
PLN Curs 2011-2012 Partial exam

A possible solution is the following:

Recent works have been focused on the increasing relevance of the
social networks in the public image of politicians and political parties.
Several of them have been focused on the opinion on candidates to
presidency and on how this opinion changes.

We are planning to develop an application accessing a set of tweets
containing the name of a specific politician and for each tweet
determine if it is about the politician and if it is positive or negative.
That is, the application input will be the name of a politician and his
web page URL address, the output will be the tweets referred to the
politician, indicating for each of them, if the politician valoration is
positive or negative.

The problem is not simple, it presents several challenges. First, a
name may identify more than one person, as in the following
examples. Georges Bush is the name of previous president of the
USA, but also his father's name. Clinton is the name of the Secretary
of State in USA, Hillary, but also the name of the ex-president Bill.
Zapatero is the name of the previous president of Spain, but is also
the name of a profession (shoes maker).

Tweets also present several difficulties when applying natural
language tools because text in them is very short, usually without
capital letters, with lots of abbreviations, colloquial forms and special
characters, such as emoticons.

 Figure 1 presents several examples of Tweets. Twitter include
additional meta-information that can be useful, such as the identifier,
author and date.

Figura 1: Examples of tweets

We ask you:
1. A list with main problems the processing of tweeds present, the

previous introduction presents several of the problems, you
have to complete them.

Answer:
Several of the most relevant problems are the following:

• Use of emoticons: :), :D
• Use of abbreviations: bck
• Repeating vocals: Yeeeeew, tooooo
• Onomatopoeia: aaaakh
• Colloquial forms Mum, Guna, asap
• New words (generated from combination of previous):tryna,

tonite
• Irregular use of : !, ! !, …, -
• Codes used as words b-4, @user2, <333, ºº
• Interjections not use in formal text Yeeeeew
• Most sentences have mistakes
• Specific writing for proper names:milan, PARIS-MILAN-ISTAMBUL
• Many tweets are continuations of previous tweets.

2. A representation in UML formalism of the main domain and
application concepts

 Answer:

PERSONA

METAINF_PERSONA

ITEM_PERSONA

NOM_PERSONA
Completo
Tratamiento
Nombre
Apellido1
Apellido2
Prefijo
Infijo1
Infijo2
Sufijo

TWEETMETAINF_ TWEET

ITEM_ TWEET

DOCUMENTO

…

FECHA_ TWEET AUTOR_ TWEET TEXTO_ TWEET

DOCUMENTO_TEXTUAL

TWEETER

TEXTO_TOKENIZADO

TEXTO_ TWEET_TOKENIZADO
TOKEN

TOKENIZADOR

TOKENIZADOR_TWEETS

NAMED_ENTITY

NOMBRE_PERSONAANALIZADOR_NOMBRES_PERSONA

ANALIZADOR_POLARIDAD_TEXTO

NER NEC

ANA_MORFO

POS_TAGGER

TEXTO_MORFO

TEXTO_TAGGED

PERSONA

METAINF_PERSONA

ITEM_PERSONA

NOM_PERSONA
Completo
Tratamiento
Nombre
Apellido1
Apellido2
Prefijo
Infijo1
Infijo2
Sufijo

NOM_PERSONA
Completo
Tratamiento
Nombre
Apellido1
Apellido2
Prefijo
Infijo1
Infijo2
Sufijo

TWEETMETAINF_ TWEET

ITEM_ TWEET

DOCUMENTO

…

FECHA_ TWEET AUTOR_ TWEET TEXTO_ TWEET

DOCUMENTO_TEXTUAL

TWEETER

TEXTO_TOKENIZADO

TEXTO_ TWEET_TOKENIZADO
TOKEN

TOKENIZADOR

TOKENIZADOR_TWEETS

NAMED_ENTITY

NOMBRE_PERSONAANALIZADOR_NOMBRES_PERSONA

ANALIZADOR_POLARIDAD_TEXTO

NER NEC

ANA_MORFO

POS_TAGGER

TEXTO_MORFO

TEXTO_TAGGED

We have represented the class PERSONA(PERSON) having the meta-
information , METAINF_PERSONA that contains ITEM_PERSONA,
being one of the items NOM_PERSONA (NAME_persona). Nom_persona
is described by a set of attributes: complete_name, title (tratamiento),
first name (nombre), last name (Apellido 1), etc.

We have represented the class TWEETER that consists of a collection
of TWEETs. Each TWEET includes meta-information
(METAINF_TWEET) that consists of the author (AUTOR_TWEET), the
date (FECHA_TWEET) and the text (TEXTO_TWEET). TWEET is a
subclass of the class DOCUMENTO (DOCUMENT). TEXTO_TWEET (the
text of the tweet) is a subclass of the class DOCUMENTO_TEXTUAL
(TEXTUAL_DOCUMENT).

The class PERSONA (PERSON) has associated a collection of elements
in class TWEET, that consist of tweets containing its name.

We have also represented a several processors involved in the
analysis of tweet text. First step in the text processing is called
tokenization and consists of segmenting the text (belonging to the
class DOCUMENTO_TEXTUAL) into words and sentences. This process
is done by a tool belonging to the class TOKENIZADOR (tokenizer)
and the resulting text belongs to the class TEXTO_TOKENIZADO
(tokenized text). Probably, conventional tokenizer could not be
applied and a specific tokenizer for tweeds will have to be developed.
For this reason, we have defined the subclass TOKENIZADOR_TWEETS
(TWEET-TOKENIZER) that tokenizes instances of the class
TEXTO_TWEET (TWEET-TEXT), resulting instances of the class
TEXTO_TWEET_TOKENIZADO (TOKENIZED-TWEET-TEXT). This specific
tokenizor for tweets will not deal with the task of segmenting the text
in sentences because tweets usually consists of only one sentence
(maxim length is 140 characters).

The class TEXTO_TOKENIZADO (TOKENIZED-TEXT) includes elements
of the class TOKEN. An specialization (subclass) of the class TOKEN is
NAMED_ENTITY. The task of detecting names and organizations is
called named entity detection. This process is performed by a Named
Entity Recognizer (NER), that takes as input a token and determines if
it is a named entity. The processor that determines the name entity
class is a Named Entity Classifier (NEC), that takes as input a named
entity. For this application a named entity recognizer for person
names have to be included in order to recognize the politician name.

Second step involved in the text processing consists of performing
morphological parsing (or analysis), that is the process of finding the
constituent morphemes in a word (e.g., cat +N,+PL, for cats). This
process is perform by morphological parsers (morphological
analyzers). This processor has been represented by the class

ANA_MORFO, that transform instances of the class
TEXTO_TOKENIZADO (TOKENIZED-TEXT) in instances of the class
TEXTO_MORFO (MORPHO_TEXT, representing the text in which the
several morphemes of the words have been analyzed).

The following step in the text processing consists of assigning words
the syntactic category (part of speech) category. This task is
performed by taggers, represented by the class POS_TAGGER, that
takes as input the output of previous step (resulting of the
morphological parsing). That is, the processor represented by the
class POS_TAGGER transform instances of the class TEXTO_MORFO
(MORPHO_TEXT) in instances of the class TAGGED_TEXT.

In fact, the morphological parser and the tagger are only needed by
the Named Entity Recognizer (NER) and Named Entity Classifier
(NEC), for obtaining the politician name.

The following steps, syntactic analysis and semantic analysis are not
necessary for this application. They would not be easy to develop,
either. What is also really needed is a processor capable to detect the
teed polarity (if the opinion contained is positive or negative).

3. You have to propose an architecture of the application,
indicating data structures and linguistic processors.

Answer

The functionality of the application will be the following: The user
introduces the complete name of the politician and the URL address
of the web page containing his description. Using the information in
this web page the personal data is completed (nationality, date and
place of birth, etc.) and alternative names (i.e., Nike names). Then, a
set of tweets about the politician will be collected.

Entrada del nombre y la URL

Compleción de datos de la persona

Obtención de los tweets que mencionen a la persona

Análisis de los tweets

Filtrado de los tweets irrelevantes

Tokenizador NER NEC

Analizador Nombres Persona

Detector de menciones

CorreferenciadorDetector de la polaridad

Focalizador

Ana_morfo POS_tagger

Entrada del nombre y la URL

Compleción de datos de la persona

Obtención de los tweets que mencionen a la persona

Análisis de los tweets

Filtrado de los tweets irrelevantes

Tokenizador NER NEC

Analizador Nombres Persona

Detector de menciones

CorreferenciadorDetector de la polaridad

Focalizador

Ana_morfo POS_tagger

Each of the tweets will then be analyzed, determining the polarity (if
favorable or not). Finally an evaluation of all the tweets analyzed and
their evolution could be presented to the user.

4. Describe the linguistic processors used in previous question:
which knowledge sources will use and how you will get them.

Answer:

Each of the tweets will be analyzed with the following processors:
• Tokenizer. It will be specific for tweets, or at least for

social networks. It will have to distinguish between
alphabetic tokens and the other token (containing other
characters).

• Morphological parser. It will have to include a detector of
emoticons, abbreviations and unknown words. We could
define a grammar of emoticons (it could be represented
by a Finite State Automata (FSA). For detection of
abbreviations, a collection of common abbreviations as
well as a set of rules could be used.

• NER, NEC adapted to the proper names as they appear in
tweets. We will have to consider that capital letters are
not used in most tweeds.

• POS_tagger adapted to tweets. An statistic existing
tagger, as a HMM, could be adapted to tweeds, using
manual tagged tweeds.

• Text segmentators are not appropriate for this
application. Language selector is not needed, either.

In order to detect which tweets are relevant (are about the specific
politician asked) the following processors will be used:

• Detector of mentions . A name entity recognizer of
person names, extended with pronouns.

• Detector of correferences. Any conventional existing one.
• Person names analyzer.
• Focus detector. In order to detect if the tweed refers to

the politician we can use a focus detector that gives a
specific weight to each token representing a person
name. This weight can be directly related to the
frequency

• Polarity detector. In order to detect if the tweed express a
positive or negative opinion, this detector can use two
lists, one containing positive terms and the other negative
terms. If positive terms are more than negative, then the

opinion is positive. Those lists can be obtained from the
web.

5. One of the processors needed is a detector of person names. It
can be built using a finite state automata (FSA): You have to
describe how will you build it.

Answer:

 It is easy to obtain gazetteers containing proper names for women
and men. For each possible name we could built a FSA, calculate
their union, determinize the resulting union and minimize it. As a
result we will have a recognizer of female proper names recognizer
and a male proper name recognizer. Then, from these two
recognizers, we have to build a new one to recognize compound
proper names. Will have to include preposition and articles (‘’, ‘de’,
‘del’, ‘de la’, etc.). Resulting automata could recognize names like
José, José Antonio, José María, María, María José, María de las
Mercedes, etc.). We could include also titles (‘Sr.’, ‘Sra.’, ‘Dr.’, ‘Dra.’,
‘Illmo.’, etc.). Finally, we will have to build an automata to recognize
last names.

