Superficial & Lexical level 1

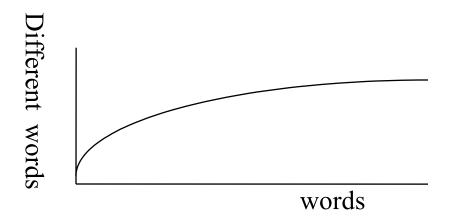
- Superficial level
- What is a word
- Lexical level
- Lexicons
- How to acquire lexical information

- Textual pre-process
 - Getting the document(s)
 - Accessing a BD
 - Accessing the Web (wrappers)
 - Getting the textual fragments of a document
 - Multimedia documents, Web pages, ...
 - Filtering out meta-information
 - tags HTML, XML, ...

- Text segmentation into paragraphs or sentences
- Beeferman et al, 1999 Ratnaparkhi, 1998

- Tokenization
 - orthographic vs grammatical word
 - Multiword terms
 - dates, formulas, acronyms, abbreviations, quantities (and units), idioms,
 - Named entities
 - NER, NEC, NERC
 - Unknown word
- Language identification

Bikel et al, 1999 Borthwick, 1999 Mikheev et al, 1999

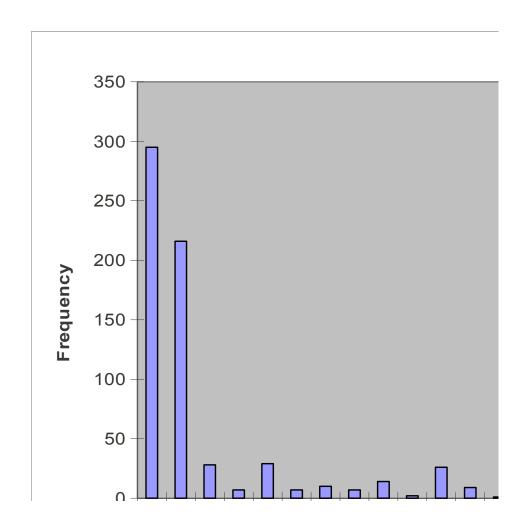

Elworthy, 1999 Adams, Resnik, 1997

- Vocabulary size (V)
 - Heap's Law
 - $V = KN^{\beta}$
 - K depends on the text $10 \le K \le 100$
 - N total number of words

 $\forall \beta$ depends on the language, for English $0.4 \le \beta \le 0.6$

Vocabulary grows sublinealy but does not saturate

 \forall β tends to stabilize for 1Mb of text (150.000w)


- word tokens vs word types
- Statistical distribution of words in a document
 - Obviously non uniform
 - Most common words cover more than 50% of occurrences
 - 50% of the words only occur once
 - ~12% of the document is formed by word occurring less than 4 times.

Zipf law:

We sort the words occurring in a document by their frequency. The product of the frequency of a word (f) by its position (r) is approximatelly constant

$$f = C * 1/r$$

$$C \simeq N/10$$

- Part of Speech (POS)
 - Formal property of a word-type determining its acceptable uses in syntax.
- A POS can be seen as a class of words
- A word-type can own several POS, a word-token only one
- Plain categories
 - open, many elements, neologisms, independent and semantically rich classes
 - N, Adj, Adv, V
- Functional categories
 - closed

Lexicon

- Repository of lexical information for human or computer use
- Two aspects to consider
 - Representation of lexical information
 - Acquisition of lexical information

Lexicon content

- Orthografic Transcription
- Phonetic Transcription
- Flexion model
- diathesis alternations, subcategorization frames
 - LOVE VTR (OBJLIST: SN).
 - LOVE
 - CAT = VERB
 - SUBCAT = \langle SN, SN \rangle

- · POS
- Argument structure
- Semantic information
 - dictionaries => definition
 - lexicons => semantic types predefined in a hierarchy.
- Lexical Relations
 - derivation
- Equivalence with other languages

Problems

- Form
 - attribute/value pairs, binarr or n-ary relations, coded values, open domain values...
- Multiple assignments
 - One to many and many to one relations
 - Contextual dependencies ...
- Facets of features
 - Mandatory or optional, cardinality, default values
- Grading
 - Exact values, preferences, probabilistic assigments.