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Abstract

Traditional hand-crafted linguistically-
informed features have often been used
for distinguishing between translated and
original non-translated texts. By contrast,
to date, neural architectures without manual
feature engineering have been less explored
for this task. In this work, we (i) compare
the traditional feature-engineering-based ap-
proach to the feature-learning-based one and
(ii) analyse the neural architectures in order to
investigate how well the hand-crafted features
explain the variance in the neural models’
predictions. We use pre-trained neural word
embeddings, as well as several end-to-end
neural architectures in both monolingual and
multilingual settings and compare them to
feature-engineering-based SVM classifiers.
We show that (i) neural architectures out-
perform other approaches by more than 20
accuracy points, with the BERT-based model
performing the best in both the monolingual
and multilingual settings; (ii) while many
individual hand-crafted translationese features
correlate with neural model predictions, fea-
ture importance analysis shows that the most
important features for neural and classical
architectures differ; and (iii) our multilingual
experiments provide empirical evidence for
translationese universals across languages.

1 Introduction

Texts originally written in a language exhibit prop-
erties that distinguish them from texts that are
the result of a translation into the same language.
These properties are referred to as translationese
(Gellerstam, 1986). Earlier studies have shown
that using various hand-crafted features for super-
vised learning can be effective for translationese
classification (Baroni and Bernardini, 2005; Volan-
sky et al., 2015; Rubino et al., 2016). However,
this approach has a number of limitations. Firstly,

*Equal contribution.

manually designed features may be partial and non-
exhaustive in a sense that they are based on our
linguistic intuitions, and thus may not be guaran-
teed to capture all discriminative characteristics of
the input data seen during training. Other limita-
tions are related to the difficulties in obtaining lin-
guistic annotation tools (e.g., parsers, taggers, etc.)
for some languages, reliance on n-gram counts,
limited contexts, corpus specific characteristics,
among others. In this work, we compare a stan-
dard approach based on hand-crafted features with
automatic feature learning based on data, task and
learner without prior linguistic assumptions.

Moreover, most previous approaches have fo-
cused on classifying translationese in the monolin-
gual setting, i.e. translations come from one or mul-
tiple source languages, but the language on which
to perform the classification is always the same.
To the best of our knowledge, the multilingual set-
ting with multiple source and target languages has
not been explored yet. If translationese features
are language-independent or shared among lan-
guages, multilingual translationese classification
experiments would show the effect. We perform bi-
nary translationese classification not only in mono-
, but also in multilingual settings to empirically
verify the existence of translationese universals
throughout different source and target languages.

In our work we investigate:

(i) How automatic neural feature learning ap-
proaches to translationese classification compare
to classical feature-engineering-based approaches
on the same data. To do this, we use pre-trained
embeddings as well as several end-to-end neural
architectures.

(ii) Whether it is possible to effectively detect
translationese in multilingual multi-source data,
and how it compares to detecting translation in
monolingual and single-source data in different
languages.
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(iii) Whether a) translationese features learned
in one setting can be useful in a different setting
and b) the overhead of training separate monolin-
gual models can be reduced by either multi-source
monolingual models for a given target language
or even better, a multilingual model. For this we
perform cross-data evaluation.

(iv) Whether variation observed in predictions
of neural models can be explained by linguistically
inspired hand-crafted features. We perform lin-
ear regression experiments to study the correlation
between hand-crafted features and predictions of
representation learning models as a starting point
for investigating neural models which do not lend
themselves easily to full explainability.

We show that:

• representation-learning approaches outper-
form hand-crafted feature-selection methods
for translationese classification, with BERT
giving the highest accuracy,

• it is possible to classify translationese in the
multilingual data, but models trained on mono-
lingual single-source data generally yield bet-
ter performance than models trained on multi-
source and multilingual data,

• in contrast to hand-crafted feature-based mod-
els, neural models perform relatively well on
different datasets (cross-data evaluation), and
single-source can, to a reasonable extent, be
substituted by multi-source mono- and multi-
lingual models,

• many traditional hand-crafted translationese
features exhibit significant correlation with
the predictions of the neural models. However,
a feature importance analysis shows that the
most important features for neural networks
and for classical architectures differ.

The paper is organized as follows. Section 2
describes related work. Section 3 introduces the
architectures used in our study. Section 4 discusses
the data and presents the main classification results.
We perform cross-data evaluations in Section 5
and analyze feature importance and correlation in
Section 6. Finally, we summarize and draw conclu-
sions in Section 7.

2 Related Work

Recent work on translationese, both on human-
and machine-translated texts, explores topics rang-
ing from translationese characterization (Volan-
sky et al., 2015; Bogoychev and Sennrich, 2019;
Bizzoni et al., 2020) to unsupervised classifica-
tion (Rabinovich and Wintner, 2015), to explor-
ing insights into the structure of language typolo-
gies with respect to different translationese proper-
ties (Rabinovich et al., 2017; Bjerva et al., 2019;
Dutta Chowdhury et al., 2020, 2021), to the effects
on downstream tasks such as machine translation
(Stymne, 2017; Toral et al., 2018; Zhang and Toral,
2019; Freitag et al., 2019; Edunov et al., 2020;
Riley et al., 2020; Graham et al., 2020), to transla-
tionese data collection (Rabinovich et al., 2015; Ni-
sioi et al., 2016; Amponsah-Kaakyire et al., 2021).

Traditional translationese classification ap-
proaches rely on manually designed features, such
as n-gram frequencies on tokens, part-of-speech
(POS) tags or lemmas (Baroni and Bernardini,
2005; van Halteren, 2008; Kurokawa et al., 2009),
function word frequencies (Koppel and Ordan,
2011; Tolochinsky et al., 2018), character-level
features (Popescu, 2011; Avner et al., 2016), sur-
face and lexical features (Ilisei et al., 2010; Volan-
sky et al., 2015), syntactic features (Ilisei et al.,
2010; Rubino et al., 2016), morpheme-based fea-
tures (Avner et al., 2016; Volansky et al., 2015),
information-density-based features (Rubino et al.,
2016), etc.

By contrast, to date neural approaches to trans-
lationese (Bjerva et al., 2019; Dutta Chowdhury
et al., 2020) have received less attention. While
Bjerva et al. (2019) have used learned language
representations to show that the distance in the rep-
resentational space reflects language phylogeny,
Dutta Chowdhury et al. (2020, 2021) use di-
vergence from isomorphism between embedding
spaces to reconstruct phylogenetic trees from trans-
lationese data. Sominsky and Wintner (2019) train
a BiLSTM for translation direction identification
and report accuracy up to 81.0% on Europarl data.

3 Architectures

3.1 Feature-Selection-Based Classification
(Handcr.+SVM)

We employ the INFODENS toolkit (Taie et al.,
2018) to extract hand-crafted features to train and
evaluate a classifier. We use a support vector ma-



chine classifier (SVM) with linear kernel, and fit
the hyperparameter C on the validation set. For
the choice of features, we replicate the setup from
(Amponsah-Kaakyire et al., 2021), using a 108-
dimensional feature vector, inspired by the feature
set described in (Rubino et al., 2016). In particular,
we use:

1. surface features: average word length, syl-
lable ratio, paragraph length. These surface
features can be connected to the simplifica-
tion hypothesis (Ilisei et al., 2010; Volansky
et al., 2015), as it is assumed that translations
contain simpler shorter words than original
texts.

2. lexical features: lexical density, type-token
ratio. These lexical features can also be linked
to the simplification hypothesis, due to the
assumption that original texts have richer vo-
cabulary than translated ones and contain a
higher proportion of content words (Laviosa,
1998; Baker et al., 1993).

3. unigram bag-of-PoS: These features corre-
spond to the source interference (shining-
through) hypothesis (Volansky et al., 2015),
as POS n-grams reflect grammatical structure,
which might be altered in translations due to
the influence of the source language grammar.

4. language modelling features: log probabil-
ities and perplexities with and without con-
sidering the end-of-sentence token, according
to forward and backward n-gram language
models (n ∈ [1; 5]) built on tokens and POS
tags. It is hypothesized that the perplexity of
translated texts may be increased because of
simplification, explicitation and interference
(Rubino et al., 2016).

5. n-gram frequency distribution features:
percentages of n-grams in the paragraph oc-
curring in each quartile (n ∈ [1; 5]). This fea-
ture could be linked to the normalization hy-
pothesis, according to which translated texts
are expected to contain more collocations, i.e.
high-frequency n-grams (Toury, 1980; Kenny,
2001).

In our experiments, language models and n-
gram frequency distributions are built on the train-
ing set. The n-gram language models are estimated
with SRILM (Stolcke, 2002) and SpaCy1 is used

1https://spacy.io/

for POS-tagging. Features are scaled by their max-
imum absolute values. The full list of 108 features
is given in the Appendix A.1.

3.2 Embedding-based Classification

3.2.1 Average pre-trained embeddings +
SVM (Wiki+SVM)

We compute an average of all token vectors in the
paragraph, and use this mean vector as a feature
vector to train a SVM classifier with linear ker-
nel. We work with the publicly available language
specific 300-dimensional pre-trained Wiki word
vector models trained on Wikipedia using fastText2

(Joulin et al., 2016).

3.2.2 Gaussian distributions for
similarity-based classification
(Wiki+Gauss.+SVM)

We follow Das et al. (2015); Nikolentzos et al.
(2017) and Gourru et al. (2020) and represent a
text as a multivariate Gaussian distribution based
on the distributed representations of its words. We
perform similarity-based classification with SVMs
where the kernel represents similarities between
pairs of texts. We work with the same pre-trained
Wikipedia embeddings as in Wiki+SVM for the
words in the model and initialize the ones not con-
tained in the model to random vectors.

Specifically, the method assumes that each word
w is a sample drawn from a Gaussian distribution
with mean vector µ and covariance matrix σ2:

w ∼ N (µ, σ2) (1)

A text is then characterized by the average of its
words and their covariance. The similarity between
texts is represented by the convex combination of
the similarities of their mean vectors µi and µj and
their covariances matrices σ2i and σ2j :

similarity = α(sim(µi, µj)) + (1− α)(sim(σ2
i , σ

2
j )) (2)

where α ∈ [0,1] and the similarities between the
mean vectors and co-variances matrices are com-
puted using cosine similarity and element-wise
product, respectively. Finally, a SVM classifier
is employed using the kernel matrices of Equation
2 to perform the classification.

2https://fasttext.cc/docs/en/
pretrained-vectors.html

https://spacy.io/
https://fasttext.cc/docs/en/pretrained-vectors.html
https://fasttext.cc/docs/en/pretrained-vectors.html


3.3 Neural Classification

3.3.1 fastText classifier (FT)
fastText (Joulin et al., 2016) is an efficient neural
network model with a single hidden layer. The fast-
Text model represents texts as a bag of words and
bag of n-gram tokens. Embeddings are averaged
to form the final feature vector. A linear trans-
formation is applied before a hierarchical softmax
function to calculate the class probabilities. Word
vectors are trained from scratch on our data.

3.3.2 Pre-trained embeddings + FT
(Wiki+FT)

In this model we work with the pre-trained word
vectors from Wikipedia to initialize the fastText
classifier. The data setting makes this directly com-
parable to Wiki+SVM, a non-neural classifier.

3.3.3 Long short-term memory network
(LSTM)

We use a single-layer uni-directional LSTM
(Hochreiter and Schmidhuber, 1997) with embed-
ding and hidden layer with 128 dimensions. The
embedding layer uses wordpiece subunits and is
randomly-initialised. We pool (average) all hidden
states, and pass the output to a binary linear clas-
sifier. We use a batch size of 32, learning rate of
1·10−2, and Adam optimiser with Pytorch defaults.

3.3.4 Simplified transformer (Simpl.Trf.)
We use a single-layer encoder–decoder transformer
with the same hyperparameters and wordpiece em-
bedding layer as the LSTM. The architecture has
no positional encodings. Instead, we introduce
a simple cumulative sum-based contextualisation.
The attention computation has been simplified to
element-wise operations and there are no feedfor-
ward connections. A detailed description is pro-
vided in Appendix A.2.

3.3.5 Bidirectional Encoder Representations
from Transformers (BERT)

We use the BERT-base multilingual uncased model
(12 layers, 768 hidden dimensions, 12 attention
heads) (Devlin et al., 2019). Fine-tuning is done
with the simpletransformers3 library. For this, the
representation of the [CLS] token goes through a
pooler, where it is linearly projected, and a tanh ac-
tivation is applied. Afterwards it undergoes dropout
with probability 0.1 and is fed into a binary linear

3github.com/ThilinaRajapakse/
simpletransformers

Corpus Training Dev. Test

TRG–SRC 30k 6k 6k
TRG–ALL 30k 6k 6k
ALL–ALL[3] 89k 19k 19k
ALL–ALL[8] 67k 14k 14k

Table 1: Number of paragraphs in each of the datasets.
Average paragraph length is around 80 tokens.

classifier. We use a batch size of 32, learning rate
of 4 · 10−5, and the Adam optimiser with epsilon
1 · 10−8. Models were fine-tuned on 4 GPUs.

We design and compare our "lean" single-layer
LSTM and simplified transformer models with
BERT in order to investigate whether the amount
of data and the complexity of the task necessitate
complex and large networks.4

4 Translationese Classification

4.1 Data

We use monolingual and multilingual transla-
tionese corpora from Amponsah-Kaakyire et al.
(2021) which contain annotated paragraphs (avg.
80 tokens) of the proceedings of the European
parliament, the Multilingual Parallel Direct Eu-
roparl5 (MPDE). Annotations indicate the source
(SRC) and target languages (TRG), the "original"
or "translationese" label, and whether the transla-
tions are direct or undefined (possibly translated
through a pivot language). As texts translated
through a pivot language may have different char-
acteristics from directly translated texts, here we
only use the direct translations. For the initial ex-
periment we focus on 3 languages: German (DE),
English (EN) and Spanish (ES). We adopt the fol-
lowing format for data description: we refer to
translationese corpora (i.e. corpora where half of
the data is originals, half translationese) with the
"TRG–SRC" notation (with a dash): TRG is the
language of the corpus, SRC is the source language,
from which the translation into the TRG language
was done in order to produce the translationese
half. The "TRG←SRC" notation (with an arrow)
denotes the result of translating a text from SRC
into TRG language. We use it to refer only to the

4The two lean architectures drastically decrease the num-
ber of core parameters. The number of parameters is 85 M for
BERT, 132 k for the LSTM and 768 for the simplified trans-
former when the embedding layer and the classifier, which are
common to the 3 architectures, are not considered.

5github.com/UDS-SFB-B6-Datasets/
Multilingual-Parallel-Direct-Europarl

github.com/ThilinaRajapakse/simpletransformers
github.com/ThilinaRajapakse/simpletransformers
github.com/UDS-SFB-B6-Datasets/Multilingual-Parallel-Direct-Europarl
github.com/UDS-SFB-B6-Datasets/Multilingual-Parallel-Direct-Europarl


Handcr. Wiki Wiki fastText Wiki LSTM Simpl. BERT
+SVM +SVM +Gauss. (FT) +FT Trf.

+SVM

DE–EN 71.5±0.0 77.7±0.1 67.6±0.1 88.4±0.0 89.2±0.0 89.5±0.4 89.7±0.2 92.4±0.2
DE–ES 76.2±0.0 79.4±0.3 68.2±0.2 90.9±0.0 91.9±0.0 91.9±0.2 91.6±0.2 94.4±0.1
EN–DE 67.6±0.7 72.5±0.2 64.5±0.2 85.1±0.0 85.9±0.1 86.8±0.5 85.8±0.2 90.7±0.1
EN–ES 70.1±0.2 77.5±0.4 67.1±0.4 87.6±0.0 88.7±0.0 89.1±0.3 89.3±0.4 91.9±0.4
ES–DE 71.0±0.0 75.7±0.4 70.1±0.4 88.4±0.0 89.1±0.0 90.2±0.2 90.4±0.3 92.3±0.2
ES–EN 66.7±0.0 70.1±0.3 67.0±0.7 87.0±0.1 87.9±0.0 88.8±0.4 88.4±0.2 91.4±0.3
DE–ALL 72.6±0.0 64.3±0.0 65.1±0.1 87.4±0.0 88.3±0.0 88.5±0.2 88.6±0.4 90.9±0.3
EN–ALL 65.3±0.0 64.6±0.0 62.5±0.1 82.7±0.0 84.4±0.0 84.2±0.4 83.8±0.3 87.9±0.4
ES–ALL 67.4±0.0 67.3±0.0 66.5±0.2 84.9±0.0 85.9±0.0 87.0±0.3 86.9±0.3 89.9±0.1
ALL–ALL[3] 58.9±0.0 – – 85.0±0.0 – 84.4±0.3 84.5±0.2 89.6±0.2
ALL–ALL[8] 65.4±0.1 – – 70.4±0.1 – 77.2±0.3 77.9±0.1 84.6±0.2

Table 2: Translationese classification average accuracy on the mono- and multilingual test sets (average and
standard deviation over 5 runs).

translationese half of the corpus.
For our experiments we extract four datasets

from MPDE with summary statistics in Table 1.

1. Monolingual single-source data: DE–EN, DE–
ES, EN–DE, EN–ES, ES–DE, ES–EN. For
each corpus, there is an equal number of trans-
lated and original paragraphs.

2. Monolingual multi-source data: DE–ALL,
EN–ALL, ES–ALL. For DE–ALL, e.g., half
of the data is DE original texts, and the other
half contains equal proportions of DE←ES
and DE←EN.

3. Multilingual multi-source data: ALL–
ALL[3]. There is an equal number of
originals: DE, EN and ES, which together
make up 50% of the examples. The other 50%
which are translated are equal proportions
of DE←EN, DE←ES, EN←DE, EN←ES,
ES←DE and ES←EN.

EN, DE and ES are relatively close typologi-
cally. We conduct additional experiments in order
to investigate how well the classification can be
performed when more and more distant languages
are involved:

4. Multilingual multi-source data large: ALL–
ALL[8], balanced in the same way as ALL–
ALL[3], but with the addition of Greek (EL),
French (FR), Italian (IT), Dutch (NL) and Por-
tuguese (PT).

For all settings we perform binary classification:
original vs. translated.

4.2 Results

Paragraph-level translationese classification results
with mean and standard deviations over 5 runs
are reported in Table 2. Overall, the BERT model
outperforms other architectures in all settings, fol-
lowed closely by the other end-to-end neural archi-
tectures. Using the pre-trained Wiki embeddings
helps improving the accuracy of the fastText
method in all cases. Among the approaches with
the SVM classifier, Wiki+SVM performs best in
the single-source settings, but shows lower ac-
curacy than Handcr.+SVM in the multi-source
(TRG–ALL) settings. Wiki+Gauss.+SVM per-
forms worst apart from on ES–EN and DE–ALL.

In the monolingual single-source settings, we
observe that accuracy is slightly lower when the
source language is typologically closer to the text
language, i.e. it becomes more difficult to detect
translationese. Specifically, DE–EN tends to have
lower accuracy than DE–ES; EN–DE lower ac-
curacy than EN–ES; and ES–EN lower accuracy
than ES–DE. Accuracy generally drops when go-
ing from single-source to the multi-source setting,
e.g. from DE–EN and DE–ES to DE–ALL. The
EN–ALL dataset is the most difficult for most of
the models among the TRG–ALL datasets. The
ALL–ALL[3] setting exhibits comparable accu-
racy to the TRG–ALL setting for the neural mod-
els, but for the SVM there is a drop of around 9
points. Throughout our discussion we always re-
port absolute differences between systems. The
ALL–ALL[8] data results in reduced accuracy for
most architectures, except Handcr.+SVM.

Neural-classifier-based models substantially out-
perform the other architectures: the SVMs trained
with hand-crafted linguistically-inspired features,



DE–EN DE–ES EN–DE EN–ES ES–DE ES–EN DE–ALL EN–ALL ES–ALL

DE–EN 92.4±0.2 76.6±0.7 - - - - 90.5±0.3 - -
DE–ES 82.6±1.1 94.4±0.1 - - - - 91.8±0.4 - -
EN–DE - - 90.7±0.1 64.7±1.4 - - - 87.3±0.4 -
EN–ES - - 72.9±0.9 91.9±0.4 - - - 88.6±0.4 -
ES–DE - - - - 92.3±0.2 78.8±0.9 - - 90.6±0.1
ES–EN - - - - 78.8±1.6 91.4±0.3 - - 89.0±0.2
DE–ALL 87.3±0.6 85.3±0.4 - - - - 90.9±0.3 - -
EN–ALL - - 81.7±0.5 78.3±0.7 - - - 87.9±0.4 -
ES–ALL - - - - 85.9±0.9 85.0±0.6 - - 89.9±0.1

Table 3: BERT translationese classification accuracy of all TRG–SRC and TRG–ALL models on TRG–SRC and
TRG–ALL test sets (average and standard deviation over 5 runs). Columns: training set; rows: test set.

e.g., trail BERT by ∼20 accuracy points.
To make sure our hand-crafted-feature-based

SVM results are competitive, we compare them
with Rabinovich and Wintner (2015) on our data.
Rabinovich and Wintner (2015) show that training
a SVM classifier on the top 1000 most frequent
POS- or character-trigrams yields SOTA transla-
tionese classification results on Europarl data. On
our data, POS-trigrams yield around 5 points in-
crease in accuracy for most of the datasets and
character-trigrams tend to lower the accuracy by
around 4 points (Appendix A.3). For the remainder
of the paper we continue to work with our hand-
crafted features, designed to capture various lin-
guistic aspects of translationese.

5 Multilinguality and Cross-Language
Performance

Since neural architectures perform better than the
non-neural ones, we perform the multilingual and
cross-language analysis only with the neural mod-
els. We evaluate the models trained on one dataset
on the other ones, in order to verify:

• Whether for a given target language, the
model trained to detect translationese from
one source language, can detect translationese
from another source language: TRG–SRC1 on
TRG–SRC2, and TRG–SRC on TRG–ALL;

• How well the model trained to detect transla-
tionese from multiple source languages can
detect translationese from a single source lan-
guage: TRG–ALL on TRG–SRC, and ALL–
ALL[3] on TRG–SRC;

• How well the model trained to detect trans-
lationese in multilingual data performs on
monolingual data: ALL–ALL[3] on TRG–
ALL, and ALL–ALL[3] on TRG–SRC.

Table 3 shows the results of cross-data testing
for the monolingual models for the best-performing
architecture (BERT). For the single-source mono-
lingual models, we observe a relatively smaller
drop (up to 13 percentage points) in performance
when testing TRG–SRC on TRG–ALL (as com-
pared to testing TRG–SRC on TRG–SRC), and a
larger drop (up to 27 points) when testing TRG–
SRC1 on TRG–SRC2 (as compared to testing TRG–
SRC1 on TRG–SRC2). The fact that classifica-
tion performance stays above 64% confirms the
hypothesis that translationese features are source-
language-independent.

Another trend that can be observed is that in
cross testing TRG–SRC1 and TRG–SRC2, the
model where the source language is more distant
from the target suffers larger performance drop
when tested on the test set with the closer-related
source language, than the other way around. For
instance, the DE–ES model tested on the DE–EN
data suffers a decrease of 17.8 points, and DE–
EN model tested on the DE–ES data suffers a de-
crease of 9.8 points. This may be due to DE–EN
having learned more of the general translationese
features, which helps the model to obtain higher
accuracy on the data with a different source, while
the DE–ES model may have learned to rely more
on the language-pair-specific features, and there-
fore it gives lower accuracy on the data with the
different source. A similar observation has been
made by Koppel and Ordan (2011).

For the multi-source monolingual models (TRG–
ALL), testing on TRG–SRC1 and TRG–SRC2

datasets shows a slight increase in performance
for a source language that is more distant from the
target, and a slight decrease for the more closely-
related source language (as compared to testing
TRG–ALL on TRG–ALL).

Table 4 displays the results of testing the



Handcr. fastText Simpl. LSTM BERT
+SVM (FT) Trf.

DE–EN 58.5±0.0 (↓13.0) 85.9±0.0 (↓2.5) 85.5±0.5 (↓4.3) 86.6±0.7 (↓2.9) 90.5±0.3 (↓1.9)
DE–ES 57.0±0.0 (↓19.2) 88.3±0.0 (↓2.6) 87.2±0.5 (↓4.3) 85.3±0.3 (↓6.9) 91.5±0.2 (↓2.9)
EN–DE 50.0±0.0 (↓17.6) 81.5±0.1 (↓3.6) 81.1±0.3 (↓4.7) 80.9±0.3 (↓5.8) 87.2±0.4 (↓3.5)
EN–ES 50.5±0.0 (↓19.6) 84.6±0.0 (↓3.0) 83.5±0.5 (↓5.9) 83.8±0.6 (↓5.3) 88.9±0.3 (↓3.0)
ES–DE 50.0±0.0 (↓21.0) 85.6±0.0 (↓2.8) 86.2±0.4 (↓4.3) 85.7±0.5 (↓4.6) 90.4±0.4 (↓1.9)
ES–EN 51.3±0.0 (↓15.4) 84.1±0.0 (↓2.9) 84.6±0.4 (↓0.4) 82.1±0.4 (↓6.7) 89.0±0.4 (↓2.4)
DE–ALL 59.9±0.0 (↓12.7) 87.2±0.0 (↓0.2) 86.3±0.4 (↓2.3) 85.9±0.5 (↓2.6) 90.8±0.1 (↓0.1)
EN–ALL 50.2±0.0 (↓15.1) 82.9±0.0 (↑0.2) 82.0±0.1 (↓1.8) 82.2±0.2 (↓2.1) 88.1±0.5 (↑0.2)
ES–ALL 50.0±0.0 (↓17.4) 84.8±0.0 (↓0.1) 85.3±0.2 (↓1.6) 85.2±0.5 (↓1.8) 89.8±0.3 (↓0.1)
ALL–ALL[3] 58.9±0.0 (0.0) 85.0±0.0 (0.0) 84.5±0.2 (0.0) 84.4±0.3 (0.0) 89.6±0.2 (0.0)

Table 4: Translationese classification accuracy of the ALL–ALL[3] model on all test sets (average and standard
deviations over 5 runs). The difference from actual trained model performance is indicated in parentheses.

Handcr. fastText Simpl. LSTM BERT
+SVM (FT) Trf.

DE–EN 53.0±0.5 (↓18,5) 71.0±0.3 (↓17.4) 79.3±0.4 (↓12.3) 79.9±0.5 (↓9.6) 85.5±0.4 (↓6.9)
DE–ES 51.3±0.3 (↓24.9) 73.2±0.3 (↓17.7) 81.4±0.3 (↓8.4) 79.0±0.5 (↓12.9) 87.9±0.3 (↓6.5)
EN–DE 48.3±0.1 (↓19.3) 65.8±0.2 (↓19.3) 74.2±1.0 (↓11.6) 72.9±0.4 (↓13.8) 79.0±0.5 (↓11.7)
EN–ES 50.3±0.1 (↓19.8) 68.9±0.3 (↓18.7) 76.8±0.6 (↓12.8) 75.6±0.8 (↓13.5) 83.2±0.4 (↓8.7)
ES–DE 50.0±0.0 (↓21.0) 71.1±0.2 (↓17.3) 78.8±0.5 (↓11.6) 76.0±0.7 (↓14.2) 83.8±0.3 (↓8.5)
ES–EN 53.2±0.5 (↓13.5) 69.9±0.2 (↓17.1) 76.7±0.6 (↓11.7) 75.4±0.7 (↓13.4) 82.8±0.2 (↓8.6)
DE–ALL 53.1±0.5 (↓19.5) 72.1±0.3 (↓15.3) 80.5±0.4 (↓8.1) 79.7±0.6 (↓8.8) 86.8±0.2 (↓4.1)
EN–ALL 48.4±0.2 (↓16.9) 67.0±0.2 (↓15.7) 75.4±0.9 (↓8.4) 74.4±0.5 (↓9.9) 81.1±0.1 (↓6.8)
ES–ALL 50.8±0.3 (↓16.6) 70.4±0.2 (↓14.5) 77.9±0.6 (↓9.1) 75.9±0.6 (↓11.1) 83.2±0.3 (↓6.7)
ALL–ALL[3] 53.2±0.3 (↓5.7) 70.5±0.2 (↓14.5) 77.9±0.2 (↓6.6) 76.7±0.5 (↓7.7) 83.7±0.1 (↓5.9)
ALL–ALL[8] 65.4±0.1 (0.0) 70.4±0.1 (0.0) 77.9±0.1 (0.0) 77.2±0.3 (0.0) 84.6±0.2 (0.0)

Table 5: As Table 4 for the ALL–ALL[8] model.

multilingual (ALL–ALL[3]) models on all test
sets for the neural architectures, as well as
Handcr.+SVM. We observe that the largest per-
formance drop (as compared to testing on ALL–
ALL[3] test set) happens for the EN–DE test set.
For the DE–ES set, the performance actually in-
creases for the neural models, but not for the
Handcr.+SVM. We extended this experiment in
Table 5, testing the ALL–ALL[8] on all test sets
to further complement our multilingual analysis
with more diverse languages and observe a simi-
lar trend, which is in line with the accuracy of the
ALL–ALL[3] models on all test sets.

We also compare the performance of ALL–
ALL[3] on different test sets to the original per-
formance of the models trained on these datasets
(in parentheses). There is a relatively larger drop in
accuracy for the TRG–SRC data, than for TRG–
ALL data. The largest drop for neural models
is 6.7 accuracy points whilst the smallest perfor-
mance drop for the Handcr.+SVM is 12.7. This
highlights the ability of the neural models to learn
features in a multilingual setting which general-
ize well to their component languages whereas the
Handcr.+SVM method does not seem to work

well for such a case. However, for ALL–ALL[8]
models, Table 5 shows a large performance drop
across all architectures as compared to the re-
sults from the models specifically trained for the
task. The actual models are trained on language-
specific features, whereas the ALL–ALL[8] model
is trained on more diverse data containing typo-
logically distant languages and thus captures less
targeted translationese signals.

In summary, we observe that:

• For a given target language, even though a neu-
ral model trained on one source language can
decently identify translationese from another
source language, the decrease in performance
is substantial.

• Neural models trained on multiple sources for
a given target language perform reasonably
well on single-source languages.

• Neural models trained on multilingual data
ALL–ALL[3] perform reasonably well on
monolingual data, especially for multi-source
monolingual data.
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Figure 1: Top 10 SVM features, as a function of the
absolute value of its feature weight.

• Using more source and target languages
(ALL–ALL[8]) leads to a larger decrease in
cross-testing accuracy.

6 Feature Importance and Relation to
Neural Models

In this section we aim to quantify the feature im-
portance of the hand-crafted linguistically inspired
features used in Handcr.+SVM according to dif-
ferent multilingual models (ALL–ALL[3] setting).

As we use a Support Vector Machine with a lin-
ear kernel, we can interpret the magnitude of the
feature weights as a feature importance measure.
Guyon et al. (2002) for instance, use the squared
SVM weights for feature selection. We rank the
features by the absolute value of the weight. The
feature ranks are listed in Appendix A.1. Figure 1
shows the top 10 features. Paragraph length is the
most relevant feature, and we observe that most of
the top features correspond to paragraph log proba-
bility. These features characterize simplification in
translationese.

To explore whether there is any correlation be-
tween the hand-crafted features and predictions of
the trained neural models, we conduct the follow-
ing experiment in the multilingual setting. We fit
a linear regression model for each hand-crafted
feature, using the estimated probabilities of neural
model as gold labels to be predicted. More for-
mally, with n paragraphs (pi, i = 1...n) in the test
set and d features, for each feature vector xj ∈ Rn,
j = 1...d we fit a model

y = wjxj + bj , (3)

where wj , bj ∈ R are the model parameters, and
y ∈ Rn is a vector of predictions of the neural
model F (LSTM, Simplified Transformer, BERT)
on the test set, with each dimension yi showing

the probability of a data point to belong to the
translationese class:

yi = P(F (pi) = 1) (4)

We apply min–max normalization to the features.
We find that a large proportion of the linguistically
motivated features are statistically significant for
predicting the neural models’ predicted probabili-
ties, namely 60 features (out of 108) are significant
for LSTM, 38 for the Simplified Transformer, and
56 for BERT, each with probability 99.9%. We
also fit the per-feature linear models to predict the
actual gold labels (and not the predictions of the
neural models) to investigate which features cor-
relate with the ground truth classes, and find 55
features to be statistically significant with 99.9%
probability. The full list of statistically significant
features for each model, as well as for the gold
labels is given in the Appendix A.1. We observe
that the features significant for the neural models
largely overlap with the features significant for the
gold labels: the F1-score (as a measure of overlap)
is 0.89 for LSTM, 0.75 for Simplified Transformer
and 0.99 for BERT. This is expected, because high-
performing neural models output probabilities that
are generally close to the gold labels, therefore a
similar correlation with hand-crafted features oc-
curs.

The R2 measure is further used to rank features
based on the amount of explained variance in pre-
dictions of a model. The top 10 features for pre-
dicting the predictions of each neural model and
for predicting the actual gold labels are displayed
in Figure 2. The order of top features is similar
across the neural models (pairwise rank correla-
tions ρSpearman of at least 0.76), and similar to,
but not identical to, the gold label results (pairwise
rank correlations ρSpearman of at least 0.75). We
observe that most of the top features are either POS-
perplexity-based, or bag-of-POS features. These
features characterize interference in translationese.
It also appears that more importance is attached to
perplexities based on unigrams and bigrams than
on other n-grams. Notably, the order of feature im-
portance for the neural models is highly dissimilar
from the order of hand-crafted feature weights for
the SVM (pairwise rank correlations ρSpearman at
most 0.23). This might be connected to an accuracy
gap between these models.

We conclude that many of hand-crafted trans-
lationese features are statistically significant for
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Figure 2: Top 10 features as a function of R2 · 10−3 for the neural architectures and the gold labels.

predicting the predictions of the neural models
(and actual gold labels). However, due to the
low R2 values, we cannot conclude that the hand-
crafted features explain the features learnt by the
representation-learning models.

7 Summary and Conclusion

This paper presents a systematic comparison of
the performance of feature-engineering-based and
feature-learning-based models on binary trans-
lationese classification tasks in various settings,
i.e., monolingual single-source data, monolingual
multi-source data, and multilingual multi-source
data. Additionally, we analyze neural architec-
tures to see how well the hand-crafted features
explain the variance in the predictions of neural
models. The results obtained in our experiments
show that, (i) representation-learning-based ap-
proaches outperform hand-crafted linguistically in-
spired feature-selection methods for translationese
classification on a wide range of tasks, (ii) the
features learned by feature-learning based meth-
ods generalise better to different multilingual tasks
and (iii) our multilingual experiments provide em-
pirical support for the existence of language inde-
pendent translationese features. We also examine
multiple neural architectures and confirm that trans-
lationese classification requires deep neural models

for optimum results. We have shown that many
traditional hand-crafted translationese features sig-
nificantly predict the output of representation learn-
ing models, but may not necessarily explain their
performance due to the weak correlation. Our ex-
periments also show that even though single-source
monolingual models yield the best performance,
they can, to a reasonable extent, be substituted by
multi-source mono- and multi-lingual models.

Our interpretability experiment provides only
some initial insight into the neural models’ perfor-
mance. Even though there are significant relation-
ships between many of the features and the neu-
ral models’ predicted probabilities, further experi-
ments are required to verify that the neural models
actually use something akin to these features. Also
our current approach ignores interaction between
the features. In the future, we plan to conduct a
more detailed analysis of the neural models’ deci-
sion making.
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A Appendix

A.1 List of hand-crafted features

Col. 3: SVM feature importance ranks (ranked by absolute feature weight) for the model trained on the
ALL–ALL[3] set.

Col. 4-7: Statistical significance of the features as predictors in per-feature linear regression with
respect to neural models’ predicted probabilities and gold labels (1 –significant with 99.9% confidence
level) on the ALL–ALL[3] test set.

ID Feature name SVM
rank

Simplified
Transformer

LSTM BERT Gold
labels

Surface features
0 Average word length 11 1 1 1 1
1 Syllable ratio 54 1 1 1 1
2 Paragraph length 1 0 1 1 1

Lexical features
3 Lexical density 19 0 1 1 1
4 Type-token ratio 16 0 0 0 0

Unigram bag-of-POS
5 POS Tag Ratio Adj 78 0 1 1 1
6 POS Tag Ratio Adp 40 1 1 1 1
7 POS Tag Ratio Adv 7 1 1 1 1
8 POS Tag Ratio Aux 83 0 0 0 0
9 POS Tag Ratio Cconj 80 0 0 0 0
10 POS Tag Ratio Det 18 1 1 1 1
11 POS Tag Ratio Intj 76 0 0 1 1
12 POS Tag Ratio Noun 15 1 1 1 1
13 POS Tag Ratio Num 46 0 0 0 0
14 POS Tag Ratio Part 89 0 0 0 0
15 POS Tag Ratio Pron 55 1 0 0 0
16 POS Tag Ratio Propn 26 0 1 1 1
17 POS Tag Ratio Punct 53 1 0 0 0
18 POS Tag Ratio Sconj 41 0 0 1 0
19 POS Tag Ratio Space 88 0 0 0 0
20 POS Tag Ratio Sym 66 0 0 0 0
21 POS Tag Ratio Verb 24 0 1 1 1
22 POS Tag Ratio X 2 1 1 1 1
SRILM language modelling features
23 LMtok fwd n=1 Log Prob 3 0 1 1 1
24 LMtok fwd n=1 Ppl 47 1 1 1 1
25 LMtok fwd n=1 Ppl−EOS 85 1 1 1 1
26 LMtok fwd n=2 Log Prob 20 0 1 1 1
27 LMtok fwd n=2 Ppl 45 0 0 0 0
28 LMtok fwd n=2 Ppl−EOS 96 0 0 0 0
29 LMtok fwd n=3 Log Prob 10 0 1 0 0
30 LMtok fwd n=3 Ppl 28 0 0 0 0
31 LMtok fwd n=3 Ppl−EOS 101 0 0 0 0
32 LMtok fwd n=4 Log Prob 14 0 1 0 0

Continued on next page



Table 6 – continued from previous page
ID Feature name SVM

rank
Simplified

Transformer
LSTM BERT Gold

labels
33 LMtok fwd n=4 Ppl 27 0 0 0 0
34 LMtok fwd n=4 Ppl−EOS 100 0 0 0 0
35 LMtok fwd n=5 Log Prob 57 0 1 0 0
36 LMtok fwd n=5 Ppl 29 0 0 0 0
37 LMtok fwd n=5 Ppl−EOS 102 0 0 0 0
38 LMtok bck n=1 Log Prob 4 0 1 1 1
39 LMtok bck n=1 Ppl 48 1 1 1 1
40 LMtok bck n=1 Ppl−EOS 86 1 1 1 1
41 LMtok bck n=2 Log Prob 17 0 1 1 1
42 LMtok bck n=2 Ppl 52 0 0 0 0
43 LMtok bck n=2 Ppl−EOS 95 0 0 0 0
44 LMtok bck n=3 Log Prob 25 0 1 0 0
45 LMtok bck n=3 Ppl 32 0 0 0 0
46 LMtok bck n=3 Ppl−EOS 98 0 0 0 0
47 LMtok bck n=4 Log Prob 30 0 1 0 0
48 LMtok bck n=4 Ppl 31 0 0 0 0
49 LMtok bck n=4 Ppl−EOS 97 0 0 0 0
50 LMtok bck n=5 Log Prob 61 0 1 0 0
51 LMtok bck n=5 Ppl 37 0 0 0 0
52 LMtok bck n=5 Ppl−EOS 99 0 0 0 0
53 LMPOS fwd n=1 Log Prob 8 0 1 1 1
54 LMPOS fwd n=1 Ppl 33 1 1 1 1
55 LMPOS fwd n=1 Ppl−EOS 58 1 1 1 1
56 LMPOS fwd n=2 Log Prob 5 0 1 0 0
57 LMPOS fwd n=2 Ppl 22 1 1 1 1
58 LMPOS fwd n=2 Ppl−EOS 93 1 1 1 1
59 LMPOS fwd n=3 Log Prob 12 0 1 1 1
60 LMPOS fwd n=3 Ppl 63 1 1 1 1
61 LMPOS fwd n=3 Ppl−EOS 106 1 1 1 1
62 LMPOS fwd n=4 Log Prob 43 0 1 1 1
63 LMPOS fwd n=4 Ppl 38 1 1 1 1
64 LMPOS fwd n=4 Ppl−EOS 104 1 1 1 1
65 LMPOS fwd n=5 Log Prob 75 0 1 1 1
66 LMPOS fwd n=5 Ppl 35 1 1 1 1
67 LMPOS fwd n=5 Ppl−EOS 103 1 1 1 1
68 LMPOS bck n=1 Log Prob 9 0 1 1 1
69 LMPOS bck n=1 Ppl 34 1 1 1 1
70 LMPOS bck n=1 Ppl−EOS 59 1 1 1 1
71 LMPOS bck n=2 Log Prob 6 0 1 0 0
72 LMPOS bck n=2 Ppl 23 1 1 1 1
73 LMPOS bck n=2 Ppl−EOS 94 1 1 1 1
74 LMPOS bck n=3 Log Prob 13 0 1 1 1
75 LMPOS bck n=3 Ppl 68 1 1 1 1
76 LMPOS bck n=3 Ppl−EOS 108 1 1 1 1
77 LMPOS bck n=4 Log Prob 42 0 1 1 1
78 LMPOS bck n=4 Ppl 51 1 1 1 1

Continued on next page



Table 6 – continued from previous page
ID Feature name SVM

rank
Simplified

Transformer
LSTM BERT Gold

labels
79 LMPOS bck n=4 Ppl−EOS 107 1 1 1 1
80 LMPOS bck n=5 Log Prob 67 0 1 1 1
81 LMPOS bck n=5 Ppl 44 1 1 1 1
82 LMPOS bck n=5 Ppl−EOS 105 1 1 1 1
N-gram freq. quartile distribution features
83 % unigrams from freq. quartile 1 50 0 0 1 1
84 % unigrams from freq. quartile 2 39 1 1 1 1
85 % unigrams from freq. quartile 3 65 0 0 0 0
86 % unigrams from freq. quartile 4 90 1 1 1 1
87 % OOV unigrams 21 1 1 1 1
88 % bigrams from freq. quartile 1 36 1 1 0 0
89 % bigrams from freq. quartile 2 79 1 0 1 1
90 % bigrams from freq. quartile 3 70 0 0 0 0
91 % bigrams from freq. quartile 4 60 0 0 0 0
92 % OOV bigrams 69 0 0 0 0
93 % trigrams from freq. quartile 1 77 0 0 0 0
94 % trigrams from freq. quartile 2 49 0 0 0 0
95 % trigrams from freq. quartile 3 56 0 0 0 0
96 % trigrams from freq. quartile 4 64 0 0 0 0
97 % OOV trigrams 81 0 0 0 0
98 % 4-grams from freq. quartile 1 82 0 0 1 1
99 % 4-grams from freq. quartile 2 73 0 0 0 0
100 % 4-grams from freq. quartile 3 72 0 0 0 0
101 % 4-grams from freq. quartile 4 74 0 0 0 0
102 % OOV 4-grams 62 0 0 0 0
103 % 5-grams from freq. quartile 1 84 0 0 0 0
104 % 5-grams from freq. quartile 2 87 0 0 0 0
105 % 5-grams from freq. quartile 3 91 0 0 0 0
106 % 5-grams from freq. quartile 4 92 0 0 0 0
107 % OOV 5-grams 71 0 0 0 0



A.2 Simplified Transformer

The simplified transformer differs from the stan-
dard transformer in the following ways:

1. A cumulative sum-based contextualisation
layer is used instead of positional encodings.

2. The attention computation is reduced to
element-wise operations and has no feedfor-
ward connections.

A.2.1 Encoder
The encoder consists a contextualisation and atten-
tion layer with residual connections between both
sublayers followed by layer normalisation.

A.2.2 Contextualisation
Given an input sequence S = s1, s2, ..., sL, we
obtain an embeddings matrix X ∈ RD×L. The
embeddings matrix X is fed into the contextualisa-
tion layer of the transformer to obtain contextual
embeddings X̂ ∈ RD×L. We begin by taking a
cumulative sum of the sequence of the embeddings
X as the context matrix

C =
L∑

j=1

X:j (5)

followed by a column-wise dot product between the
embeddings matrix (X) and the generated context
(C) to get weights w ∈ R1×L:

wj = Xj · Cj (6)

where j is the position of a word in the sequence
X , w is a row vector and wj is a scalar at position
j. The original embeddings matrix (X) is then mul-
tiplied element-wise with the weights w to obtain a
contextualised representation of the sequence (X̂):

X̂ = Xij · wj (7)

A.2.3 Attention
The attention takes 3 inputs: query, key and value.
The output of the contextualisation layer (X̂) is fed
in as both the query and value. The context matrix
(C) is fed in as the key. The query and key are
passed through a feature map to obtain Q and K
respectively. The feature map (8) ensures Q and
K are always positive. Therefore we can simplify
softmax to the first term in the product in (13): the
Energy simply scaled by the sum of the Energies.

The attention computation is formalised as follows:

Feature map(x) = gelu(x) + 1 (8)

Q = |Feature map(query)| (9)

K = |Feature map(key)| (10)

V = value (11)

Energy(E) =
Qij ·Kij√

D
(12)

Attention(A) =
Ej∑L
j=1Ej

· V (13)

A.2.4 Decoder
The decoder consists of two blocks. The first block
is similar to the encoder block with a contextuali-
sation layer and attention layer with residual con-
nections between both sublayers followed by layer
normalisation. The second block is another atten-
tion layer with residual connection to the previous
block followed by a layer normalisation. In the
second block, the output of the first block is fed in
as the query and the output of the encoder block
is fed in as the value. The key is the sum of the
encoder’s embedding matrix (X). This sum opera-
tion can be skipped by taking the last column of the
encoder’s context matrix (C). The decoder output
(Y ∈ RD×L) is pooled (average) and the resulting
D × 1 vector is passed to a classifier.



A.3 Handcrafted Feature-based SVM
Baseline

For the POS-trigrams and character-trigrams base-
lines we implement the setup from Rabinovich and
Wintner (2015) (and, respectively, Volansky et al.
(2015)). In both cases we only take 1000 most
frequent trigrams. The values correspond to the
relative frequency of the trigram in the paragraph
normalized by the total number of trigrams in the
paragraph. For POS-trigrams, we pad the para-
graphs with special start-of-string and end-of-string
tokens. For character trigrams, we pad each word
in this way, and avoid cross-token trigrams, as well
as punctuation. Results are displayed in Table 7.

Rabinovich and Wintner (2015) report much
higher accuracy (> 90) on their Europarl data: they
classify text chunks of 2000 tokens, while we re-
port results on paragraphs with average length of
around 80 tokens.

POS-trigrams char-trigrams

DE–EN 76.6±0.0 (↑5.1) 67.5±0.0 (↓4.1)
DE–ES 80.3±0.0 (↑4.1) 71.2±0.0 (↓5.0)
EN–DE 73.1±0.0 (↑5.5) 62.9±0.0 (↓4.8)
EN–ES 73.4±0.0 (↑3.4) 66.1±0.0 (↓4.0)
ES–DE 76.1±0.0 (↑5.1) 66.6±0.0 (↓4.4)
ES–EN 74.2±0.0 (↑7.6) 64.4±0.0 (↓2.3)
DE–ALL 76.7±0.0 (↑4.1) 68.4±0.0 (↓4.2)
EN–ALL 69.7±0.0 (↑4.4) 62.1±0.0 (↓3.3)
ES–ALL 72.9±0.0 (↑5.5) 63.3±0.0 (↓4.1)
ALL–ALL[3] 66.6±0.0 (↑7.6) 62.2±0.1 (↑3.3)
ALL–ALL[8] 61.6±0.0 (↓3.8) 61.5±0.0 (↓3.9)

Table 7: Test accuracy of baseline systems imple-
mented from (Rabinovich and Wintner, 2015). The
mean and the standard deviations over 5 runs are re-
ported. The difference from the Handcr.+SVMmodel
is indicated in parentheses.


