Regular expressions and automata

Introduction
Finite State Automaton (FSA)
Finite State Transducers (FST)

Regular expressions

Standard notation for characterizing text sequences
Specifying text strings:

- Web search: woodchuck
(with an optional final s) (lower/upper case)
- Computation of frequencies
- Word-processing (Word, Emacs,Perl)

Regular expressions (REs)

A RE formula is a special language (an algebraic notation) to specify simple classes of strings: a sequence of symbols (i.e, alphanumeric characters).
woodchucks, a, song,!,Mary says
REs are used to

- Specify search strings - to define a pattern to search through a corpus
- Define a language

Regular expressions

- Basically they are combinations of simple units (character or strings) with connectives as concatenation, disjunction, option, kleene star, etc.
- Used in languages as Perl or Python and Unix commands as grep, replace,...

Regular expressions and automata

- Regular expressions can be implemented by the finite-state automaton.
- Finite State Automaton (FSA) a significant tool of computational lingusitics. They are related to other computational tools:
- Finite State Transducers (FST)
- N-gram
- Hidden Markov Models

Regular expressions (REs)

- Case sensitive: woodchucks different from Woodchucks
- [] means disjuntion
[Ww]oodchucks
[1234567890] (any digit)
[A-Z] an uppercase letter
- [^^] means cannot be [^A-Z] not an uppercase letter [^Ss] neither 'S' nor 's'

Regular expressions

- ? means preceding character or nothing Woodchucks? means Woodchucks or Woodchuck colou?r color or colour
- * (kleene star)- zero or more occurrences of the immediately previous character
a* any string or zero or more as (a,aa, hello)
[0-9][0-9]* - any integer
- + one or more occurrences
[0-9]+

Regular expressions

- Disjunction operator | cat|dog
- There are other more complex operators
- Operator precedence hierarchy
- Very useful in substitutions (i.e. Dialogue)

Regular expressions Useful to write patterns:

Examples of substitutions in dialogue User: Men are all alike
ELIZA: IN WHAT WAY
s/.*all.*/ IN WHAT WAY

User: They're always bugging us about something ELIZA: CAN YOU THINK OF A SPECIFIC EXAMPLE s/*always.*/ CAN YOU THINK OF A SPECIFIC EXAMPLE

Regular expressions

- Acronym detection

patterns acrophile

$$
\begin{aligned}
& \text { acrol = re.compile('^([A-Z][,\.-/_])+\$') } \\
& \text { acro2 } \left.=\text { re.compile(}{ }^{\prime} \text { (}([A-Z])+\$^{\prime}\right) \\
& \text { acro3 } \left.=\text { re.compile(}{ }^{\wedge} \backslash d^{*}[A-Z](\backslash d[A-Z]) * \$ '\right) \\
& \text { acro4 }=\text { re.compile('^[A-Z][A-Z][A-Z]+[A-Za-Z]+\$') } \\
& \text { acro5 }=\text { re.compile('^[A-Z][A-Z]+[A-Za-z]+[A-Z]+\$') } \\
& \text { acro6 }=\text { re.compile('^([A-Z][,\.-/_])\{2,9\}(\'s|s)?\$') } \\
& \text { acro7 }=\text { re.compile('^[A-Z]\{2,9\}(\'s|s)?\$') } \\
& \text { acro8 = re.compile('^[A-Z]*|d[-_]?[A-Z]+\$') } \\
& \text { acro9 }=\text { re.compile('^[A-Z]+[A-Za-z]+[A-Z]+\$') } \\
& \text { acro10 }=\text { re.compile('^[A-Z]+[/-][A-Z]+\$') }
\end{aligned}
$$

Some readings

```
Kenneth R. Beesley and Lauri Karttunen,
Finite State Morphology, CSLI
Publications, }200
Roche and Schabes }199
Finite-State Language Processing. 1997.
MIT Press, Cambridge, Massachusetts.
References to Finite-State Methods in
Natural Language Processing
http://www.cis.upenn.edu/~cis639/docs/fs
refs.html
```


Some toolbox

ATT FSM tools
http://www2.research.att.com/~fsmtools/f sm/
Beesley, Kartunnen book http://www.stanford.edu/~laurik/fsmbook/ home.html
Carmel http://www.isi.edu/licensed-sw/carmel/
Dan Colish's PyFSA (Python FSA) https: //github.com/dcolish/PyFSA

Equivalence

Regular Expressions Regular Languages

Finite State Automaton

Formal Languages

Regular Languages (RL)

Alphabet (vocabulary) Σ
Concatenation operation Σ^{*} strings over Σ (free monoid)
Language $\mathrm{L} \subseteq \Sigma^{*}$
Languages and grammars
$\mathrm{L}, \mathrm{L}_{1}$ y L_{2} are languages
operations
concatenation

$$
L_{1} \cdot L_{2}=\left\{u \cdot v \mid u \in L_{1} \wedge v \in L_{2}\right\}
$$

union

$$
L_{1} \cup L_{2}=\left\{u \mid u \in L_{1} \vee u \in L_{2}\right\}
$$

intersection

$$
L_{1} \cap L_{2}=\left\{u \mid u \in L_{1} \wedge u \in L_{2}\right\}
$$

difference

$$
L_{1}-L_{2}=\left\{u \mid u \in L_{1} \wedge u \notin L_{2}\right\}
$$

$$
\bar{L}=\Sigma-L
$$

Finite State Automata (FSA)

$<\Sigma, \mathrm{Q}, \mathrm{i}, \mathrm{F}, \mathrm{E}>$
Σ
Q
$i \in Q$
$\mathrm{F} \subseteq \mathrm{Q}$
$\mathrm{E} \subseteq \mathrm{Q} \times(\Sigma \cup\{\varepsilon\}) \times \mathrm{Q}$
E: $\left\{d \mid d: Q \times(\Sigma \cup\{\varepsilon\}) \rightarrow 2^{\text {º }}\right\}$
alphabet
finite set of states
initial state
final states set
arc set
transitions set

Example 1: Recognizes multiple of 2 codified in binary

Examples of numbers recognized 0
10 (2 in decimal)
100 (4 in decimal)
110 (6 in decimal)

State 0:
 The string recognized till now ends with 0
 State 1:
 The string
 recognized till now ends with 1

Example 2: Recognizes multiple of 3 codified in binary

State 0: The string recognized till now is multiple of 3
State 1: The string recognized till now is multiple of $3+1$
State 2: The string recognized till now is multiple of $3+2$
The transition from a state to the following multiplies by 2 the current string and adds to it the current tag

Tabular representation of the FSA

	0	1
0	0	1
1	2	0
2	1	2

Recognizes multiple of 3 codified in binary

Properties of regular languages(RL) and FSA

Let A a FSA
$\mathrm{L}(\mathrm{A})$ is the language generated (recognized) by A
The class of RL (o FSA) is closed under
union
intersection
concatenation
complement
Kleene $\operatorname{star}\left(\mathrm{A}^{*}\right)$
FSA can be determined
FSA can be minimized

The following properties of FSA are decidible $w \in L(A)$?
$L(A)=\varnothing$?
$L(A)=\Sigma^{*}$?
$L\left(A_{1}\right) \subseteq L\left(A_{2}\right)$?
$L\left(A_{1}\right)=L\left(A_{2}\right)$?
Only the first two are for context free grammars (CFG), the most used grammars

Example of the use of closure properties

Let S the FSA:
Representation of the sentence with POS tags

Restrictions (negative rules)

FSA
C_{1}

FSA

C_{2}
We are interested on

$$
\begin{aligned}
& \mathrm{S}-\left(\Sigma^{*} \cdot \mathrm{C} 1 \cdot \Sigma^{*}\right)-\left(\Sigma^{*} \cdot \mathrm{C} 2 \cdot \Sigma^{*}\right)= \\
& \mathrm{S}-\left(\Sigma^{*} \cdot(\mathrm{C} 1 \cup \mathrm{C} 2) \cdot \Sigma^{*}\right)
\end{aligned}
$$

From the union of negative rules we can build a Negative grammar $\left.G=\Sigma^{*} \cdot(\mathrm{C} 1 \cup \mathrm{C} 2 \cup \ldots \cup \mathrm{Cn}) \cdot \Sigma^{*}\right)$

The difference between the two FSA S -G will result on:

Most of the ambiguities have been solved

Finite State Transducers (FST)

$<\Sigma_{1}, \Sigma_{2}, \mathrm{Q}, \mathrm{i}, \mathrm{F}, \mathrm{E}>$
Σ_{1}
Σ_{2}
frequently $\Sigma_{1}=\Sigma_{2}=\Sigma$
Q
$\mathrm{i} \in \mathrm{Q}$
$\mathrm{F} \subseteq \mathrm{Q}$
$\mathrm{E} \subseteq \mathrm{Q} \times\left(\Sigma_{1}{ }^{*} \times \Sigma_{2}{ }^{*}\right) \times \mathrm{Q}$
input alphabet
output alphabet
finite states set initial state final states set arcs set

Example 3

Td3: division by 3 of a binary string $\Sigma_{1}=\Sigma_{2}=\Sigma=\{0,1\}$

NLP FS Models

Example 3

input	output
0	0
11	01
110	010
1001	0011
1100	0100
1111	0101
10010	00110

> Td3: division by 3 of a binary string $\Sigma_{1}=\Sigma_{2}=\Sigma=\{0,1\}$

State 1:
Recognized: 3k+1 Emited : k

invariant:

emited * $3+1$
$=$ Recognized

State 2:
Recognized: 3k+2
Emited : k
emited * $3+2=$ Recognized

state 0:		consums:	0
Recognized:		emits:	0
Emited:	k	recognized:	$3 * \mathrm{k} 2=6 \mathrm{k}$
		emited:	$\mathrm{k}^{*} 2=2 \mathrm{k}$

State 0
satisfies invariant

consums:	1
emits:	0
recognized:	$3 * k^{*} 2+1=6 \mathrm{k}+1$
emited:	$\mathrm{k}^{*} 2=2 \mathrm{k}$

State 1
satisfies invariant

consums:	1
emits:	1
recognized:	$(3 k+1) * 2+1=6 k+3$
emited:	$k * 2+1=2 k+1$

State 0
 satisfies invariant

state 2:	
recognized:	$3 \mathrm{k}+2$
emited:	k

State 1
 satisfies invariant

emits:
recognized: $\quad(3 k+2) * 2=6 k+4$ emited: $\quad k * 2+1=2 k+1$

State 2

satisfies invariant

FSA associated with a FST

FST $<\Sigma_{1}, \Sigma_{2}, \mathrm{Q}, \mathrm{i}, \mathrm{F}, \mathrm{E}>$

FSA $<\Sigma, \mathrm{Q}, \mathrm{i}, \mathrm{F}, \mathrm{E}^{\prime}>$

$$
\Sigma=\Sigma_{1} \times \Sigma_{2}
$$

$\left(q_{1},(a, b), q_{2}\right) \in E^{\prime} \Leftrightarrow\left(q_{1}, a, b, q_{2}\right) \in E$

FST,

Projections of a FST

$$
\text { FST T }=\left\langle\Sigma_{1}, \Sigma_{2}, \mathrm{Q}, \mathrm{i}, \mathrm{~F}, \mathrm{E}\right\rangle
$$

First projection

$$
\begin{aligned}
& P_{1}(T)<\Sigma_{1}, Q, i, F, E_{P_{1}}> \\
& E_{p_{1}}=\left\{\left(q, a, q^{\prime}\right) \mid\left(q, a, b, q^{\prime}\right) \in E\right\}
\end{aligned}
$$

Second projection

$$
\begin{aligned}
& \left.P_{2}(T)<\Sigma_{2}, \mathrm{Q}, \mathrm{i}, \mathrm{~F}, \mathrm{E}_{\mathrm{p} 2}\right\rangle \\
& \mathrm{E}_{\mathrm{p} 2}=\left\{\left(q, b, q^{\prime}\right) \mid\left(q, a, b, q^{\prime}\right) \in \mathrm{E}\right\}
\end{aligned}
$$

FST are closed under union invertion
example: Td^{-1} is equivalent to multiply by 3
composition
example : Td9 = Td3 • Td3

FST are not closed under intersection

Application of a FST

Traverse the FST in all forms compatible with the input (using backtracking if needed) until reaching a final state and generate the corresponding output

Consider input as a FSA and compute the intersection of the FSA and the FST

Determinization of a FST

Not all FST are determinizable, if it is the case they are named subsequential
The non deterministic FST is equivalent to the determinístic one

Aplications of FSA(and FST)

Increasing use in NLP
Morphology
Phonology
Lexical generation
ASR (Automatic Speech Recognition)
POS tagging
Simplification of Grammars
Information Extraction

- Why FSA (and FST)?
- Temporal and spatial efficiency
- Some FSA can be determined and optimized for leading to more compact representations
- Possibility to be used in cascade form

