Regular expressions and automata

Introduction Finite State Automaton (FSA) Finite State Transducers (FST)

Regular expressions

Standard notation for characterizing text sequences

Specifying text strings:

- Web search: woodchuck (with an optional final s) (lower/upper case)
- Computation of frequencies
- Word-processing (Word, Emacs, Perl)

Regular expressions (REs)

A RE formula is a special language (an algebraic notation) to specify simple classes of strings: a sequence of symbols (i.e, alphanumeric characters).

woodchucks, a, song,!,Mary says

REs are used to

- Specify search strings to define a pattern to search through a corpus
- Define a language

Regular expressions

- Basically they are combinations of simple units (character or strings) with connectives as concatenation, disjunction, option, kleene star, etc.
- Used in languages as Perl or Python and Unix commands as grep, replace,...

Regular expressions and automata

- Regular expressions can be implemented by the finite-state automaton.
- Finite State Automaton (FSA) a significant tool of computational lingusitics. They are related to other computational tools:
 - Finite State Transducers (FST)
 - N-gram
 - Hidden Markov Models

Regular expressions (REs)

- Case sensitive: **woodchucks** different from **Woodchucks**
- [] means disjuntion
- [Ww]oodchucks
- [1234567890] (any digit)
- [A-Z] an uppercase letter
- [^] means cannot be
 [^A-Z] not an uppercase letter
 [^Ss] neither 'S' nor 's'

Regular expressions

- ? means preceding character or nothing
 Woodchucks? means Woodchucks or Woodchuck
 colou?r color or colour
- * (kleene star)- zero or more occurrences of the immediately previous character
 - **a*** any string or zero or more as (a,aa, hello)
- [0-9][0-9]* any integer
- + one or more occurrences

[0-9]+

Regular expressions

- Disjunction operator | cat|dog
- There are other more complex operators
- Operator precedence hierarchy
- Very useful in substitutions (i.e. Dialogue)

Regular expressions Useful to write patterns:

- Examples of substitutions in dialogue
- User: Men are all alike
- ELIZA: IN WHAT WAY

s/.*all.*/ IN WHAT WAY

User: They're always bugging us about something ELIZA: CAN YOU THINK OF A SPECIFIC EXAMPLE

s/*always.*/ CAN YOU THINK OF A SPECIFIC EXAMPLE

Regular expressions

- Acronym detection

patterns acrophile

 $acro1 = re.compile('^([A-Z][,\.-/_])+$')$

$$acro2 = re.compile('^([A-Z])+$')$$

 $acro3 = re.compile('^\d*[A-Z](\d[A-Z])*$')$

 $acro4 = re.compile('^[A-Z][A-Z][A-Z]+[A-Za-z]+$')$

 $acro5 = re.compile('^[A-Z][A-Z]+[A-Za-z]+[A-Z]+$')$

$$acro6 = re.compile('^([A-Z][,\.-/_]){2,9}(\'s|s)?$')$$

$$acro7 = re.compile('^[A-Z]{2,9}(\'s|s)?$')$$

$$acro8 = re.compile('^[A-Z]*\d[-_]?[A-Z]+$')$$

$$acro9 = re.compile('^[A-Z]+[A-Za-z]+[A-Z]+$')$$

acro10 = re.compile('^[A-Z]+[/-][A-Z]+\$')

Some readings

Kenneth R. Beesley and Lauri Karttunen, Finite State Morphology, CSLI Publications, 2003

Roche and Schabes 1997 Finite-State Language Processing. 1997. MIT Press, Cambridge, Massachusetts.

References to Finite-State Methods in Natural Language Processing http://www.cis.upenn.edu/~cis639/docs/fs refs.html

Some toolbox

ATT FSM tools http://www2.research.att.com/~fsmtools/f sm/

Beesley, Kartunnen book http://www.stanford.edu/~laurik/fsmbook/ home.html

Carmel http://www.isi.edu/licensed-sw/carmel/

Dan Colish's PyFSA (Python FSA) https://github.com/dcolish/PyFSA

Equivalence

Regular Expressions Regular Languages Finite State Automaton

Formal Languages

Regular Languages (RL)

Alphabet (vocabulary) Σ Concatenation operation Σ^* strings over Σ (free monoid) Language L $\subseteq \Sigma^*$ Languages and grammars L, L_1 y L_2 are languages operations $L_1 \cdot L_2 = \left\{ u \cdot v \left| u \in L_1 \land v \in L_2 \right\} \right\}$ concatenation $L_1 \cup L_2 = \{ u \mid u \in L_1 \lor u \in L_2 \}$ union $L_1 \cap L_2 = |u| u \in L_1 \land u \in L_2$ intersection $L_1 - L_2 = |u| u \in L_1 \land u \notin L_2|$ difference $\overline{L} = \Sigma - L$ complement

Finite State Automata (FSA)

```
\begin{array}{ll} <\Sigma, \, Q, \, i, \, F, \, E > \\ \Sigma & alphabet \\ Q & finite \, set \, of \, states \\ i \in \, Q & initial \, state \\ F \subseteq \, Q & final \, states \, set \\ E \subseteq \, Q \times (\Sigma \, \cup \, \{\epsilon\}) \times Q & arc \, set \\ E: \, \{d \mid d: \, Q \times (\Sigma \, \cup \, \{\epsilon\}) \rightarrow 2^{\varrho} \} & transitions \, set \end{array}
```

Example 1: Recognizes multiple of 2 codified in binary

Examples of numbers recognized 0 10 (2 in decimal) 100 (4 in decimal) 110 (6 in decimal)

State 0: The string recognized till now ends with 0

State 1: The string recognized till now ends with 1 Example 2: Recognizes multiple of 3 codified in binary

State 0: The string recognized till now is multiple of 3
State 1: The string recognized till now is multiple of 3 + 1
State 2: The string recognized till now is multiple of 3 + 2

The transition from a state to the following multiplies by 2 the current string and adds to it the current tag

Tabular representation of the FSA

Recognizes multiple of 3 codified in binary

Properties of regular languages(RL) and FSA Let A a FSA L(A) is the language generated (recognized) by A The class of RL (o FSA) is closed under union intersection concatenation complement Kleene star(A*)

FSA can be determined FSA can be minimized

The following properties of FSA are decidible

- $W \in L(A)$?
- $L(A) = \emptyset ?$
- $L(A) = \Sigma^* ?$
- $\mathsf{L}(\mathsf{A}_1) \subseteq \mathsf{L}(\mathsf{A}_2) ?$
- $L(A_1) = L(A_2)$?

Only the first two are for context free grammars (CFG), the most used grammars

Restrictions (negative rules)

From the union of negative rules we can build a Negative grammar $G = \Sigma^* \cdot (C1 \cup C2 \cup ... \cup Cn) \cdot \Sigma^*)$

The difference between the two FSA S -G will result on:

Most of the ambiguities have been solved

Finite State Transducers (FST)

```
 \begin{split} &< \Sigma_1, \ \Sigma_2, \ Q, \ i, \ F, \ E > \\ & \Sigma_1 \\ & \Sigma_2 \\ & \text{frequently } \Sigma_1 = \Sigma_2 = \Sigma \\ & Q \\ & i \in Q \\ & F \subseteq Q \\ & E \subseteq Q \times (\Sigma_1^* \times \Sigma_2^*) \times Q \end{split}
```

input alphabet output alphabet

finite states set initial state final states set arcs set

Example 3

Example 3

input	output
0	0
11	01
110	010
1001	0011
1100	0100
1111	0101
10010	00110

State 0:		State 1:		State 2:	
Recognized:	3k	Recognized : 3	k+1	Recognized :	3k+2
Emited:	k	Emited : k		Emited :	k

invariant:	invariant:	invariant:
emited * 3 =	emited * 3 + 1	emited * 3 + 2 =
Recognized	= Recognized	Recognized

		1/1 2 0/1			
state 1:		consums:	0	Sta	te 2
recognize	ed: 3k+1	emits:	0	sat	isfies invariant
emited:	k	recognized:	(3k+1)*2 =	6k + 2	
		Emited:	k*2 = 2k		
					-
C	consums:	1			
e	emits:	1		State	e 0
r	ecognized:	(3k+1)*2 +	1= 6k + 3	satis	fies invariant
e	emited:	k*2 + 1 = 2	k + 1		

ennis:	L I	
recognized:	(3k+2)*2 + 1 = 6k + 5	
emited:	k*2 + 1 = 2k + 1	

satisfies invariant

FSA associated with a FST

FST $<\Sigma_1, \Sigma_2, Q, i, F, E>$ FSA $<\Sigma$, Q, i, F, E'> $\Sigma = \Sigma_1 \times \Sigma_2$ $(q_1, (a,b), q_2) \in E' \Leftrightarrow (q_1, a, b, q_2) \in E$

FST 9

Projections of a FST

FST T = $\langle \Sigma_1, \Sigma_2, Q, i, F, E \rangle$

First projection

$$P_1(T) < \Sigma_1, Q, i, F, E_{P1} >$$

 $E_{P1} = \{(q,a,q') \mid (q,a,b,q') \in E\}$

Second projection

$$P_2(T) < \Sigma_2, Q, i, F, E_{P2} >$$

 $E_{P2} = \{(q,b,q') \mid (q,a,b,q') \in E\}$

FST are closed under union invertion example: $Td3^{-1}$ is equivalent to multiply by 3 composition example : $Td9 = Td3 \cdot Td3$ FST are **not** closed under intersection

Traverse the FST in all forms compatible with the input (using backtracking if needed) until reaching a final state and generate the corresponding output

Consider input as a FSA and compute the intersection of the FSA and the FST

Determinization of a FST

Aplications of FSA(and FST) Increasing use in NLP Morphology Phonology Lexical generation ASR (Automatic Speech Recognition) POS tagging Simplification of Grammars Information Extraction

- Why FSA (and FST)?
 - Temporal and spatial efficiency
 - Some FSA can be determined and optimized for leading to more compact representations
 - Possibility to be used in cascade form