Tutorial on Gecode
Constraint Programming

Combinatorial Problem Solving (CPS)

Enric Rodriguez-Carbonell

March 3, 2025



Gecode ‘

B Gecode is environment for developing constraint-programming based progs

€ open source: extensible, easily interfaced to other systems
free: distributed under MIT license
portable: rigidly follows the C++ standard

¢ & O

accessible: comes with a manual and other supplementary materials

& cfficient: very good results at competitions, e.g. MiniZinc Challenge

B Developed by C. Schulte, G. Tack and M. Lagerkvist
B Available at: http://www.gecode.org

‘ 2 /43


http://www.gecode.org

Basics ‘

B Gecode is a set of C++ libraries

B Models (= CSP’s in this context) are C++ programs that must be compiled with Gecode libraries
and executed to get a solution

B Models are implemented using spaces,
where variables, constraints, etc. live

B Models are derived classes from the base class Space.
The constructor of the derived class

¢ declares the CP variables and their domains,
€ posts the constraints, and
¢ specifies how the search is to be conducted.

B For the search to work, a model must also implement:

€ a2 copy constructor, and
€ 2 copy function

‘ 3 /43



Example

B Find different digits for the letters S, E/, N, D, M,O, R,Y such that
equation SEND+MORE=MON EY holds and there are no leading 0's

B Code of this example available at http://www.cs.upc.edu/~erodri/cps.html

// To use integer variables and constraints
#include <gecode/int.hh>

// To make modeling more comfortable
#include <gecode/minimodel.hh>

// To use search engines
#include <gecode/search.hh>

// To avoid typing Gecode:: all the time
using namespace Gecode;

‘ 4 /43


http://www.cs.upc.edu/~erodri/cps.html

Example

class SendMoreMoney : public Space {
protected :

IntVarArray x;

public: // *xthis is called 'home space’
SendMoreMoney () : x(xthis, 8, 0, 9) {

IntVar s(x[0]),

e(x[1]), n(x[2]), d(x[3]),
m(x[4]), o(x[5])., r(x[6])., y(x[7]);

rel (xthis, s != 0);
rel (xthis, m!= 0);
distinct (*this , x);
rel (xthis , 1000xs + 100xe + 10xn + d

+ 1000xm 4+ 100xo0 + 10xr + e
— 10000*m + 1000%x0 + 100xn + 10xe + y);

branch (xthis , x, INT_.VAR_SIZE_MIN (), INT_VAL_MIN());
}
> / 43



Example

B The model is implemented as class SendMoreMoney,
which inherits from the class Space

B Declares an array x of 8 new integer CP variables
that can take values from 0 to 9

B To simplify posting the constraints,
the constructor defines a variable of type IntVar for each letter.

These are synonyms of the CP variables, not new ones!

B distinct : values must be # pairwise (aka all-different)
B Variable selection: the one with smallest domain size first (INT_VAR_SIZE_MIN())

B Value selection: the smallest value of the selected variable first (INT_VAL_MIN())

‘ 6/ 43



Example

SendMoreMoney (SendMoreMoney& s)

Space(s) {
Xx.update(*this, s.x);

}

virtual Spacex copy() {
return new SendMoreMoney(*this );
}

void print() const {
std :: cout << x << std :: endl;
}

}; // end of class SendMoreMoney

‘ 7/ 43



Example ‘

B The copy constructor must call the copy constructor of Space and then copy the rest of members
(those with CP variables by calling update)

In this example this amounts to invoking Space(s)
and updating the variable array x with x.update(*this, s.x);

B A space must implement an additional copy() function
that is capable of returning a fresh copy of the model during search.

Here it uses copy constructor: return new SendMoreMoney (*this);

B \We may have other functions (like print () in this example)

‘ 8 /43



Example

int main() {

SendMoreMoney*x m = new SendMoreMoney ;

DFS<SendMoreMoney> e(m);
delete m;

while (SendMoreMoneyx s = e.next()) {
s—>print ();
delete s;

}

‘ 9/43



Example ‘

B Let us assume that we want to search for all solutions:

1. create a model and a search engine for that model
(a) create an object of class SendMoreMoney

(b) create a search engine DFS<SendMoreMoney> (depth-first search) and initialize it with a
model.

As the engine takes a clone,
we can immediately delete m after the initialization

2. use the search engine to find all solutions
The search engine has a next() function that returns the next solution, or NULL if no more
solutions exist

A solution is again a model (in which domains are single values).
When a search engine returns a model, the user must delete it.

B To search for a single solution: replace while by if
‘ 10 / 43



Compiling and Linking

B Template of Makefile for compiling p.cpp and linking:

CXX = g++ -std=c++11

DIR = /usr/local

LIBS = -lgecodedriver -lgecodesearch \
-lgecodeminimodel -1lgecodeilnt \
—lgecodekernel —-lgecodesupport

2o Pe R

$(CXX) -I$(DIR)/include -c p.cpp
$(CXX) -L$(DIR)/1lib -o p p.o $(LIBS)

11 / 43



Executing

B Gecode is installed as a set of shared libraries

B Environment variable LD_LIBRARY_PATH
has to be set to include <dir>/1ib, where <dir> is installation dir

B E.g, editfile “/.tcshrc (create it if needed) and add line

setenv LD_LIBRARY_PATH <dir>

B |In the lab: <dir> is /usr/local/1lib

‘ 12 / 43



Optimization Problems

B Find different digits for the letters S, £/, N, D, M,O,T.Y such that

¢ cequation SEND + MOST = MONFEY holds
€ there are no leading O's
¢ MVMONEFEY is maximal

B Searching for a best solution requires

€ 2 function that constrains the search to consider only better solutions

€ a best solution search engine

B The model differs from SendMoreMoney only by:

€ a2 new linear equation
€ an additional constrain () function

¢ o different search engine

‘ 13 / 43



Optimization Problems

B New linear equation:
IntVar s(x[0]), 1

e(x[1]), n(x[2]), d(x[3]),
m(x[4]), o(x[5]), t(x[6]), y(x[7]);

rel (xthis , 1000*xs 4+ 100xe + 10xn + d
+ 1000*m + 100x0 + 10xs + t
— 10000*m + 1000%0 + 100%xn + 10xe + y);

‘ 14 / 43



Optimization Problems

B constrain () function (_b is the newly found solution):

virtual void constrain(const Space& _b) {

const SendMostMoney& b =
static_cast <const SendMostMoney&>(_b);

IntVar e(x[1]), n(x[2]), m(x[4]), o(x[5]), y(x[7]);

IntVar b_e(b.x[1]), b_n(b.x[2]), b.m(b.x[4]),
b_o(b.x[5]), b_y(b.x[7]);

int money = (10000%b_m.val()4+1000%b_o.val()
+100%b_n.val()+ 10xb_e.val()+b_y.val());

rel (xthis, 10000xm + 1000%0 + 100%n 4+ 10%xe + y > money);
}

‘ 15 / 43



Optimization Problems

B The main function now uses a branch-and-bound search engine
rather than plain depth-first search:

SendMostMoney* m = new SendMostMoney ;
BAB<SendMostMoney> e(m);
delete m;

B The loop that iterates over the solutions found by the search engine is the same as before:
solutions are found with an increasing value of MONEY

‘ 16 / 43



Variables

B Integer variables are instances of the class IntVar
B Boolean variables are instances of the class BoolVar

B [here exist also

€ FloatVar for floating-point variables

€ SetVar for integer set variables

(but we will not use them; see the reference documentation for more info)

‘ 17 / 43



Creating Variables

B An IntVar variable points to a variable implementation (= a CP variable).
The same CP variable can be referred to by many IntVar variables

B New CP integer variables are created with a constructor:

IntVar x(home, [, u);
This:

€ declares a program variable x of type IntVar in the space home
€ creates a new integer CP variable with domain [,/ +1,...,u—1,u

€ makes x point to the newly created CP variable

B Domains can also be specified with an integer set IntSet:

IntVar x(home, IntSet{0, 2, 4});



Creating Variables

B The default constructor and the copy constructor of an IntVar
do not create a new variable implementation

B Default constructor:
the variable doesn’t refer to any variable implementation (it dangles)

B Copy constructor:
the variable refers to the same variable implementation

IntVar x(home, 1, 4);
IntVar y(x);

x and y refer to the same variable implementation (they are synonyms)

‘ 19 / 43



Creating Variables

B Domains of integer vars must be included in
[Int :: Limits :: min, Int :: Limits :: max| (implementation-dependent constants)

B Typically Int :: Limits :: max = 2147483646 (= 231 _ 2),

Int :: Limits :: min = — Int :: Limits :: max

B Example of creation of a Boolean variable:

BoolVar x(home, 0, 1);

Note that the lower and upper bounds must be passed even it is Boolean!

‘ 20 / 43



Operations with Variables

B Min/max value in the current domain of a variable x: x.min() / x.max()
B To find out if a variable has been assigned: x.assigned ()

B Value of the variable, if already assigned: x.val()

B To print the domain of a variable: cout << x

B To make a copy of a variable (e.g., for the copy constructor of the model): update

E.g. in

x.update (home, y);

variable x is assigned a copy of variable y

‘ 21 / 43



Arrays of Variables

B Integer variable arrays IntVarArray have similar functions to integer vars
B For example,

IntVarArray x(home, 4, —10, 10);

creates a new array with 4 variables containing newly created CP variables with domain
{-10,...,10}.

B x.assigned() returns if all variables in the array are assigned
B x.size () returns the size of the array

B For making copies update works as with integer variables

‘ 22 / 43



Argument Arrays

B Gecode provides argument arrays
to be passed as arguments in functions that post constraints

€ IntArgs for integers
€ IntVarArgs for integer variables

€ BoolVarArgs for Boolean variables

23 / 43



Argument Arrays

For example:

IntVar s(x[0]), e(x[1]), n(x[2])., d(x[3]),
m(x[4]) . o(x[5])., r(x[6]). y(x[7]);

I-r;’éArgs c(44+4+45); IntVarArgs z(4+4+4+5);

c[0]= 1000; c[1]= 100; c[2]= 10; c[3]= 1:

z[0]= s; z[1]= e; z[2]= n; z[3]= d;
c[4]= 1000; c[5]= 100; c[6]= 10; c[7]= 1
z[4]= m; z[5]= o; z[6]= r; z[7]= e;
c[8]= —10000; c[9]= —1000; c[10]= —100; c[11]= —10; c[12]= —1;
z[8]= m; z[9]= o; z[10]= n; z[11]= e; z[12]= vy;

linear(xthis, ¢, z, IRT.LEQ, 0); // c.z = 0, where . is dot product

‘ 24 / 43



Argument Arrays

Or equivalently:

IntVar s(x[0]), e(x[1]), n(x[2]), d(x[3]),
m(x[4]), o(x[5]), r(x[6]), y(x[7]);
{ﬁéArgs c({

i000, 100, 10, 1,
1000, 100, 10, 1,
—10000, —1000, —100, —10, —1});

IntVarArgs z({

S e, n, d
m, o, r e,
my 01 nl e7 y})’

linear (xthis, c, z, IRT_LEQ, 0);

‘ 25 / 43



Argument Arrays ‘

B Integer argument arrays with simple (that is, arithmetic) sequences of integers
can be generated using IntArgs :: create(n, start , inc)

€ s the length of the array
€ start Is the starting value

¢ inc is the increment from one value to the next (default: 1)

IntArgs :: create(5,0) // creates 0,1,2,3,4
IntArgs :: create(5,4,—1) // creates 4,3,2,1,0
IntArgs :: create(3,2,0) // creates 2,2,2
IntArgs :: create(6,2,2) // creates 2,4,6,8,10,12



Posting Constraints

B Next: focus on constraints for integer/Boolean variables

B We will see the most basic functions for posting constraints.
(post functions)

Look up the documentation for more info.

27 / 43



Relation Constraints

B Relation constraints are of the form E7 <t Fs,
where Fq, E5 are integer/Boolean expressions, < is a relation operator

B [nteger expressions are built up from:

arithmetic operators: +, —, *, /, %
integer values

integer /Boolean variables

sum(x): sum of the array x

sum(c,x): weighted sum (dot product)
min(x): min of the array x

max(x): max of the array x

element(x, i): the i-th element of the array x

® & 6 6 ¢ 6 O 0 o

4

28 / 43



Relation Constraints

B Relations between integer expressions are:
_— !:1 <:1 <1 >:1 >

B Relation constraints are posted with function rel

rel (home, x+42xsum(z) < 4x*y);
rel (home, a+bx(c+d) =— 0);

29 / 43




Relation Constraints

B Boolean expressions are built up from:

Boolean variables

element(x, i): the i-th element of the Boolean array x
integer relations

l: negation

&&: conjunction

| : disjunction

—=: equivalence

® ¢ 6 6 6 O O o

>>: implication

4

30 / 43



Relation Constraints

B Examples:

rel (home, x && (y >> z));
rel (home, !(x && (y >> z)));
rel (home, (stl+4+l <= st2) || (st241 <= stl));

31 /43



Relation Constraints

B An alternative less comfortable interface:
rel (home, E1, <, E2); where > for integer relations may be:

IRT_EQ: equal

IRT_NQ: different

IRT_GR: greater than
IRT_GQ: greater than or equal
IRT_LE: less than

IRT_LQ: less than or equal

L R 2 2R 2 2R 2

and for Boolean relations is one of:

BOT_AND: conjunction
BOT_OR: disjunction

BOT_EQV: equivalence
BOT_IMP: implication

l L R R I 2R 2

32 /43



Relation Constraints

Here x, y are arrays of integer variables, z an integer variable

rel (home, x, IRT_LQ, z): all vars in x are < z

rel (home, x, IRT_LE, y): x is lexicographically smaller than y

T

linear (home, a, x,i<, z): a” x D z

linear (home, x,i<, z): in D] z

33 /43



Distinct Constraint ‘

B distinct (home, x) enforces that
integer variables in array x take pairwise distinct values (aka alldifferent)

IntVarArray x(home, 10, 1, 10);
distinct (home, x);

B distinct (home, ¢, x); for an array c of type IntArgs and an array of integer variables x of same size,
constrains the variables in x such that

Xi‘|‘Cz’7£Xj‘|‘Cj

for 0 <i < j <[«

‘ 34 / 43



Channel Constraints ‘

B Channel constraints link
integer to Boolean variables, and integer variables to integer variables.

For example:

¢ For Boolean variable array x and integer variable y, channel(home, x, y) posts x; = 1 <+ y =1 for
0<1< ‘x‘

¢ For two integer variable arrays x and y of same size, channel(home, x, y) posts x; = j <> y; = ¢ for
0<1d,j <[«

35 / 43



Reified Constraints

B Some constraints have reified variants:
satisfaction is monitored by a Boolean variable (indicator/control variable)

When allowed, the control variable is passed as a last argument: e.g.,

rel (home, x = vy, b);

postis b =1 & x =y,
where x, y are integer variables and b is a Boolean variable

36 / 43



Reified Constraints

B Instead of full reification, we can post half reification:
only one direction of the equivalence

B Functions eqv, imp, pmi take a Boolean variable and
return an object that specifies the reification:

rel (home, x =y, eqv(b)); // b=1x x =y
rel (home, x =y, imp(b)); // b=1= x =1y
rel (home, x = vy, pmi(b)); // b =1« x =1y

Hence passing eqv(b) is equivalent to passing b

‘ 37 / 43



Propagators

B For many constraints, Gecode provides different propagators
with different pruning power

B Post functions take an optional argument that specifies the propagator

B Possible values:

€ |PL_.DOM: perform domain propagation.
Sometimes domain consistency (i.e., arc consistency) is achieved.

€ |PLBND: perform bounds propagation.
Sometimes bounds consistency is achieved

4
¢ IPL_DEF: default of the constraint (check reference documentation)

B Different propagators have different tradeoffs of cost/pruning power.

‘ 38 / 43



Branching

B Gecode offers predefined variable-value branching:
when calling branch(home, x, ?, ?) for branching on array of integer vars x,

¢ 3rd arg defines the heuristic for selecting the variable

€ 4th arg defines the heuristic for selecting the values

M E.g. for an array of integer vars x the following call

branch (home, x, INT_VAR_MIN_MIN (), INT_VAL_SPLIT_MIN()):

¢ selects the var y with smallest min value in the domain (if tie, the 1st)

€ creates a choice with two alternatives y < n and y > n where

min(y) + maz(y)
2

mn —

and chooses y < n first

‘ 39 / 43



Integer Variable Selection

Some of the predefined strategies:

INT_VAR_NONE(): first unassigned

INT_VAR_RND(r): randomly, with random number generator r
INT_VAR_DEGREE_MIN(): smallest degree
INT_VAR_DEGREE_MAX(): largest degree
INT_VAR_SIZE_MIN(): smallest domain size
INT_VAR_SIZE_MAX(): largest domain size

40 / 43



Boolean Variable Selection

Some of the predefined strategies:

BOOL_VAR_NONE(): first unassigned

BOOL_VAR_RND(r): randomly, with random number generator r
BOOL_VAR_DEGREE_MIN(): smallest degree
BOOL_VAR_DEGREE_MAX(): largest degree

41 / 43



Integer Value Selection

Some of the predefined strategies:

INT_VAL_RND(r): random value
INT_VAL_MIN(): smallest value
INT_VAL_MAX(): largest value

INT_VAL_SPLIT_MIN(): values not greater than W
INT_VAL_SPLIT_MAX(): values greater than W

42 / 43



Boolean Value Selection

Some of the predefined strategies:

B BOOL_VAL_RND(r): random value
B BOOL_VAL_MIN(): smallest value
B BOOL_VAL_MAX(): largest value
H

43 / 43



	Gecode
	Basics
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Compiling and Linking
	Executing
	Optimization Problems
	Optimization Problems
	Optimization Problems
	Optimization Problems
	Variables
	Creating Variables
	Creating Variables
	Creating Variables
	Operations with Variables
	Arrays of Variables
	Argument Arrays
	Argument Arrays
	Argument Arrays
	Argument Arrays
	Posting Constraints
	Relation Constraints
	Relation Constraints
	Relation Constraints
	Relation Constraints
	Relation Constraints
	Relation Constraints
	Distinct Constraint
	Channel Constraints
	Reified Constraints
	Reified Constraints
	Propagators
	Branching
	Integer Variable Selection
	Boolean Variable Selection
	Integer Value Selection
	Boolean Value Selection

