction

- **Main goal in human/machine communication**
 Help users perform specific tasks according to their objectives

- **Two metaphores**
 - Human conversation
 question/answering, menu systems, forms, command language dialogue
 - World model
 Direct access to the domain objects (the icons representing them). *WYSIWYG*
Using the Natural Language Mode

• Advantages
 • Human Language (natural, friendly)
 • Complex ideas can be expressed
 • References to other entities are easy to express

• Disadvantages
 • High cost
 • Ambiguity -- mistakes
 • Limitations for accessing several applications (such as graphics)

• Appropriate for occasional access to applications that need to express complex operations (especially when domain can be restricted)
Using the Natural Language Mode

- **Advantages** of the speech mode
 - Convenient
 - Typing is not needed
 - Small devices
 - Hands cannot be used (i.e.: driving cars, airplanes)
 - Handicapped

- **Disadvantages** of the speech mode
 - Technical limitations to recognize voice
 - Ambiguity, mistakes
 - High cost
 - Not appropriate for specific applications

- **Appropriate for expressing simple operations on restricted domains**
The Need for Dialogue Systems

• User cannot express a requirement in only one intervention

• User need the system intervention to make the communication friendlier
System: Welcome to the information service, what do you want?
User: I want to go from Barcelona to Valencia
System: When do you want to go?
User: Next Tuesday
System: At what time, morning or afternoon?
User: Morning, please
System: There are 3 Euromed trains on Tuesday morning
The Terms

- Human Computer Interfaces
- Natural Language Interfaces
- Speech Based Interfaces
- Conversational Interfaces
- Conversational Agents
- Dialogue Systems
- Spoken Dialogue Systems
- Spoken Language Systems
Basic cycle in an interaction question/answering

- User
- Expression in NL
- Interpretation
- Interface to application
- Generation of the answer
- Application

ILN

Expression in NL
Main trends in Natural Language Interfaces

• Evolution parallel to Language Engineering
• Improving adaptability and friendliness
• Portable (or adaptable) interfaces.
 – They are usually developed for a specific domain or application.
 - They use domain (or application) restricted knowledge (domain model)
• They are usually developed for one (or more) specific languages
Main trends in Natural Language Interfaces

- Improving portability: Reusability of basic components
 - Speech recognizer
 - Language interpretation and generation: lexicon, parsers, grammars
- Improving friendliness
 - Multimodality
 - Friendly systems
Improving friendliness

• Quality of the interaction
• Supporting possible mistakes in the user intervention
 • Spelling and grammar mistakes
 • Short names, colloquial expressions, other language words
• Mixed and user initiative
• User models
Multimodality

• Integration of graphics and language for input and output expressions.
• Supporting complex references across graphics and text.
• Integration of gestures and text
• Considering the content, the context and the user model to choose the best presentation of the output (and the best way to combine different modes of interaction)
General Schema of a Natural Language Interface
First Natural Language Interfaces

- **NLI to Databases**
 - **70s**: LUNAR (Woods), RENDEZVOUS (Codd, 1974)
 - **80s**: LADDER (Hendrix), TEAM (Grosz), CHAT-80 (Warren, Pereira), DATALOG (Hafner)

- **Accessing other applications**
 - Operating systems, experts systems, tutoring systems, consulting systems, ...
 - Research systems
 - LDC, TELI, XTRA, INKA, XCALIBUR, UC, GISE
 - Commercial systems
 - INTELLECT, PARLANCE, HAL, Q&A, LOQUI, NAT, NL, SESAME
Complex Natural Language Interfaces

- Multimodal systems
 - MMI2 (Multimodal Interface for Man Machine Interaction), MATIS (Multimodal Airline Travel Information System), ALFRESCO

- Using voice
 - Dictation systems, telephone interfaces
 - VOYAGER (MIT), Office Manager (CMU), MASK (Multimodal Multimedia Automated Service Kiosk), ATIS (MIT, CMU), Railtel, Sundial, Verbmobil

- VoiceXML
Architecture of a Dialogue System
Tasks of the Dialogue Systems

- **Interpreting the user’s intervention**
 - Using dialog and domain knowledge
- **Dialogue Management**
 - Determine next system actions considering user's intention
- **Answer Generation**
 - Generate the system's sentences most appropriate at each state of the dialogue
Interpreting the user intervention

• Goal: understanding user's intention
• Knowledge involved
 • Phonetics and phonology
 • Morphology
 • Syntax
 • Semantics (lexical and compositional)
 • Pragmatics
 • Discourse
Interpreting the user intervention

- Goal: understanding the user's intention
- Precise information from the user is required
- The complexity of this process depends on the system
 - Complete (deep) syntactic and semantic analysis
 - Partial (shallow) syntactic and semantic analysis
 - Processing key words
- This process is restricted by considering limited applications tasks
Interpreting the user intervention

• Main tasks
 • Reference resolution
 • Intention recognition

• The use of the context
 • Dialogue history
 • Domain knowledge
Interpreting the user intervention

• Main problems
 • Processing syntactic relations
 • Quantification
 • Coordination and subordination
 • References
 • Ellipsis
 • Ungrammatical expressions
U: Where the movie **Heroes** is shown in Sant Cugat?
S: **Heroes** is shown at Cinema Cinesa in Sant Cugat
U: At what time is it shown?
S: It is shown at 8:30pm, 10pm and 11:30pm.
U: I want 2 tickets for **adults** and 2 for children for **first session**
How much is it?

• **Knowledge Sources:**
 – Domain Knowledge
 – Dialogue Knowledge
 – Domain (world) knowledge
Reference resolution (real systems)

• There is no reference resolution
• Only simple references are processed
 • A stack with the entities that are the possible focus is used
 • No discourse structure is used
Reference resolution

• Central elements of the sentences have to be selected
 - They are grammatically related to the main verb (subject, object, …)
 – They can connect a sentence with previous
 – They can connect a sentence with next
• When pronouns are found several rules are used to rank and filter the possible central elements
Reference resolution

• Most references are solved using knowledge discourse
• Central elements (focus) are stored in a stack
 • Only lasts nominal groups are stored
• Objects satisfying syntactic, semantic and pragmatic restrictions are selected
 – Starting by the stack top
 • “There” is a place
 – Considering discourse structure
 • Relating objects and subdialogs
Intention Recognition

- User's interventions are interpreted as one (or more) **dialogue act** *(speech act or dialogue move)*
- Examples of dialogue moves
 - Switchboard DAMSL
 - Ini/final conventional
 - Opinion
 - Confirming/Accepting
 - Recognizance
 - Question/Answer/Yes-No
 - No-verbal
 - Quit
 - Efforts for standard definition
 - Verbmobil
 - Greet/Thank you/Goodbye
 - Suggestion
 - Accepting/Not accepting
 - Confirmation
 - Question/Clarification/Answer
 - Giving the reason
 - Thinking
Intention Recognition

• Dialogue grammars (finite state machine)
 Greet → Question ↔ Answer → Thankyou → Goodbay

• Plans
 • Receipts: General frames to perform actions
 • Inference rules
 • Planification rules (Artificial Intelligence)
Intention Recognition (Real systems)

• The system infers the application task the user is asking for
 • Application: Giving information on cultural events
 • Time or place where a specific event takes place
 • Events that take place in a specific place
 • Application: Giving information on trains
 • Schedule for a specific train

• The system asks the user the information the application needs
 • The system ignores the information not useful for the application
Intention Recognition (Real systems)

- System initiative
- User initiative very limited
 - Not allowed in complex acts such as confirmation, clarification and indirect answers

S1: Which is your account number?
U1: My account number in Online Bank?

S2: Would you want to transfer 1500 euros to your new account?
U2: If I have this amount, ok
Intention Recognition (Real systems)

- Content obtained from the user's intervention
 - The application task that has to be performed
 - Information on classical music concerts in Barcelona
 - The information needed to perform the specific task
 - The specific date and place
 - The next Saturday on the Auditori
Intention Recognition (Real systems)

Several methods can be used

- *Frames* representing the information needed for each task
 - Trains schedule: departure and destination
- Similarity measurement based on vectors
Using frames

- Representing tasks as frames described by attributes that correspond to input and output task parameters
 - Representing the tasks of giving information about a specific train as a frame where
 - departure and destination station are represented as attributes which value has to be provided by the user
 - time and price are the attributes obtained from the application and presented to the user
Representation of a user intervention asking for a ticket

Reservation
- What
- Quantity

Train ticket
- Date
- Type
- From
- To
- Hour
- Prize

What
- Quantity: 1

Type
- Euromed
- From: Barcelona
- To: Valencia
Semantic Grammar

Ticket_re -> initial, quantification, ticket,[mods]
initial -> “I want”| “I want to make”
quantification -> “one”| “two”| 1
ticket -> “tickets”| “tickets”| “reservation”
mods -> mod,[mods]
mod -> “from”, city| “to”, city| “on”, typetrain
city -> barcelona| valencia
typetrain -> euromed
Intention Recognition (Real systems)

U: At what time Madagascar is shown in Sant Cugat?

Intention: asking for information about a particular movie

Frame: Movie_information
Attributes which value is given by the user
Movie: Madagascar
Place: Sant Cugat

Attributes which value is obtained by the application: time
Intention Recognition (Real systems)

- Using keywords and measures based on similarity vectors
- Representing questions and goals (answers) as vectors
- Searching the goal vector most similar to the question
- Similarity metrics
 - cosinus of the angle between the two vectors
Tasks of the Dialogue Systems

- Interpreting user intervention
 - Using dialog and domain knowledge
- **Dialogue Management**
 - Determine next system actions considering user's intention
- Answer Generation
 - Generate the system's sentences most appropriate at each state of the dialogue
Dialogue Management

• Controlling dialog to help the user to achieve his goals
 – At each step of the conversation
 • **Who can speak**
 • What can be said
 – Used information
 • Interpretation of the user intervention
 • Application (domain) knowledge
Dialogue Management

• Determine the next system's action(s)
 – Answer user's questions
 – Ask the user for more information
 – Confirm/Clarify user's interventions
 – Notify problems when accessing the application
 – Suggest alternatives

• Generation of the system's messages
 – The content
 – The presentation
Dialogue Management

Example: Application giving information on flights

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Optional question</th>
</tr>
</thead>
<tbody>
<tr>
<td>DepartureAirport</td>
<td>“From which airport do you leave?”</td>
</tr>
<tr>
<td>ArrivalAirport</td>
<td>“Where do you want to flight?”</td>
</tr>
<tr>
<td>DepartureTime</td>
<td>“At what time do you flight”</td>
</tr>
<tr>
<td>ArrivalTime</td>
<td>“At what time it arrives?”</td>
</tr>
<tr>
<td>Class</td>
<td></td>
</tr>
<tr>
<td>Company</td>
<td></td>
</tr>
</tbody>
</table>
Dialogue Management

Preparing next system’s intervention
Obtaining information from the user:

• Ambiguities because recognition problems
 \textit{Did you said Barcelona o Badalona?}

• Uncompleted specification
 \textit{On which day do you want to travel?}

• Giving an answer to the user’s question
 • Asking the user to restrict the question when many results are found:
 \textit{I found 10 flights, do you prefer any special flight?}
 • Asking the user to relax the question when no results are found
 \textit{The are flight on the morning, would you mind flying at night?}
Dialogue Management

• Guiding the user about accessible information
 • Presenting new goals
 Do you want to know the flight price?
 Presenting alternatives
 There is no information about Girona airport, only about Barcelona airport

• Guiding the user about the system’s limitations:
 • When there is user’s initiative there are more problems caused by the lack of information of:
 • Application tasks
 • Domain information
 • Language recognized by the system

• Helping guides: initial indications, system’s messages
Dialogue Management

• Errors recovery
 • Different causes: noise environment, accents, vocabulary
 • Several strategies to deal with problematic input
 • Directed dialog
 • Explicit confirmation: asking to confirm only what has not been completely understood
 • Using statistics
 • Others

• Dealing with interruptions
Dialogue Management

• Main design decisions
 • **Functionality**: The tasks the system has to perform
 • **Processing**: How these tasks have to be performed

• Considerations
 • Task complexity
 • Dialogue complexity: Which dialogue phenomena will be allowed
 • User initiative?

• Results
 • Robustness
 • Natural
Dialog Management

• Content of dialogues
 • Restricted to the information related to the application
 • Subdialogs: clarification, confirmation
 • Meta-dialogs (about the dialog)
 • Are you still here?

• Who can initiate different types of dialogues
 • Only the system
 • Only the user
 • Both
Functionality of dialogue manager

- Determine the set of possible goals the system can select at each turn
- Conditioned
 - Task complexity
 - Dialogue complexity
 Are subdialogues allowed? Who is allowed to use them?
 Are meta-dialogues allowed? Who is allowed to use them?
Funtionality of dialogue manager (Research)

- Task complexity: from medium to complex
 - Travel planning
- Dialogue complexity
 - Subdialogues supporting complex features
 - Mixed initiative
 - Collaboration to solve tasks
 - Meta-dialogues
Functionality of dialogue manager (Real systems)

• Tasks complexity: from simple to moderate
 • Information about the weather
 • Information about train schedule

• Dialogue complexity
 • Tasks restricted
 • System initiative
 • Limited subdialogues
Processing of dialogue manager

• Initiative strategies
 • System
 • User
 • Mixed
 • Variable

• Mechanisms for modeling initiative
 • System and mixed initiative: finite state machine
 • Variable initiative, depending on:
 • Dialogue history
 • Understanding errors
 • Others
Knowledge sources

- Dialogue Manager can use
 - Dialogue models
 - Define general dialogue phenomena
 - Tasks models
 - Define specific application tasks
 - *Frame based systems*. Obtain parameter values
 - Flight information: departure, arrival, date
 - Domain models
 - Concepts and relations in a specific domain
 - Appropriate for complex domain
 - These models can be implicit
 - Finite state systems
Dialogue Model

• Dialogue model
 • Define the framework under which the user interventions have to be interpreted

• Dialogue state
 • Reference entities, relationship between them
Dialogue Management (Abstract)

- Decide system’s respond to user's intervention
 - Inferring user's needs
 - Dealing with ambiguity and not complete information
 - Accessing the application (or knowledge source)
 - Presenting the answer to the user
Dialogue Management (Abstract)

- **Research systems**
 - Focused on the development of models and algorithms for supporting several dialogue phenomena for complex tasks

- **Real systems**
 - Focused on the development of robust strategies, to deal efficiently with most common dialogue phenomena for simple applications
Tasks of the Dialogue Systems

• Interpreting user’s intervention
 – Using dialog and domain knowledge
• Dialogue Management
 – Determine next system actions considering user's intention
• Answer Generation
 – Generate the system's sentences most appropriate at each state of the dialogue
Answer Generation

• Generation of sentences to achieve the goals the dialogue manager has selected

• Tasks
 • Content selection: what has to be said
 • Belongs to the discourse plan
 • Superficial realization: how has to be said
 • Presenting content correctly
Content Selection

• Determine the content of the system sentences in order to achieve the goals

• Examples:
 • *Madagascar is not shown in Sant Cugat at Nucleus*
 • *It is shown in Barcelona [Satellite]*
 • *Would you like a suite? [Nucleus]*
 • *It is the same price than the doble room [Satellite]*
 • *Magic Flaute is not shown this year at Liceu [Nucleus]*
 • *But Figaro Wedding is [Satellite]*
Content selection (Research)

- Knowledge Bases
 - Domain knowledge
 - User believes
 - User model: preferences, language.
 - Dialogue history

- Mechanisms for content selection
 - Schemes - patterns
 - First object name, then attributes
 - Rules
 - Plans
 - Reasoning
Content selection (Real systems)

• Knowledge sources
 • Domain knowledge
 • Dialogue history

• Strategies pre-defined for content selection
 • Only nucleus, not satellite
 • Nucleus + satellite fixed
Superficial realization

- Goal: to determine **how** content selected is presented
- Examples:

 Madagascar is shown at CINESA cinema in Sant Cugat

- Tasks
 - Construction of phrases
 - Lexical selection
Superficial realization (Research)

• The generator input is
 • Semantic representation
 • Phrase structures

• The generator uses a grammar and a lexicon for generating the sentence
Superficial realization (Real systems)

- Predefined (canned) sentences
 - Sentences to achieve specific goals
 - Initial and final sentences
 - Ask the user to repeat
 - Specially appropriate for speech
- Patterns
 - Patterns for goals
 - Notification: You have been assigned number X.
 - Information: A, B, C and D are shown at cinema E.
 - Clarification: Did you said X or Y?
Components of spoken dialogue systems

<table>
<thead>
<tr>
<th>Voice input: From acoustic signal to meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversion of the signal to a set of words</td>
</tr>
<tr>
<td>Obtention of meaning from words</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voice output: From content to acoustic signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversion of content to text sentences</td>
</tr>
<tr>
<td>Conversion from text to signal</td>
</tr>
</tbody>
</table>

Dialogue Manager
Voice input: From acoustic signal to meaning

Transforming the signal to a set of words

• Disfluences
 • Pauses, expressions like: *umm, aah*
 • Fragments of words
 • Models using pauses
• Words that do not appear in the lexicon used
 • Models that can learn new words
• Mobile: more difficult
Obtention of meaning from words

Probabilistic model (i.e. n-gram)

It specifies the probability of a particular word once previous word has been recognized

• It is not understanding

• Probability of previous word is not one : many alternative hypothesis

 - Example: *Euthanasia o youth in Asia*

• Not grammatically correct, fragments, disfluencies
Obtention of meaning from words

- NLP is based in a complete syntactic analysis
- The approach in voice is different
 - Many recognition mistakes, unknown words
- Semantic approach (in restricted domain systems)
VOICEXML: A VOICE STANDARD

• System development easy and fast
 • Low level details are transparent
• Internet access
 • Client/Server architecture
• Multilinguality
 • More than a language
Example: Català and Castellà can be mixed
 “Plaza Sants”
 “Calle Manuel Girona”
Limitations

• Only voice
 • Touch-tone DTMF
• The dialog has to be defined for each application
• System initiative
 • No user initiative
Design of dialogue systems

Gould and Lewis principles (1985)

- Study users and application tasks
 - Interviews to users
 - Obtaining person-person dialogues
- Development of a prototype
 - Using *Wizard-of-Oz* method. A person substitutes the machine
- Interactive design
 - Users have to prove the system. Incorporation of new information
Evaluation

• Goal: to determine how well the system is working

• Difficulties
 • Determine correct and incorrect dialogues
 • Comparing strategies and dialogs
 • Metrics selection
 • Efficiency versus correctness
 • Determine the relationship between different metrics
 • Long or short dialogues?
 • High cost
Evaluation

- Only system’s initiative
 - More successful dialogues
 - Less recognition errors

- Only user’s initiative
 - More natural
 - Shorter (advantage?)
 - More subdialogs for detecting errors
Evaluation

• Evaluation paradigm
 • Evaluation of the final result success

• Evaluation of the final result success and also the process
 • Different metrics for different components
 • Only one function to evaluate the set
Evaluation

Evaluation only of the success of final result

- Appropriate for question/answering systems
- Easy to define correct answers
- For each question
 - Obtaining the correct answer
 - Obtaining system’s answer
 - Comparing answers
 - Quantification of the processing of the system

- Advantages: simple
- Disadvantages: ignore other important aspects
Evaluation

Evaluation of the final result and the process

Different metrics for different components

- Voice recognition
 - errors in word recognition (WER)
- Interpretation: attribute-value matrix
- Dialogue Manager
 - Quality of system’s responds
 - Strategies for recovery of errors
- Dialogue system
 - Success of final result
 - Number of turns
 - Time
Evaluation

Different metrics for each component

• Advantages:
 • Considering all the process to complete the task

• Limitations:
 • The metrics may not be independent from each other
 • Difficulties for comparing different dialogue systems
Evaluation

Only one function to evaluate all the process

- PARADISE [Walker et al]
- Maximizes user’s satisfaction
 - Maximizes task success
 - Minimizes cost
- Efficiency measurements
 - Number of interventions
 - Waiting time
- Quality measurements
 - Ratio of errors recovery
Evaluation

PARADISE

• Function of measurements
 • Values on user satisfaction
 • Questionnaires
 • Values of several metrics
 • Applying multiple linear regression to obtain a function that relates user satisfaction and other metrics
Evaluation

• Advantages
 • It compares different systems
 • It specifies the contribution of each system component to the global performance
 • It can be used for predicting future versions

• Disadvantages
 • High cost for obtaining the function
 • High cost for adapting the function to other systems.
Formas lógicas utilizadas en SISCO

¿Cúal es el caudal del rio Ebro?
→
preg(Y, ex(rio1(X)&X=ebro,caudal(Y,X)))

¿Dónde desemboca el rio Ebro?
→
preg(X, ex(rio1(Y)&Y=ebro,desemboca(Y,X)&lugar(X)))
An example of conversation in a Dialogue System

C
D {tema: bienvenida}

Interc {objetivo: saludar}

S> Welcome to the information service, what do you want

D {tema: viaje en tren de Barcelona a Valencia}

Interc {objetivo: petición de una información}

U> Quisiera ir de Barcelona a Valencia

Sub {tema: fecha del viaje}

Interc {objetivo: precisión}

S> ¿En qué fecha?

Interv

U> el martes que viene

S> ¿qué horario, mañana o tarde?

Interv

U> a primera hora

Interv

S> Hay 3 trenes, el Euromed

Interc {objetivo: petición de una información}

Interv

U> ¿Cuánto vale el billete en segunda?

Interv

S> 8000 pesetas

D {tema: despedida}

Interc {objetivo: despedirse}

U> Gracias, buenas tardes

Interv

U> Gracias a Vd, buenas tardes