Statistical Language Models

- Introduction to Language Models
- Noisy Channel model
- Simple Markov Models
- Smoothing

Introduction

- Statistical models of words of sentences language models
- Probability of all possible sequences of words
- Inspired in speech recognition techniques
- Probability of next word based on previous

Probability Theory ${ }_{(\text {(I) }}$

- X be uncertain outcome of some event.
- Represented as a random variable
- $V(X)$ finite number of possible outcome (not a real number)
- $P(X=x)$, probability of the particular outcome $x(x$ belongs $V(X))$
- X desease of your patient, $V(X)$ all possible diseases

Probability Theory ${ }_{(\mathrm{II})}$

Conditional probability of the outcome of an event based upon the outcome of a second event

We pick two words randomly from a book. We know first word is the, we want to know probability second word is dog
$\mathrm{P}\left(\mathrm{W}_{2}=\boldsymbol{d o g} \mid \mathrm{W}_{1}=\right.$ the $)=\mid \mathrm{W}_{1}=$ the, $\mathrm{W}_{2}=\boldsymbol{d o g}|/| \mathrm{W}_{1}=$ the \mid

Bayes's law: $P(x \mid y)=P(x) P(y \mid x) / P(y)$

Probability Theory (iII)

Bayes's law: $P(x \mid y)=P(x) P(y \mid x) / P(y)$

$P($ desease/symptom $)=$
P(desease) P (symptom/desease)/P(symptom)
$P\left(w_{1, n} \mid\right.$ speech signal $)=P\left(w_{1, n}\right) P\left(\right.$ speech signal $\left.\mid w_{1, n}\right) /$ P (speech signal)

We only need to maximize the numerator
$P\left(\right.$ speech signal \| $w_{1, n}$) expresses how well the speech signal fits the sequence of words $\mathrm{w}_{1, \mathrm{n}}$

Statistical Model of a Language

Vocabulary (V), word $w \in V$
Language (L), sentence $s \in L$
$\mathrm{L} \subset \mathrm{V}^{*}$ usually infinite
$\mathrm{s}=\mathrm{W}_{1}, \ldots \mathrm{~W}_{\mathrm{N}}$

- Probability of $\mathrm{s} P(\mathrm{~s})$
- For sequences of words of length n assign a number to $P\left(W_{1, n}=W_{1, n}\right)$, being $W_{1, n}$ a sequence of words

Ngram Model

- Simple but durable statistical model
- Useful to indentify words in noisy, ambigous input.
- Speech recognition, many input speech sounds similar and confusable
- Machine translation, spelling correction, handwriting recognition, predictive text input
- Other NLP tasks: part of speech tagging, NL generation, word similarity

CORPORA

- Corpora (singular corpus) are online collections of text or speech.
- Brown Corpus: 1 million word collection from 500 written texts from different genres (newspaper,novels, academic).
- Punctuation can be treated as words.
- Switchboard corpus: 2430 Telephone conversations averaging 6 minutes each, 240 hour of speech and 3 million words"

Training and Test Sets

- Probabilities of N -gram model come from the corpus it is trained for
- Data in the corpus is divided into training set (or training corpus) and test set (or test corpus).
- Perplexity: compare statistical models

Ngram Model

- How can we compute probabilities of entire sequences

$$
P\left(w_{1}, w_{2}, . ., w_{n}\right)
$$

Descomposition using the chain rule of probability $\mathrm{P}\left(\mathrm{w}_{1}, \mathrm{w}_{2}, . ., \mathrm{w}_{\mathrm{n}}\right)$

$$
=P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) P\left(w_{3} \mid w_{1}, w_{2}\right), \ldots P\left(w_{n} \mid w_{1} . ., w_{n-1}\right)
$$

- Assigns a conditional probability to possible next words considering the history.
- Markov assumption : we can predict the probability of some future unit without looking too far into the past.
- Bigrams only consider previous usint, trigrams, two previous unit, n-grams, n previous unit

Ngram Model

- Assigns a conditional probability to possible next words.Only n1 previous words have effect on the probabilities of next word
- For $\mathrm{n}=3$, Trigrams $\mathrm{P}\left(\mathrm{w}_{\mathrm{n}} \mid \mathrm{w}_{1} . ., \mathrm{w}_{\mathrm{n}-1}\right)=\mathrm{P}\left(\mathrm{w}_{\mathrm{n}} \mid \mathrm{w}_{\mathrm{n}-2}, \mathrm{w}_{\mathrm{n}-1}\right)$
- How we estimate these trigram or N -gram probabilities?

To maximize the likelihood of the training set T given the model M --- $P(T / M)$

- To create the model use training text (corpus), taking counts and normalizing them so they lie between 0 and 1 .

Ngram Model

- For $n=3$, Trigrams

$$
P\left(w_{n} \mid w_{1} . ., w_{n-1}\right)=P\left(w_{n} \mid w_{n-2}, w_{n-1}\right)
$$

- To create the model use training text and record pairs and triples of words that appear in the text and how many times

$$
P\left(w_{i} \mid w_{i-2}, w_{i-1}\right)=C\left(w_{i-2, i}\right) / C\left(w_{i-2, i-1}\right)
$$

$P($ submarine|the, yellow) $=C($ the, yellow, submarine)/C(the,yellow)

Relative frequency: observed frequency of a particular sequence divided by observed fequency of a prefix

Noisy Channel Model

> In language processing the problem is reduced to decode for getting the most likely input given the output

Real Language X

Correct text

Text with errors

We want to retrieve X from Y

We want to retrieve X from Y

Example: ASR Automatic Speech Recognizer

Acoustic chain
word chain

$$
s_{\mathrm{opT}}=\underset{\mathrm{s}}{\operatorname{argmax}} \mathrm{P}(\mathrm{~s} \mid \mathrm{a})=\underset{\mathrm{s}}{\operatorname{argmax}} \mathrm{P}(\mathrm{~s}) \cdot \mathrm{P}(\mathrm{a} \mid \mathrm{s})=\underset{\mathrm{s}}{\operatorname{argmax} \mathrm{P}\left(\mathrm{w}_{1}^{\mathrm{N}}\right)} \cdot \mathrm{P}\left(\mathrm{X}_{1}^{\mathrm{T}} \mid \mathrm{w}_{1}^{\mathrm{H}}\right)
$$

Example: Machine Translation

- Naive Implementation
- Enumerate $s \in L$
- Compute p(s)
- Parameters of the model |ㄴ|
- But ...
- L is usually infinite
- How to estimate the parameters?
- Simplifications
- History
- $h_{i}=\left\{w_{i}, \ldots W_{i-1}\right\}$

$$
P(s)=P\left(w_{1}\right)=\prod_{1=1}^{m} P\left(w_{1} \mid h_{1}\right)
$$

- Markov Models
- Markov Models of order $\mathrm{n}+1$
- $\mathrm{P}\left(\mathrm{w}_{\mathrm{i}} \mid \mathrm{h}_{\mathrm{i}}\right)=\mathrm{P}\left(\mathrm{w}_{\mathrm{i}} \mid \mathrm{w}_{\mathrm{i}-\mathrm{n}+1}, \ldots \mathrm{w}_{\mathrm{i}-1}\right)$
- 0-gram
- 1-grant ${ }^{\forall i} \mathrm{P}\left(\mathrm{w}_{\mathrm{w}}\right)=\frac{1}{|V|}$
- $\mathrm{P}\left(\mathrm{w}_{\mathrm{i}} \mid \mathrm{h}_{\mathrm{i}}\right)=\mathrm{P}\left(\mathrm{w}_{\mathrm{i}}\right)$
- 2-gram
- $P\left(w_{i} \mid h_{i}\right)=P\left(w_{i} \mid w_{i-1}\right)$
- 3-gram
- $\mathrm{P}\left(\mathrm{w}_{\mathrm{i}} \mid \mathrm{h}_{\mathrm{i}}\right)=\mathrm{P}\left(\mathrm{w}_{\mathrm{i}} \mid \mathrm{w}_{\mathrm{i}-2}, \mathrm{w}_{\mathrm{i}-1}\right)$
- n large:
- more context information (more discriminative power)
- n small:
- more cases in the training corpus (more reliable)
- Selecting n :
- ej. for $|\mathrm{V}|=20.000$

2 (bigrams) 400,000,000
3
(trigrams)
8,000,000,000,000

4 (4-grams) 1.6×10^{17}

- Parameters of an n-gram model
- $|\mathrm{V}|^{\mathrm{n}}$
- MLE estimation
- From a training corpus
- Problem of sparseness
- 1-gram Model

$$
P_{M L E}(w)=\frac{C(w)}{|V|}
$$

- 2-gram Model

$$
P_{M L E}\left(w_{i} \mid w_{i-1}\right)=\frac{C\left(w_{i-1} w_{i}\right)}{C\left(w_{i-1}\right)}
$$

- 3-gram Model

$$
P_{M L E}\left(w_{i} \mid w_{i-1}, w_{i-2}\right)=\frac{C\left(w_{i-2} w_{i-1} w_{i}\right)}{C\left(w_{i-2} w_{i-1}\right)}
$$

True probability distribution

The seen cases are overestimated the unseen ones have a null probability

> Save a part of the mass probability from seen cases and assign it to the unseen ones

SMOOTHING

- Some methods perform on the countings:
- Laplace, Lidstone, Jeffreys-Perks
- Some methods perform on the probabilities:
- Held-Out
- Good-Turing
- Descuento
- Some methods combine models
- Linear interpolation
- Back Off

