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Regular expressions and 
automata

Introduction 
Finite State Automaton (FSA)
Finite State Transducers (FST)
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Regular expressions

Standard notation for characterizing text 
sequences
Specifying text strings:
  Web search: woodchuck 
   (with an optional final s) (lower/upper case)
  Computation of frequencies
  Word-processing (Word, Emacs,Perl)
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Regular expressions (REs)

A RE formula  is a special language (an 
algebraic notation) to specify simple classes 
of strings: a sequence of symbols (i.e, 
alphanumeric characters).
     woodchucks, a, song,!,Mary says
REs are used to

– Specify  search strings - to define a 
pattern to search through a corpus

– Define a language
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• Basically they are combinations of simple 
units (character or strings) with 
connectives as concatenation, 
disjunction, option, kleene star, etc.

• Used in languages as Perl or Python and 
Unix commands as  grep, replace,...

Regular expressions
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Regular expressions and 
automata

 Regular expressions can be implemented by 
the finite-state automaton. 
 Finite State Automaton  (FSA) a significant 
tool of computational lingusitics. They are 
related to other computational tools:
  - Finite State Transducers (FST)
  - N-gram
  - Hidden Markov Models
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Regular expressions (REs)

- Case sensitive: woodchucks different from 
Woodchucks
- [] means disjuntion       
[Ww]oodchucks  
[1234567890] (any digit)
[A-Z] an uppercase letter
- [^] means cannot be
  [^A-Z] not an uppercase letter
  [^Ss] neither 'S' nor 's'
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Regular expressions

- ? means preceding character or nothing       
Woodchucks? means  Woodchucks or Woodchuck

colou?r color or colour
- * (kleene star)- zero or more occurrences 
of the immediately previous character 
  a* any string or zero or more as (a,aa, hello)
[0-9][0-9]* - any integer
- + one or more occurrences
[0-9]+
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Regular expressions

- Disjunction operator |     cat|dog
- There are other more complex operators
- Operator precedence hierarchy
- Very useful in substitutions (i.e. Dialogue)
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Regular expressions
Useful to write patterns:

Examples of substitutions in dialogue
User: Men are all alike

ELIZA: IN WHAT WAY

                                    s/.*all.*/ IN WHAT WAY

 User: They're always bugging us about something 

 ELIZA: CAN YOU THINK OF A SPECIFIC EXAMPLE 

 s/*always.*/ CAN YOU THINK OF A SPECIFIC EXAMPLE
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- Acronym detection
patterns acrophile

acro1 = re.compile('^([A-Z][,\.-/_])+$')

acro2 = re.compile('^([A-Z])+$')

acro3 = re.compile('^\d*[A-Z](\d[A-Z])*$')

acro4 = re.compile('^[A-Z][A-Z][A-Z]+[A-Za-z]+$')

acro5 = re.compile('^[A-Z][A-Z]+[A-Za-z]+[A-Z]+$')

acro6 = re.compile('^([A-Z][,\.-/_]){2,9}(\'s|s)?$')

acro7 = re.compile('^[A-Z]{2,9}(\'s|s)?$')

acro8 = re.compile('^[A-Z]*\d[-_]?[A-Z]+$')

acro9 = re.compile('^[A-Z]+[A-Za-z]+[A-Z]+$')

acro10 = re.compile('^[A-Z]+[/-][A-Z]+$')

Regular expressions
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Kenneth R. Beesley and Lauri Karttunen, 
Finite State Morphology, CSLI 
Publications, 2003

Roche and Schabes 1997
Finite-State Language Processing. 1997. 
MIT Press, Cambridge, Massachusetts.

References to Finite-State Methods in 
Natural Language Processing
http://www.cis.upenn.edu/~cis639/docs/fs
refs.html

Some readings
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ATT FSM tools
http://www2.research.att.com/~fsmtools/f
sm/

Beesley, Kartunnen book 
http://www.stanford.edu/~laurik/fsmbook/
home.html

Carmel
http://www.isi.edu/licensed-sw/carmel/

Dan Colish's PyFSA (Python FSA)
https: //github.com/dcolish/PyFSA

Some toolbox
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Regular  Expressions

Regular Languages

Finite State Automaton

Equivalence
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Alphabet (vocabulary) Σ
Concatenation operation
Σ* strings over Σ (free monoid)
Language L ⊆ Σ* 
Languages and grammars

Formal Languages

Regular Languages (RL)
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L, L1 y L2 are languages

operations
concatenation

union

intersection

difference

complement

L1⋅L2={u⋅v∣u∈L1∧v∈L2 }

L1∪L2={u∣u∈L1∨u∈L2 }

L1∩L2={u∣u∈L1∧u∈L2 }

L1−L2={u∣u∈L1∧u∉L2}

L=Σ−L
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<Σ, Q, i, F, E> 
Σ alphabet
Q finite set of states
i ∈ Q initial state
F ⊆ Q final states set
E ⊆ Q × (Σ  ∪  {ε}) × Q arc set
E: {d | d: Q × (Σ  ∪  {ε})  → 2Q} transitions set

Finite State Automata (FSA)
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Example 1: Recognizes multiple of 2 codified in binary

0 1

0

1

0

1
State 0:
The string 
recognized till now 
ends with 0

State 1:
The string 
recognized till now 
ends with 1

Examples of numbers recognized
0   
10  (2 in decimal)
100 (4 in decimal)
110 (6 in decimal)
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0 1 2

0 1

1 0

1 0

Example 2: Recognizes multiple of 3 codified in binary

State 0: The string recognized till now is multiple of 3
State 1: The string recognized till now is multiple of 3 + 1
State 2: The string recognized till now is multiple of 3 + 2

The transition from a state to the following  multiplies by 
2 the current string and adds to it  the current tag
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0 1 2

0 1

1 0

1 0

Recognizes multiple of 3 codified in binary

Tabular representation of the FSA

0 1

0 0 1

1 2 0

2 1 2



NLP FS Models 20

Properties of regular languages(RL) and FSA
Let A a FSA

L(A) is the language generated (recognized) by A

The class of RL (o FSA) is closed under
union

intersection

concatenation

complement

Kleene star(A*)

FSA can be determined

FSA can be minimized
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The following properties of FSA are decidible
w ∈ L(A) ?

L(A) = ∅ ?

L(A) = Σ* ?

L(A1) ⊆ L(A2) ?

L(A1) = L(A2) ?

Only the first two are for context free 
grammars (CFG), the most used grammars
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Representation of the Lexicon that

Pro

Conj

Det                                                         Pro

     he       Pro    hopes     N      that     Conj       this    Det    works    
N

                                      V                 Det                 Pro                V

Let S the FSA:
Representation of the sentence with POS tags

Example of  the use of closure  properties
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that     Det     this     
Det

Restrictions (negative rules)

FSA  
C1

FSA  
C2

that     Det      ?         V

We are interested on  
S - (Σ* • C1 • Σ*) - (Σ* • C2 • Σ*)  = 
S - (Σ* • ( C1 ∪ C2) • Σ*)



NLP FS Models 24

From the union of negative rules we can build a
Negative grammar G = Σ* • ( C1 ∪ C2 ∪ … ∪  Cn) • Σ*)

this     Det       ?         V

?       Pro       ?             N

           Det    this       Det
that

Pro

Pro
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he       Pro    hopes     V       that     Conj     this      Pro   
works     V

Det   works   
N

The difference between the two FSA  S -G will result on:

Most of the ambiguities have been solved
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<Σ1, Σ2, Q, i, F, E> 
Σ1 input alphabet
Σ2 output alphabet

frequently Σ1 = Σ2 = Σ 

Q finite states set
i ∈ Q initial state
F ⊆ Q final states set
E ⊆ Q × (Σ1* ×  Σ2 *) × Q arcs set

Finite State Transducers (FST)
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0 1 2

0/0 1/1

1/0 0/0

1/1 0/1

Td3: division by 3 of a binary string
Σ1 = Σ2 = Σ ={0,1}

Example 3
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0 1 2

0/0 1/1

1/0 0/0

1/1 0/1

input output
0 0
11 01
110 010
1001 0011
1100 0100
1111 0101
10010 00110

Example 3

Td3: division by 3 of a binary string
Σ1 = Σ2 = Σ ={0,1}



NLP FS Models 29

0 1 2

0/0 1/1

1/0 0/0

1/1 0/1

State 0:
Recognized: 3k
Emited: k

State 1:
Recognized : 3k+1
Emited : k

State 2:
Recognized : 3k+2
Emited : k

invariant:
emited * 3 = 
Recognized

invariant:
emited * 3  + 1 
= Recognized

invariant:
emited * 3 + 2 = 
Recognized
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0 1 2

0/0 1/1

1/0 0/0

1/1 0/1

state 0:
Recognized: 3k
Emited: k

consums: 0
emits: 0
recognized: 3*k*2 = 6k
emited: k*2 = 2k 

consums: 1
emits: 0
recognized: 3*k*2 + 1= 6k + 1
emited: k*2 = 2k 

State 0
satisfies invariant

State 1
satisfies invariant
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0 1 2

0/0 1/1

1/0 0/0

1/1 0/1

consums: 0
emits: 0
recognized: (3k+1)*2 = 6k + 2
Emited:  k*2 = 2k 

consums: 1
emits: 1
recognized: (3k+1)*2 + 1= 6k + 3
emited: k*2 + 1 = 2k + 1

State 2
satisfies invariant

State 0
satisfies invariant

state 1:
recognized: 3k+1
emited: k
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0 1 2

0/0 1/1

1/0 0/0

1/1 0/1

consums: 0
emits: 1
recognized: (3k+2)*2 = 6k + 4
emited: k*2 + 1 = 2k + 1

consums: 1
emits: 1
recognized: (3k+2)*2 + 1= 6k + 5
emited: k*2 + 1 = 2k + 1

State 1
satisfies invariant

State 2
satisfies invariant

state 2:
recognized: 3k+2
emited: k
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FST <Σ1, Σ2, Q, i, F, E> 

FSA <Σ, Q, i, F, E’> 

Σ = Σ1 × Σ2 

(q1, (a,b), q2) ∈ E’ ⇔ (q1, a, b, q2) ∈ E 

FSA associated with a FST
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FST T = <Σ1, Σ2, Q, i, F, E>

First projection
P1(T) <Σ1, Q, i, F, EP1> 

EP1 = {(q,a,q’) | (q,a,b,q’) ∈ E}

Second projection
P2(T) <Σ2, Q, i, F, EP2> 

EP2 = {(q,b,q’) | (q,a,b,q’) ∈ E}

FST 9

Projections of a FST
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FST are closed under
union

invertion
example: Td3-1 is equivalent to multiply by 

3

composition
example : Td9 = Td3  •  Td3

FST are not closed under intersection
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Traverse the FST in all forms compatible 
with the input (using backtracking if 
needed) until reaching a final state and 
generate the corresponding output

Consider input as a FSA and compute the 
intersection of the FSA and the FST

Application of a FST
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Not all FST are determinizable, if it is the 
case they are named subsequential 

The non deterministic FST is equivalent to 
the deterministic one

0

1

2

a/b

0

a/c

h/h

e/e

0 1 2

a/ε h/bh

e/ce

Determinization of a FST
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Aplications of FSA(and FST)
  Increasing use in NLP 

Morphology
Phonology
Lexical generation
ASR (Automatic Speech Recognition)
POS tagging
Simplification of Grammars
Information Extraction
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• Why FSA (and FST)?  
• Temporal and spatial efficiency 
• Some FSA can be determined and 

optimized for leading to more compact 
representations

• Possibility to be used in cascade form
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