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The limits of visual analysis

A syntactic dependency network [Ferrer-i-Cancho et al., 2004]
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The empirical degree distribution

I N: finite number of vertices / k vertex degree

I n(k): number of vertices of degree k.

I n(1),n(2),...,n(N) defines the degree spectrum (loops are
allowed).

I n(k)/N: the proportion of vertices of degree k , which defines
the (empirical) degree distribution.

I p(k): function giving the probability that a vertex has degree
k, p(k) ≈ n(k)/N.

I p(k): probability mass function (pmf).
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Example: degree spectrum

I Global syntactic
dependency network
(English)

I Nodes: words

I Links: syntactic
dependencies

Not as simple:

I Many degrees occurring
just once!

I Initial bending or hump:
power-law?
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Example: empirical degree distribution

I Notice the scale of the
y -axis.

I Normalized version of the
degree spectrum (dividing
over N).
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Example: in-degree (red) degree versus out-degree (green)

I The distribution of in-degree
and that of out-degree do not
need to be identical!

I Similar for global syntactic
dependency networks?
Differences in the distribution or
the parameters?

I Known cases of radical
differences between in and
out-degree distributions (e.g.,
web pages, wikipedia articles).
In-degree more power-law
like than out degree.
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What is the mathematical form of p(k)?

Possible degree distributions
I The typical hypothesis: a power-law p(k) = ck−γ but what

exactly? How many free parameters?
I Zeta distribution: 1 free parameter.
I Right-truncated zeta distribution: 2 free parameters.
I ...

Motivation:

I Accurate data description (looks are deceiving).

I Help to design or select dynamical models.
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Zeta distributions I

Zeta distribution:

p(k) =
1

ζ(γ)
k−γ ,

being

ζ(γ) =
∞∑
x=1

x−γ

the Riemann zeta function.

I (here it is assumed that γ is real) ζ(γ) converges only for
γ > 1 (γ > 1 is needed).

I γ is the only free parameter!

I Do we wish p(k) > 0 for k > N?
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Zeta distributions I

Right-truncated zeta distribution

p(k) =
1

H(kmax , γ)
k−γ ,

being

H(kmax , γ) =
kmax∑
x=1

x−γ

the generalized harmonic number of order kmax of γ.
Or why not

p(k) = ck−γe−kβ

(modified power-law, Altmann distribution,...) with 2 or 3 free
parameters?
Which one is best? (standard model selection)
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What is the mathematical form of p(k)?

Possible degree distributions

I The null hypothesis (for a Erdös-Rényi graph without loops)

p(k) =

(
N − 1

k

)
πk(1− π)N−1−k

with π as the only free parameter (assuming that N is given
by the real network).
Binomial distribution with parameters N − 1 and π, thus
〈k〉 = (N − 1)π ≈ Nπ.

I Another null hypothesis: random pairing of vertices with
constant number of edges E .
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The problems II

I Is f (k), a good candidate? Does f (k) fit the empirical degree
distribution well enough?

I f (k) is a (candidate) model.
I How do we evaluate goodness of a model? Three major

approaches:
I Qualitatively (visually).
I The error of the model: the deviation between the model and

the data.
I The likelihood of the model: the probability that the model

produces the data.
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Visual fitting

Assume a two variables: a predictor x (e.g., k , vertex degree) and
a response y (e.g., n(k), the number vertices of degree k ; or
p(k)...).

I Look for a transformation of the at least one of the variables
showing approximately a straight line (upon visual inspection)
and obtain the dependency between the two original variables.

I Typical transformations: x ′ = log(x), y ′ = log(y).

1. If y ′ = log(y) = ax + b (linear-log scale) then
y = eax+b = ceax , with c = eb (exponential).

2. If y ′ = log(y) = ax ′ + b = alog(x) + b (log-log scale) then
y = ealog(x)+b = cxa, with c = eb (power-law).

3. If y = ax ′ + b = alog(x) + b (log-linear scale) then the
transformation is exactly the functional dependency between
the original variables (logarithmic).
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What is this distribution?
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Solution: geometric distribution

y = (1− p)x−1p (with p = 1/2 in this case).
In standard exponential form,

y = (1− p)x
p

1− p
= ex log(1−p) p

1− p

= ceax

with a = log(1− p) and c = p/(1− p).
Examples:

I Random network models (degree is geometrically distributed).

I Distribution of word lengths in random typing (empty words
are not allowed) [Miller, 1957].

I Distribution of projection lengths in real neural networks
[Ercsey-Ravasz et al., 2013].
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A power-law distribution

What is the
exponent of the
power-law?
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Solution: zeta distribution

y =
1

ζ(a)
x−a

with a = 2.
Formula for ζ(a) is known for certain integer values, e.g.,
ζ(2) = π2/6 ≈ 1.645.
Examples:

I Empirical degree distribution of global syntactic dependency
networks [Ferrer-i-Cancho et al., 2004] (but see also lab
session on degree distributions).

I Frequency spectrum of words in texts [Corral et al., 2015].
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What is this distribution?
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Solution: a ”logarithmic” distribution

y = c(log(xmax)− log x))

with x = 1, 2, ..., xmax and c being a normalization term, i.e.

c =
1∑xmax

x=1 (log(xmax)− log x))

.
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The problems of visual fitting

I The right transformation to show linearity might not be
obvious (taking logs is just one possibility).

I Looks can be deceiving with noisy data.

I A good guess or strong support for the hypothesis requires
various decades.

I Solution: a quantitative approach.
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Non-linear regression I [Ritz and Streibig, 2008]

I A univariate response y .

I A predictor variable x

I Goal: functional dependency between y and x .

Formally: y = f (x , β), where

I f (x , β) is the ”model”.

I K parameters.

I β = (β1, ..., βK )

Examples:

I Linear model: f (x , (a, b)) = ax + b (K = 2).

I A non-linear model (power-law): f (x , (a, b)) = axb (K = 2).
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Non-linear regression II

Problem of regression:

I A data set of n pairs: (x1, y1), ..., (xn, yn). Example: xi is
vertex degree (k) and yi is the number of vertices of degree k
(n(k)) of a real network.

I n is the sample size.

I f (x , β) is unlikely to give a perfect fit. y1, y2, ..., yn may
contain error.

Solution: the conditional mean response

E (yi |xi ) = f (xi , β)

(f (x , β) is not actually the model for the data points but a model
for expectation given xi ).
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Non-linear regression II

The full model is then

yi = E (yi |xi ) + εi = f (xi , β) + ε

The quality of the fit of a model with certain parameters: the
residual sums of squares

RSS(β) =
n∑

i=1

(yi − f (xi , β))2

The parameters of the model are estimated minimizing the RSS.
Non-linear regression: minimization of RSS.
Common metric of the quality of the fit: the residual standard error

s2 =
RSS(β)

n − K
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Example of non-linear regression

I Non-linear regression yields
y = 2273.8x−1.23 (is the
exponent that low?)

I Is the method robust? (=not
distracted by undersampling,
noise, and so on)

I Likely and unlikely events are
weighted equally.

I Solution: weighted
regression, taking likelihood
into account,...
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Likelihood I [Burnham and Anderson, 2002]

I A probabilistic metric of the quality of the fit.

I L(parameters|data,model): likelihood of the parameters given
the data (sample of size n) and a model.
Example: L(γ|data,Zeta distribution with parameterγ)

I Best parameters: the parameters that maximize
L(parameters|data,model).
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Likelihood II

I Consider a sample x1, x2, ...xn (e.g., the degree sequence of a
network).

I Definition (assuming independence)

L(parameters|data,model) =
∏
i=1

p(xi ; parameters)

I For a zeta distribution

L(γ|x1, x2, .., xn; Zeta distribution) =
n∏

i=1

p(xi ; γ)

= ζ(γ)−n
n∏

i=1

x−γi
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Log-likelihood

Likelihood is a vanishingly small number. Solution: taking logs.

L(parameters|data,model) = log L(parameters|data,model)

=
∑
i=1

log p(xi ; parameters)

Example:

L(γ|x1, x2, .., xn; Zeta distribution) =
n∑

i=1

log p(xi ; γ)

= γ

n∑
i=1

log xi − n log(ζ(γ))
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Question to the audience

What is the best model for data?

Cue: a universal method.
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What is the best model for data?

I The best model of the data is the data itself. Overfitting!

I The quality of the fit cannot decrease if more parameters are
added (wisely). Indeed, the quality of the fit normally
increases when adding parameters.

I The metaphor of picture compression. Compressing a picture
(with quality reduction). A good compression technique shows
a nice trade-off between file size and image quality).

I Modelling is compressing a sample, the empirical distribution
(e.g., compressing the degree sequence of a network).

I Models with many parameters should be penalized!
I Models compressing the data with a low quality should be also

penalized.

How?
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Akaike’s information criterion (AIC )

AIC = −2L+ 2K ,

with K being the number of parameters of the model. For small
samples, a correction is necessary

AICc = −2L+ 2K

(
n

n − K − 1

)
,

or equivalently

AICc = −2L+ 2K +
2K (K + 1)

n − K − 1

= AIC +

(
2K (K + 1)

n − K − 1

)
AICc is recommended if n� K is not satisfied!
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Model selection with AIC

I What is the best of a set of models? The model that
minimizes AIC

I AICbest : the AIC of the model with smallest AIC .

I ∆: ”AIC difference”, the difference between the AIC of the
model and that of the best model (∆ = 0 for the best model).
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Example of model selection with AIC

Consider the case of model selection with three nested models:

Model 1 p(k) = k−2

ζ(2) (zeta distribution with (-)2 exponent)

Model 2 p(k) = k−γ

ζ(γ) (zeta distribution)

Model 3 p(k) = k−γ

H(kmax ,γ) (right-truncated zeta distribution)

Model i is nested model of i − 1 if the model i is a generalization
of model i − 1 (adding at least one parameter).
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Example of model selection with AIC

Model K L AIC ∆

1 0 ... ... ....
2 1 ... ... ....
3 2 ... ... ....

Imagine that the true model is a zeta distribution with γ = 1.5 and
the sample is large enough, then

Model K L AIC ∆

1 0 ... ... � 0
2 1 ... ... 0
3 2 ... ... > 0
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AIC for non-linear regression I

I RSS: ”distance” between the data and fitted regression curve
based on the the model fit.

I AIC: estimate of the ”distance” from the model fit to the true
but unknown model that generated the data.

I In a regression model one assumes that the error ε follows a
normal distribution, the p.d.f. is

f (ε) =
1

(2πσ2)1/2
exp

{
−(ε− µ)2

2σ2

}
The only parameter is σ as standard non-linear regression
assumes µ = 0.
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AIC for non-linear regression II

I Applying µ = 0 and εi = yi − f (xi , β)

f (εi ) =
1

(2πσ2)1/2
exp

{
−(yi − f (xi , β))2

2σ2

}
I Likelihood in a regression model:

L(β, σ2) =
n∏

i=1

f (εi )

I After some algebra one gets

L(β, σ2) =
1

(2πσ2)n/2
exp

{
−RSS(β)

2σ2

}
.
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AIC for non-linear regression III

Equivalence between maximization of likelihood and minimization
of error (under certain assumptions)

I If β̂ is the best estimate of β then

L(β̂, σ̂2) =
1

(2πRSS(β̂)/n)n/2
exp(−n/2)

thanks to σ̂2 = n−K
n s2 (recall s2 = RSS(β)

n−K ).

Models selection with regression models:

AIC = −2 log L(β̂, σ̂2)) + 2(K + 1)

= n log(2π) + n log(RSS(β̂)/n) + n + 2(K + 1)

Why the term for parsimony is 2(K + 1) and not K?
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Concluding remarks

I Under non-linear regression AIC is the way to go for model
selection if the models are not nested (alternative methods do
exist for nested models [Ritz and Streibig, 2008]).

I Equivalence between maximum likelihood and non-linear
regression implies some assumption (e.g., homocedasticity).
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Ramon Ferrer-i-Cancho & Argimiro Arratia The degree distribution



Outline
Visual fitting

Non-linear regression
Likelihood

The challenge of parsimony

Patterns in syntactic dependency networks.
Physical Review E, 69:051915.

Miller, G. A. (1957).
Some effects of intermittent silence.
Am. J. Psychol., 70:311–314.

Ritz, C. and Streibig, J. C. (2008).
Nonlinear regression with R.
Springer, New York.

Ramon Ferrer-i-Cancho & Argimiro Arratia The degree distribution


	Visual fitting
	Non-linear regression
	Likelihood
	The challenge of parsimony

