
NLP FS Models 1

Regular expressions and 
automata

Introduction 
Finite State Automaton (FSA)
Finite State Transducers (FST)



NLP FS Models 2

Regular expressions

Standard notation for characterizing text 
sequences
Specifying text strings:
  Web search: woodchuck 
   (with an optional final s) (lower/upper case)
  Computation of frequencies
  Word-processing (Word, Emacs,Perl)



NLP FS Models 3

Regular expressions (REs)

A RE formula  is a special language (an 
algebraic notation) to specify simple classes 
of strings: a sequence of symbols (i.e, 
alphanumeric characters).
     woodchucks, a, song,!,Mary says
REs are used to

– Specify  search strings - to define a 
pattern to search through a corpus

– Define a language



NLP FS Models 4

• Basically they are combinations of simple 
units (character or strings) with 
connectives as concatenation, 
disjunction, option, kleene star, etc.

• Used in languages as Perl or Python and 
Unix commands as  grep, replace,...

Regular expressions



NLP FS Models 5

Regular expressions and 
automata

 Regular expressions can be implemented by 
the finite-state automaton. 
 Finite State Automaton  (FSA) a significant 
tool of computational lingusitics. They are 
related to other computational tools:
  - Finite State Transducers (FST)
  - N-gram
  - Hidden Markov Models
  



NLP FS Models 6

Regular expressions (REs)

- Case sensitive: woodchucks different from 
Woodchucks
- [] means disjuntion       
[Ww]oodchucks  
[1234567890] (any digit)
[A-Z] an uppercase letter
- [^] means cannot be
  [^A-Z] not an uppercase letter
  [^Ss] neither 'S' nor 's'



NLP FS Models 7

Regular expressions

- ? means preceding character or nothing       
Woodchucks? means  Woodchucks or Woodchuck

colou?r color or colour
- * (kleene star)- zero or more occurrences 
of the immediately previous character 
  a* any string or zero or more as (a,aa, hello)
[0-9][0-9]* - any integer
- + one or more occurrences
[0-9]+



NLP FS Models 8

Regular expressions

- Disjunction operator |     cat|dog
- There are other more complex operators
- Operator precedence hierarchy
- Very useful in substitutions (i.e. Dialogue)



NLP FS Models 9

Regular expressions
Useful to write patterns:

Examples of substitutions in dialogue
User: Men are all alike

ELIZA: IN WHAT WAY

                                    s/.*all.*/ IN WHAT WAY

 User: They're always bugging us about something 

 ELIZA: CAN YOU THINK OF A SPECIFIC EXAMPLE 

 s/*always.*/ CAN YOU THINK OF A SPECIFIC EXAMPLE



NLP FS Models 10

- Acronym detection
patterns acrophile

acro1 = re.compile('^([A-Z][,\.-/_])+$')

acro2 = re.compile('^([A-Z])+$')

acro3 = re.compile('^\d*[A-Z](\d[A-Z])*$')

acro4 = re.compile('^[A-Z][A-Z][A-Z]+[A-Za-z]+$')

acro5 = re.compile('^[A-Z][A-Z]+[A-Za-z]+[A-Z]+$')

acro6 = re.compile('^([A-Z][,\.-/_]){2,9}(\'s|s)?$')

acro7 = re.compile('^[A-Z]{2,9}(\'s|s)?$')

acro8 = re.compile('^[A-Z]*\d[-_]?[A-Z]+$')

acro9 = re.compile('^[A-Z]+[A-Za-z]+[A-Z]+$')

acro10 = re.compile('^[A-Z]+[/-][A-Z]+$')

Regular expressions



NLP FS Models 11

Kenneth R. Beesley and Lauri Karttunen, 
Finite State Morphology, CSLI 
Publications, 2003

Roche and Schabes 1997
Finite-State Language Processing. 1997. 
MIT Press, Cambridge, Massachusetts.

References to Finite-State Methods in 
Natural Language Processing
http://www.cis.upenn.edu/~cis639/docs/fs
refs.html

Some readings



NLP FS Models 12

ATT FSM tools
http://www2.research.att.com/~fsmtools/f
sm/

Beesley, Kartunnen book 
http://www.stanford.edu/~laurik/fsmbook/
home.html

Carmel
http://www.isi.edu/licensed-sw/carmel/

Dan Colish's PyFSA (Python FSA)
https: //github.com/dcolish/PyFSA

Some toolbox



NLP FS Models 13

Regular  Expressions

Regular Languages

Finite State Automaton

Equivalence



NLP FS Models 14

Alphabet (vocabulary) Σ
Concatenation operation
Σ* strings over Σ (free monoid)
Language L ⊆ Σ* 
Languages and grammars

Formal Languages

Regular Languages (RL)



NLP FS Models 15

L, L1 y L2 are languages

operations
concatenation

union

intersection

difference

complement

L1⋅L2={u⋅v∣u∈L1∧v∈L2 }

L1∪L2={u∣u∈L1∨u∈L2 }

L1∩L2={u∣u∈L1∧u∈L2 }

L1−L2={u∣u∈L1∧u∉L2}

L=Σ−L



NLP FS Models 16

<Σ, Q, i, F, E> 
Σ alphabet
Q finite set of states
i ∈ Q initial state
F ⊆ Q final states set
E ⊆ Q × (Σ  ∪  {ε}) × Q arc set
E: {d | d: Q × (Σ  ∪  {ε})  → 2Q} transitions set

Finite State Automata (FSA)



NLP FS Models 17

Example 1: Recognizes multiple of 2 codified in binary

0 1

0

1

0

1
State 0:
The string 
recognized till now 
ends with 0

State 1:
The string 
recognized till now 
ends with 1

Examples of numbers recognized
0   
10  (2 in decimal)
100 (4 in decimal)
110 (6 in decimal)



NLP FS Models 18

0 1 2

0 1

1 0

1 0

Example 2: Recognizes multiple of 3 codified in binary

State 0: The string recognized till now is multiple of 3
State 1: The string recognized till now is multiple of 3 + 1
State 2: The string recognized till now is multiple of 3 + 2

The transition from a state to the following  multiplies by 
2 the current string and adds to it  the current tag



NLP FS Models 19

0 1 2

0 1

1 0

1 0

Recognizes multiple of 3 codified in binary

Tabular representation of the FSA

0 1

0 0 1

1 2 0

2 1 2



NLP FS Models 20

Properties of regular languages(RL) and FSA
Let A a FSA

L(A) is the language generated (recognized) by A

The class of RL (o FSA) is closed under
union

intersection

concatenation

complement

Kleene star(A*)

FSA can be determined

FSA can be minimized



NLP FS Models 21

The following properties of FSA are decidible
w ∈ L(A) ?

L(A) = ∅ ?

L(A) = Σ* ?

L(A1) ⊆ L(A2) ?

L(A1) = L(A2) ?

Only the first two are for context free 
grammars (CFG), the most used grammars



NLP FS Models 22

Representation of the Lexicon that

Pro

Conj

Det                                                         Pro

     he       Pro    hopes     N      that     Conj       this    Det    works    
N

                                      V                 Det                 Pro                V

Let S the FSA:
Representation of the sentence with POS tags

Example of  the use of closure  properties



NLP FS Models 23

that     Det     this     
Det

Restrictions (negative rules)

FSA  
C1

FSA  
C2

that     Det      ?         V

We are interested on  
S - (Σ* • C1 • Σ*) - (Σ* • C2 • Σ*)  = 
S - (Σ* • ( C1 ∪ C2) • Σ*)



NLP FS Models 24

From the union of negative rules we can build a
Negative grammar G = Σ* • ( C1 ∪ C2 ∪ … ∪  Cn) • Σ*)

this     Det       ?         V

?       Pro       ?             N

           Det    this       Det
that

Pro

Pro



NLP FS Models 25

he       Pro    hopes     V       that     Conj     this      Pro   
works     V

Det   works   
N

The difference between the two FSA  S -G will result on:

Most of the ambiguities have been solved



NLP FS Models 26

<Σ1, Σ2, Q, i, F, E> 
Σ1 input alphabet
Σ2 output alphabet

frequently Σ1 = Σ2 = Σ 

Q finite states set
i ∈ Q initial state
F ⊆ Q final states set
E ⊆ Q × (Σ1* ×  Σ2 *) × Q arcs set

Finite State Transducers (FST)



NLP FS Models 27

0 1 2

0/0 1/1

1/0 0/0

1/1 0/1

Td3: division by 3 of a binary string
Σ1 = Σ2 = Σ ={0,1}

Example 3



NLP FS Models 28

0 1 2

0/0 1/1

1/0 0/0

1/1 0/1

input output
0 0
11 01
110 010
1001 0011
1100 0100
1111 0101
10010 00110

Example 3

Td3: division by 3 of a binary string
Σ1 = Σ2 = Σ ={0,1}



NLP FS Models 29

0 1 2

0/0 1/1

1/0 0/0

1/1 0/1

State 0:
Recognized: 3k
Emited: k

State 1:
Recognized : 3k+1
Emited : k

State 2:
Recognized : 3k+2
Emited : k

invariant:
emited * 3 = 
Recognized

invariant:
emited * 3  + 1 
= Recognized

invariant:
emited * 3 + 2 = 
Recognized



NLP FS Models 30

0 1 2

0/0 1/1

1/0 0/0

1/1 0/1

state 0:
Recognized: 3k
Emited: k

consums: 0
emits: 0
recognized: 3*k*2 = 6k
emited: k*2 = 2k 

consums: 1
emits: 0
recognized: 3*k*2 + 1= 6k + 1
emited: k*2 = 2k 

State 0
satisfies invariant

State 1
satisfies invariant



NLP FS Models 31

0 1 2

0/0 1/1

1/0 0/0

1/1 0/1

consums: 0
emits: 0
recognized: (3k+1)*2 = 6k + 2
Emited:  k*2 = 2k 

consums: 1
emits: 1
recognized: (3k+1)*2 + 1= 6k + 3
emited: k*2 + 1 = 2k + 1

State 2
satisfies invariant

State 0
satisfies invariant

state 1:
recognized: 3k+1
emited: k



NLP FS Models 32

0 1 2

0/0 1/1

1/0 0/0

1/1 0/1

consums: 0
emits: 1
recognized: (3k+2)*2 = 6k + 4
emited: k*2 + 1 = 2k + 1

consums: 1
emits: 1
recognized: (3k+2)*2 + 1= 6k + 5
emited: k*2 + 1 = 2k + 1

State 1
satisfies invariant

State 2
satisfies invariant

state 2:
recognized: 3k+2
emited: k



NLP FS Models 33

FST <Σ1, Σ2, Q, i, F, E> 

FSA <Σ, Q, i, F, E’> 

Σ = Σ1 × Σ2 

(q1, (a,b), q2) ∈ E’ ⇔ (q1, a, b, q2) ∈ E 

FSA associated with a FST



NLP FS Models 34

FST T = <Σ1, Σ2, Q, i, F, E>

First projection
P1(T) <Σ1, Q, i, F, EP1> 

EP1 = {(q,a,q’) | (q,a,b,q’) ∈ E}

Second projection
P2(T) <Σ2, Q, i, F, EP2> 

EP2 = {(q,b,q’) | (q,a,b,q’) ∈ E}

FST 9

Projections of a FST



NLP FS Models 35

FST are closed under
union

invertion
example: Td3-1 is equivalent to multiply by 

3

composition
example : Td9 = Td3  •  Td3

FST are not closed under intersection



NLP FS Models 36

Traverse the FST in all forms compatible 
with the input (using backtracking if 
needed) until reaching a final state and 
generate the corresponding output

Consider input as a FSA and compute the 
intersection of the FSA and the FST

Application of a FST



NLP FS Models 37

Not all FST are determinizable, if it is the 
case they are named subsequential 

The non deterministic FST is equivalent to 
the deterministic one

0

1

2

a/b

0

a/c

h/h

e/e

0 1 2

a/ε h/bh

e/ce

Determinization of a FST



NLP FS Models 38

Aplications of FSA(and FST)
  Increasing use in NLP 

Morphology
Phonology
Lexical generation
ASR (Automatic Speech Recognition)
POS tagging
Simplification of Grammars
Information Extraction



NLP FS Models 39

• Why FSA (and FST)?  
• Temporal and spatial efficiency 
• Some FSA can be determined and 

optimized for leading to more compact 
representations

• Possibility to be used in cascade form


	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39

