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1 Introduction

In this session, we are going to practice on determining the significance of net-
work metrics using collections of global syntactic dependency trees from different
languages. In those networks, the vertices are words and links indicate if two
words have formed a syntactic dependency at least once in a syntactic depen-
dency treebank [Ferrer-i Cancho et al., 2004] (Fig. 1). A syntactic dependency
treebank is essentially a collection of sentences and their corresponding syntac-
tic dependency trees. Here we focus for simplicity on the undirected versions of
global syntactic dependency networks.

N is defined as the number of vertices of a network. The global clustering
coefficient can be defined as [Newman, 2009]

C =
number of closed paths of length 2

number of paths of length 2
.

Alternatively, a mean local clustering was defined by Watts & Strogatz (WS)
as [Watts and Strogatz, 1998]

CWS =
1

N

N∑
i=1

Ci, (1)

where Ci is the local clustering of the i-th vertex, that is defined as

Ci =
number of pairs of different neighbors of i that are connected

number of pairs of different neighbours of i
. (2)

We adopt the convention that Ci = 0 if the degree of the i-th vertex does not
exceed 2.

The mean closeness centrality is defined as [Newman, 2009]

C =
1

N

N∑
i=1

Ci, (3)
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Figure 1: An English syntactic dependency network drawn with the
Fruchterman-Reingold layout algorithm.
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where Ci is the closeness centrality of vertex i, defined as

Ci =
1

N − 1

N∑
j=1(i6=j)

1

dij
,

being dij the geodesic distance between vertices i and j (dii = 0 and thus
excluded from the summation; the purpose of that is that the Ci’s and thus C
have always finite values).

Through some procedure, two groups of student teams will be formed:

� The clustering group. Its teams will have to investigate if the clustering
coefficient CWS is significantly large.

� The closeness centrality group. Its teams will have to investigate if the
closeness centrality C is significantly large.

Each team should work independently from other teams but is allowed to com-
pare results with other teams of the group.

For this lab session, you do not need to use R. The reason is two-fold

� Time efficiency really matters for the exercises below.

� The algorithms may require some tuning or adaptations that are not a
priori easy to apply using a standard graph library.

If you decide to not use R, we recommend C or C++.

2 Data preparation

The file dependency_networks.tar.gz included in this lab’s package contains
the description of the global syntactic dependency graphs from different lan-
guages. Each file consist of a header and a list of edges (the first row contains
the number of vertices and the number of edges of the network; the other rows
indicate the pairs of linked vertices). Those networks may contain loops (a loop
is an edge connecting a node with itself). Remove them before performing any
analysis of the network properties.

You have to produce a table with the format of Table 1. This table may be
needed to interpret the results obtained in coming sections.

2.1 Test of significance

We want to determine if the value of a network metric x is significantly large
with regard to a certain null hypothesis. xNH is used to refer to the value of
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Table 1: Summary of the properties of the degree sequences. N is the number
of vertices of the network, E is the number of edges, 〈k〉 = 2E/N is the mean
degree and δ = 2E/(N(N − 1)) is the network density of edges.

Language N E 〈k〉 δ
... ... ... ... ...
... ... ... ... ...
... ... ... ... ...

x in a graph following a null hypothesis. We say that x is significantly large
if p(xNH ≥ x), the so-called p-value, is small enough, e.g. smaller than a
significance level α. In this session two null hypotheses are considered:

� A binomial graph (Erdös-Rényi graph) with the same number of vertices
and edges as the real network. This null model has no free parameter.

� A randomized graph with the same degree sequence of the original graph.
The switching model is the randomization to use for this session. This
null model has two parameters: the original network structure (the list of
edges) and Q. The number of random switchings tried is QE, where E is
the number of edges. The number of trials QE has to include cases where
the random switching could not be performed. We advise you to tune Q
according to the coupon collector’s problem.

See further details on these null models in the corresponding theory lecture.
Our random or randomized networks cannot have loops or multiedges
(pairs of vertices with more than one edge).

Here you are going to estimate p(xNH ≥ x) by means of the Monte Carlo
procedure explained in the theoretical session, e.g., p(xNH ≥ x) ≈ f(xNH ≥
x)/T , where T is the number of random graphs produced and f(xNH ≥ x) is the
number of those graphs where xNH ≥ x (see the corresponding theory lecture
for further details on the algorithm).

In order to implement calculations for the switching model successfully you have
to answer the following questions (to be added to the report): given two edges
u ∼ v and s ∼ t, what are the switchings that

� preserve the degree sequence? (switchings not satisfying this property are
not valid; performing them is a waste of time but they have to be counted
to determine when QE switches, successful or not, have been reached)

� preserve the degree sequence but produce edges that are not allowed
(loops, multiedges)?
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Language Metric p-value (binomial) p-value (switching)
... ... ... ...
... ... ... ...
... ... ... ...

Table 2:

Clue: consider the consequences of coincident vertices (edges sharing the same
vertices, e.g., u = s).

Your are going to suffer the low speed of the computations. Thus,

� We recommend working on a single graph at the beginning. The smallest
is the Basque one.

� We recommend using low values of T and Q at the beginning. The final
value of Q should be of the order of 10 (at least). The final value of T must
be greater than 20. The larger the value of T , the higher the accuracy
of the estimated p-value. However, we admit that very large values are
unfeasible for the whole collection of graphs.

� The p-value can be estimated or bounded doing some mathematical (ana-
lytical) work that goes beyond the scope of the this course. However, you
can try. Those who succeed will be rewarded. Those who fail will not be
penalized (in either case, the duty of a report cannot be skipped).

For the target network metric, you have to prepare a table with the value of
the metric in the real network and the two estimated p-values, one for the
null hypothesis of a binomial graph and another for the null hypothesis of the
switching model. An example of the format is provided in Table 2.

3 Implementation

We strongly recommend that you think carefully about the data structures
needed for storing the network information (e.g., an implementation based on
the concept of an adjacency list is recommended).

We recommend a breadth-first search algorithm for computing the vertex-vertex
geodesic distances (the dij ’s).

3.1 Optimizations keeping results exact

Notice that in order to determine if xNH ≥ x, computing xNH fully is not always
necessary. Imagine that we have a way to bound xNH below and above, xmin

NH
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and xmax
NH respectively just by having explored a subset of the vertices and/or

edges the network. Then if xmin
NH ≥ x then it can be concluded that xNH ≥ x.

Similarly, if xmax
NH < x then it can be concluded that xNH < x.

Consider the case of C. Imagine that the vertices are ordered arbitrarily and
the we have actually computed Ci exactly for the M first nodes. Then, the
definition of C in Eq. 3 can be rewritten as

C =
1

N

(
M∑
i=1

Ci +

N∑
i=M+1

Ci

)
. (4)

Knowing that 0 ≤ Ci ≤ 1, lower and upper bounds to C can be inferred. On the
one hand, 0 ≤ Ci yields

C ≥ Cmin =
1

N

(
M∑
i=1

Ci +

N∑
i=M+1

0

)

=
1

N

M∑
i=1

Ci. (5)

On the one hand, Ci ≤ 1 yields

C ≤ Cmax =
1

N

(
M∑
i=1

Ci +

N∑
i=M+1

1

)

=
1

N

(
M∑
i=1

Ci +N −M

)

=
1

N

M∑
i=1

Ci + 1− M

N
. (6)

Thus, having computed Ci only for theM first vertices of the a network produced
following a null hypothesis, if Cmin

NH ≥ C then it can be concluded that CNH ≥ C;
if Cmax

NH < C then it can be concluded that CNH < C.

A clever ordering of the vertices might help to reduce the computation, for
instance, by allowing you to detect that CCNH < CC earlier (with a smaller
value of M). We suggest that you compare the speed of four orderings of
vertices:

� Original ordering.

� Random ordering of vertices (by generating a uniformly random permu-
tation of the vertices).

� Increasing order by degree.

� Decreasing order by degree.
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The same ideas can be applied to the clustering coefficient CWS . Notice that
Ci is also a number between 0 and 1.

Calculations of Ci or Ci can be optimized when ki, the degree of the corre-
sponding vertex, is smaller than 2. Networks following a power-law-like degree
distribution are expected to have many vertices with those degrees. On the one
hand, recall that we have adopted the convention that Ci = 0 when ki < 2. On
the other hand, notice that

� if ki = 0 then dij =∞ for any vertex j and thus Ci = 0.

� if ki = 1, imagine that the i-th node is connected to the k-th vertex;
then one has that dij = dkj + 1. Thus knowing the minimum distance
from k to other vertices one can derive the minimum distance from i to
other vertices and vice versa. You will have to decide the direction of the
inference that is more convenient.

3.2 Optimizations yielding approximate results

So far, we have assumed that x or xNH have to be calculated exactly. It is
possible to estimate x or xNH faster but with some error through a Monte
Carlo procedure. The key is that the error is small.

Imagine that the vertices of the network have been sorted producing a uniformly
random permutation of the original vertices. Then, good estimates of the met-
rics can be obtained by just computing local metrics only for the M first vertices
as

CWS ≈
1

M

M∑
i=1

Ci. (7)

and

C ≈ 1

M

M∑
i=1

Ci. (8)

Obviously, the estimation is perfect when N = M . Interestingly, a good estima-
tion can be obtained even when M � N (e.g., 100M/N = 10% or even smaller
could work).

4 Deliverables

You have to prepare a report including the following sections (in this order):
introduction, results, discussion and methods. Results includes all the tables and
some guiding text. Methods should include any relevant methods not explained
in this guide (for instance, decisions that you had to made and might have an
influence on the results), any clever decision to save computation time (e.g.
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tighter bounds of CWS or C), the ordering of vertices used to bound the value
of the metric, values of the parameters Q, T ,...used, the ratio M/N used to
estimate the metrics, etc. The discussion should include a summary of the
results and your interpretation. For instance, you should discuss

� Under which null hypothesis the network metric is significantly large and
under which it is not. Reason or speculate why this is so.

� The extent to which languages resemble or differ concerning the value of
the metric or the results of the significance test.

You may need to refer to elementary network properties (Table 1) to interpret
the results. The discussion section should also include some conclusions. The
report should include the answer to questions above.

Important rule: Plagiarism will be prosecuted. Nevertheless, you are encouraged
to ask the teacher as soon as possible if you think you do not understand what
you are supposed to do, and also if you feel you are spending much more time
than the rest of the group – sometimes a tiny error can be tricky to find and
does not add much to your knowledge. Questions can be asked either in person
or by email, and you will never be penalized by asking questions, no matter how
stupid they look in retrospect.

To deliver: You must deliver the report explained above. The formats accepted
for the report are, in principle, pdf, Word, OpenOffice, and Postscript. You also
have to hand in the source code in R (or other languages) that you have used,
including some minimal comments that can help the reader.

Procedure: Submit your work through the raco platform as a single zipped file.

Deadline: Work must be delivered within 2 weeks from the lab session you
attend. Late deliveries risk being penalized or not accepted at all. If you
anticipate problems with the deadline, please tell us as soon as possible.

5 Advanced exercices

Spend some time thinking about more powerful ways of bounding CWS or C
based on the decomposition of Eq. 4 or others. Reflect about the definition of
Ci and Ci. A priori, the most useful bounds as those that allow one to detect
that xmax

NH < x as one expects that the null hypothesis does not hold...but prior
intuitions can fail.

Those are just some simple suggestions. You may find better approaches by
your own.
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(2004). Patterns in syntactic dependency networks. Physical Review E,
69(5):051915.

[Newman, 2009] Newman, M. (2009). Networks: an introduction. Oxford Uni-
versity Press.

[Watts and Strogatz, 1998] Watts, D. J. and Strogatz, S. H. (1998). Collective
dynamics of ‘small-world’ networks. Nature, 393(6684):440.

9


	Introduction
	Data preparation
	Test of significance

	Implementation
	Optimizations keeping results exact
	Optimizations yielding approximate results

	Deliverables
	Advanced exercices

