Welcome to the course!

Introduction to Human Language Technology (HLT)

Professors: Marta Gatius Vila

Jordi Turmo Borras

Hours per week: 3h theory/laboratory

Web page:

http://www.cs.upc.edu/~gatius/engpln201718.html

Main goal

Understand the fundamental concepts of HLT

- Most well-known techniques and theories
- Most relevant existing resources
- Most relevant applications

Welcome to the course!

Introduction to Human Language Technology

Content

- 1. Introduction to Human Language Technology
- 2. Applications
- 3. Resources
- 3. Language models
- 4. Morphology and lexicons
- 5. Syntactic processing
- 6. Semantic processing
- 7. Generation

Welcome to the course!

Introduction to Human Language Technology

Assesment

- End-of-term exam Final exams period- all the course contents
- Development of 2 Programs Groups of two or three students

Course grade = final exam * 0.6 + assigments *0.4

Welcome to the course! Introduction to Human Language Technology

Related (or the same) disciplines:

- Computational Linguistics, CL
- Natural Language Processing, NLP
- Linguistic Engineering, LE
- Human Language Technology, HLT

Human Language Technology

 HLT consists of the application of linguistic knowledge to the development of computer systems able to recognize, understand, interpretate and generate human language in all its forms.

HLT includes:

- Formal models (representations of knowledge of language at the different levels)
- Theories and algorithms
- Techniques and tools
- Resources (Lingware)
- Applications

Linguistic knowledge levels

- Phonetics and phonology. Language models
- Morphology: Meaningful components of words.
 Lexicon
 - doors is plural
- Syntax: Structural relationships between words.
 Grammar
 - an utterance is a question or a statement
- Semantics: Meaning of words and how they combine. Grammar, domain knowledge open the door
- Pragmatics: How language is used to accomplish goals. Domain and Dialogue Knowledge to be polite
- Discourse: How single utterances are structured.
 Dialogue models

Human Language Technology

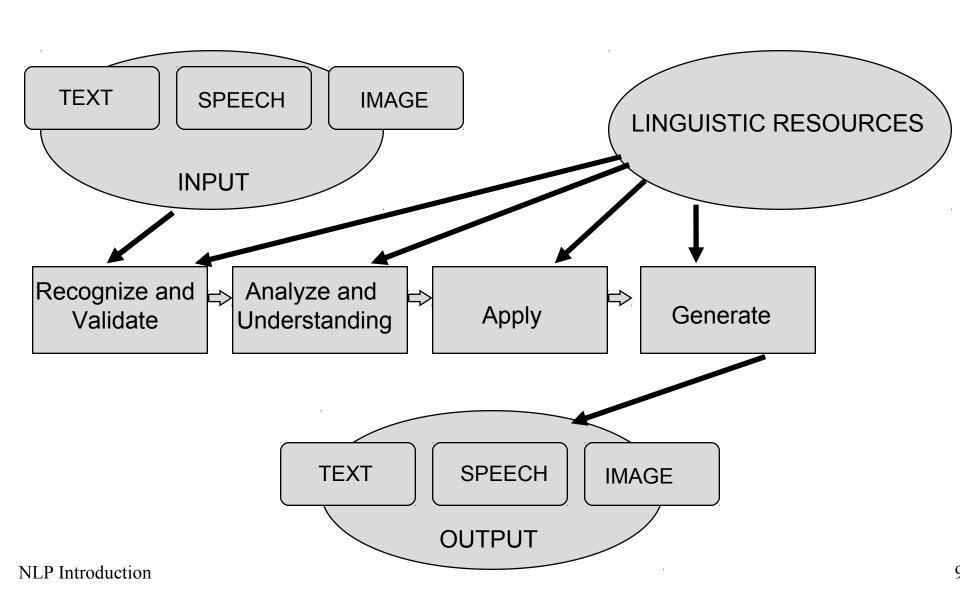
Examples of applications involving language models at those different levels

- Intelligent agents (e.g., HAL from the movie 2001: A space Odyssey)
- Web-based question answers
- Machine translation engines

Foundations of LE lie in:

 Linguistics, Mathematics, Electrical engineering and Phychology

Human Language Technology


Exciting time because of

- The increase of computer resources available
- The rise of the Web (a massive source of information)
- Wireless mobile access
- Intelligent phones

Revolutionary applications are currently in use

- Coversational agents for making travel reservations
- Speech systems for cars
- Cross-language information retrieval and tanslation
- Automate systems to analize students essays

Components of the Technology

This course is focused on Language Understanding

- Different levels of understanding
 - Incremental analysis
 - Shallow and partial analysis
 - Looking for the focus of interest (spotting)
 - In depth analysis of the focus of interest
- Linguistic, statistical, machine learning, hybrid approaches
- Main problems: ambiguity, unseen words, ungrammatical text

- Why HLT is difficult?
 - Language is alive (changing)
 - Ambiguity
 - Complexity
 - Knowledge is imprecise, probabilistic, fuzzy
- World knowledge (common sense) is needed
 - Language is embedded into a system of social interaction

Ambiguity

- Phonetical ambiguity
- Lexical ambiguity
- Syntactic ambiguity
- Semantic ambiguity
- Pragmatic ambiguity.
 References

Resolving ambiguous input

Multiple alternative linguistic structures can be built

-I made her duck

- I cooked waterfowl for her
- I cooked waterfowl belonging to her
- I created the (plaster?) duck she owns
- I caused her to quickly lowed her head or body
- I waved my magic wand and turned her into undifferentiated waterfowl

-Ambiguities in the sentence

- Duck can be noun(waterfowl) or a verb (go down) -> syntactic and semantic ambiguity
- Her can be a dative pronoun or a possessive pronoun -> syntactic ambiguity
- Make can be create or cook -> semantic ambiguity

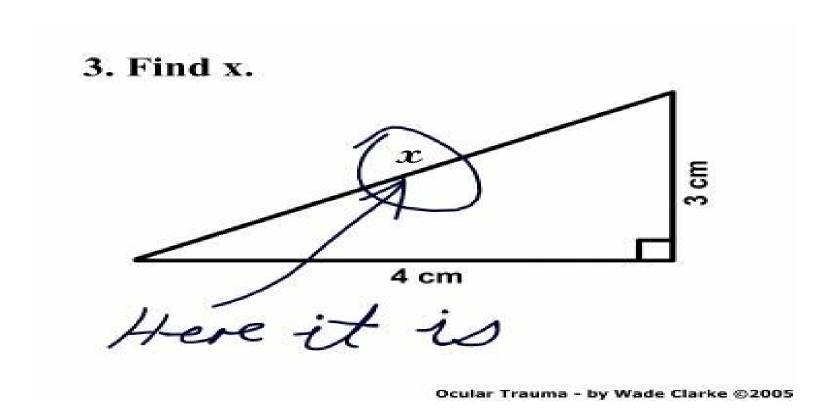
LEXICAL AMBIGUITY

- There are several words that have more than one possible meaning (polysemous)
- Frequent words are more ambiguous

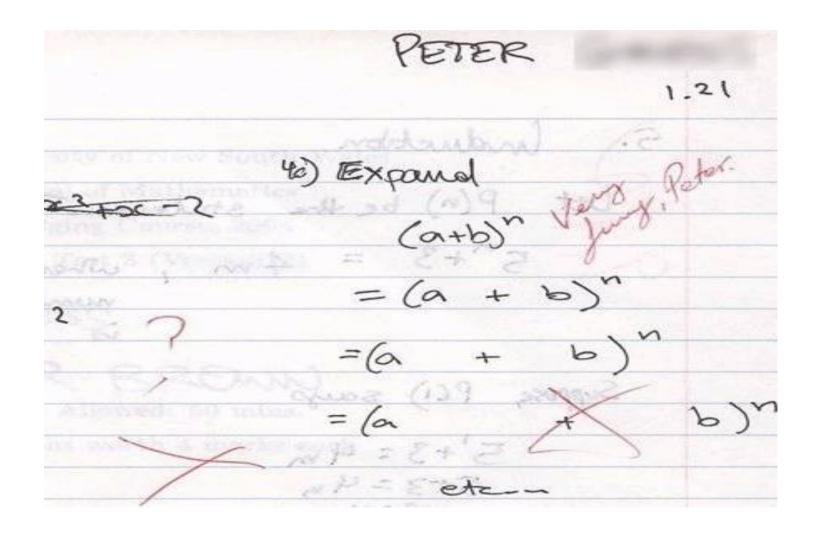
SYNTACTIC AMBIGUITY

- Grammars are usually ambiguous
- Usually, more than one parsed tree is correct for a sentence given a grammar
- Some kind of ambiguity (as ppattachment) is at some level predictable

SEMANTIC AMBIGUITY


 More than one semantic interpretation is possible for a given sentence

- Peter gave a cake to the children
 - One cake for all them?
 - One cake for each?


Pragmatc ambiguity. Reference

- More than one semantic interpretation is possible for a given text. References between sentences.
- Later he asked her to put it above
- Later? When?
 - He?
 - Her?
 - It?
 - Above what?

Pragmatic Ambiguity

Pragmatic Ambiguity(II)

Resolving ambiguous input

- Using models and algorithms
- Using data-driven methods
- Semantic-guided processing
 - Restricting the domain. Considering only the language needed for accessing several services
 - Using context knowledge
 (Shallow or Partial analysis)

Two types of models

- Rationalist model. Noam Chomsky
 - Most of the knowledge needed for NLP can be acquired previously, prescripted and used as initial knowledge for NLP.
- Empiricist model. Zellig Harris
 - Linguistic knowledge can be inferred from the experience, through textual corpora by simple means as the association or the generalization.
 - Firth "We can know a word by the company it owns"

Several formal models and theories:

- State machine
- Rule systems
- Logic
- Ontologies
- Probabilistic models
- Vector space models

State Machines

 Formal models that consist of state, transitions and input representations

- Variations
 - Deterministic/non deterministic
 - Finite-state automata
 - Finite-state transducers

Rule Systems

- Grammar formalisms
 - Regular grammars
 - Context free grammars
 - Feature grammars

- There are probabilistics variants of them
- They are used for phonology, morphology and syntax

Logic

- First order logic (Predicate calculus)
- Related formalism
 - Lambda calculus
 - Feature structures
 - Semantic primitives
- Used for modelling semantics and pragmatics and also for lexical semantics

Probabilistic Models

 State machine, rule systems and logic systems can be augmented with probabilities.

- State machine aumented with probabilities become Markov model and hidden Markov model.
 - Used in different processes: part-of-speech tagging, speech recognition, dialogue understanding, text-to-speech and machine translation.
- Ability to solve ambiguity problems

Vector-space Models

- Based on linear algebra
- Underlies information retrieval and applications involving word meaning

HLT Taks

- Three levels of increasing complexity
 - Basic level. Basic tasks:

(paragraph, sentence) Segmenters, language identificators, Name Entity Recognizer (NER), Name Entity Classification(NEC), NERC, tokenizers, morphological analyzers, taggers, parsers, chunkers, semantic analyzers.

- Intermediate level. Tasks implying the performance of basic components:
 - Document classification, summarization, information extraction and retrieval
- Application level.
 - Conversational systems

Language Technology and Intelligence

The ability to process language is related to the intelligence of the machines.

Turing test (1950) consists of convincing the interrogator the machine is a person (The machine tries to answer questions as a human would).

Q: Please write me a sonnet on the topic of the Forth Bridge

A: Count me on this one. I never could write poetry.

Q: Add 34957 to 70764

A: (Pause) 105621

Language Technology and Intelligence₂

- Eliza program (Weizenbaum, 1966)
- Very simple program (based on patternmatching).
- It does not understand humans but it seems it does.

User: You are like my father in some ways

Eliza: what resemblance you see

User: you don't argue with me

Eliza: Why do you think I don't argue with you

User: You are afraid of me

Eliza: Does it please to belive I am afraid of you?

Applications

- Two main areas
 - Massive management of textual information sources
 - for human use
 - for automatic collection of linguistic resources
 - Person/Machine interaction

Massive management of textual information sources

- Machine Translation
- Information Management
 - Automatic Summarization
 - Information {Retrieval, Extraction, Filtering Routing, Harvesting, Mining}
 - Document Classification
 - Question Answering
 - Conceptual searchers

Automatic collection of linguistic resources

- Aligned corpora (various levels)
- Grammars
- Gazetteers
- Resources including
 - Morphology bases
 - Selectional restrictions
 - Subcategorization patterns
 - Topic Signatures