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Chapter 1

Introduction

Language is one of the richest ways to communicate. When speaking, the informa-

tion encoded in words is complemented by the intonation used, the corporal lan-

guage, and possibly by external signs. Our own knowledge of the world is sometimes

necessary to understand the meaning as well. In written texts, all the information

must be encoded by the words, but still the meaning can be ambiguous and the en-

vironment and the culture of the reader condition the understanding of the message.

All these facts, tone, intention or knowledge, are inherent to humans but are

difficult to be taken into account by machines. Natural Language Processing (NLP)

is the field within Artificial Intelligence that deals with this problem. Understanding,

generation or translation are general tasks treated by NLP and among them this

work is focused on Machine Translation (MT).

The beginnings of MT [20, 39] date back to even before the general availability

of computers, but it was not until 1949 when the Warren Weaver’s memorandum

[43] emphasised the possibility of using the recently invented digital computers to

translate documents between a pair of natural languages. The 1950s where very

optimistic and productive, but in the 1960s there was an increasing acknowledgement

of the linguistic difficulties. This discouragement culminated with the report of

the Automatic Language Advisory Committee (ALPAC) in 1966 [1], where it was

concluded that “there is no immediate or predictable prospect of useful Machine

Translation”. The lack of interest and fundings due to the report in some countries

such as the United States lasted almost two decades, but during the 1980s the

field emerged again, now with the improvement given by faster computers and new

1



2 Chapter 1. Introduction

developed NLP tools. In the 1990s, statistical approaches emerged and, nowadays,

this is one of the most successful paradigm.

The improvements coincided as well with more realistic and delimited expec-

tations of what MT can do. An MT system can be good for a given domain for

instance, just as a human translator can do better in specific domains. Or in open

domains, MT can help in human translations or in getting an approximate translated

version of virtually any web page.

1.1 Classification of MT systems

MT systems can be classified according to their usage. Some systems are designed

for machine-aided translation, both for Human Translation with Machine Support

and for Machine Translation with Human Support. Here we are more interested in

the third type, Fully Automated Translation, systems that traditionally preferred

speed over quality and that were useful to get an overall idea of text contents, but

that are every time more concerned about quality.

The amount and the linguistic techniques classify MT systems in direct, transfer

and interlingua approaches. The direct approach does a straightforward transla-

tion word-by-word or nowadays phrase-by-phrase. The very firsts systems such as

the Mark II system and the Georgetown GAT system used the direct approach for

the Russian-English language pair. Later, at late 1970s, there were systems which

gave more importance to linguistics. In those transfer systems there is a syntactic

analysis of the sentences of the source language which results in an abstract repre-

sentation of the sentences. This abstract representation is transferred to the abstract

representation of the target language, and then, the output is generated from this

representation. For the interlingua approach the abstract representation is assumed

to be unique for every language.

Another dimension for MT classification is the architecture of the system. Ac-

cording to that we distinguish between rule-based systems and empirical systems.

Rule-based systems need a group of human experts to establish the set of rules that

drives the translation process. This is usually slow, expensive and not portable,

but one obtains high quality syntactics for the translated output. Although both

architectures deal with the three degrees of linguistic processing, rule-based systems
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are usually characterised by doing a syntactic or semantic analysis, and therefore

perform a transfer step. On the other hand, empirical systems were based in their

beginnings in a direct translation but some current systems perform some linguis-

tic analysis as well. Empirical or data oriented systems need a parallel translated

corpus to learn automatically and so there is no need for human contributions at

least during the translation process. The learning during the training step can be

of different kinds; one can learn syntactic rules or lexical translation of phrases for

instance.

Within empirical systems two main approaches can be pointed out: Example-

based Machine Translation (EBMT) and Statistical Machine Translation (SMT). In

the first case, EBMT, new translations are formed on the basis of the previously

compiled translations. In the second case, SMT, one considers that each sentence of

the target language is a possible translation of a sentence in the source language and

assigns a probability to each of them. The main system used in this work belongs

to SMT, and Section 2.1 is a review of SMT fundamentals.

1.2 Difficulties and virtues of MT

As we have seen, natural languages are very complex by themselves. There are

multiple ways of saying the same thing and a same sentence can have different

meanings according to the context or the intention. Besides, every language is

representative of a culture, and therefore, there are distinctive features and nuances

which cannot be translated from one to another.

Synonymy and especially ambiguity are the major problems for a machine to

translate. Ellipsis also make more difficult the task, since the missing information

that for a human is understood, is lacking for a computer. These smaller tasks

are studied independently within NLP, and their incorporation should contribute

to the quality of the translation. Nowadays, however, there are not MT systems

that generate general high quality translations under the point of view of a human,

although good results for restricted domains can be obtained.

These facts should not discredit fully automatic MT, but one must be aware of

its limitations. Translating is a very ambitious goal and computers can help in the

task. An MT-translated text can help a human to understand the topic of the text
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in a very fast way. Or MT systems can be designed to work with a specific task and

get an acceptable output. But these outputs must be revised by a human translator,

as human translations are. The usefulness of MT then, lies in the relation between

quality, speed and necessity. MT is useful when one needs a coarse or fast translation

and when helps humans to obtain high quality results after a post-edition. This does

not mean that one has to forget about getting as close as possible to a really fully

automatic high quality translation.

As for the concrete case of SMT, the main advantage is that the systems are in

general language independent. There is no need to develop specific tools for every

language, and the only essential element is a parallel corpus. Of course, systems can

be refined according to the language, but the core of the system remains the same.

On the other hand, since they train over a corpus, the quality of the translation

does depend on whether the sentences belong to the same domain of the corpus

or not. That is general to all statistical-based NLP. Therefore, SMT systems are

fully automatic, general, fast, and give competitive results, but the latter can be

compromised when used in a different domain than the training corpus.

1.3 This work

The aim of this work is to apply MT techniques to translate from Arabic to English

in the context of the 2008 NIST Machine Translation Open evaluation1.

For the core of the system we choose a SMT architecture. With a standard SMT

system we check the improvements given by adding linguistic information, that is,

maximise the probability not only of the sequence of words, but of its lemma, part-

of-speech and chunk as well. We increase the amount of linguistic knowledge but we

also increase the sparsity in the corpus because the combination of features increases

the vocabulary. We explore several approaches to these combinations.

As a second method, we use machine learning (ML) techniques to select the most

adequate translation phrases and combine them with the output of the SMT sys-

tem. We treat the translation task as a classification problem and use the linguistic

information and the context of each word as features to train the classifiers. This

1http://www.nist.gov/speech/tests/mt/2008/
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methodology is used in Word Sense Disambiguation and should help to select the

correct translation of a phrase according to its context. We analyse the results of

this subtask and quantify the impact in the results. The output of this phase is

inserted into the SMT system by enlarging the translation table with every sense

of a phrase and with the inclusion of a new probability score, which accounts for

the result of the classifier. We compare the results with and without this additional

information. This combination of SMT and ML, MLT, is our final proposal for the

Arabic-to-English SMT system.

The outline of the report is as follows. The following chapter is devoted to sum-

marise the basics of statistical machine translation and to sketch the main aspects

of Arabic which are important in the translation process. Chapter 3 describes the

data at our disposal, the preprocess applied to the corpora and the architecture of

our systems. Chapter 4 shows the results for both the base SMT systems and the

hybrid ones with the inclusion of the disambiguated phrases. Finally, we draw our

conclusions in the last chapter and indicate some possible improvements for our final

system.
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Chapter 2

Background

When dealing with Machine Translation there are two main aspects that must be

taken into account: the approach to be used for translating and the characteristics

of the language pair involved. This chapter shows the basics of the MT models

used in this work, and gives a general description of our source language, Arabic, in

comparison to the target one, English.

2.1 Statistical Machine Translation

We describe in this section SMT as a fully automatic, direct, empirical system.

There exists several modifications and extensions to this basic system, but next we

start by summarising the foundations of a general SMT system.

2.1.1 Word-based SMT

The probabilistic approach to machine translation assigns as translation of an input

sentence in a source language the sentence in the target language that maximizes

probability. That is, one must generate all the possible translations for a given

sentence, calculate their probability P (output|input), and then explore the space

to look for the most probable one. In the following, and in order to maintain the

usual notation, we will denote with the letter e (from English) the translated output

7
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sentence and with f (from foreing) the input one.

Even though the final goal is to find the sentence e which maximises P (e|f), the

current statistical machine translation models are based on the contrary assump-

tion. The justification lies on the usage of the Bayes theorem which relates both

conditional probabilities:

P (e|f) =
P (e) P (f |e)

P (f)
. (2.1)

In words, the probability that e is a translation of f can be written as the

product of the conditional probability of f given the input sentence e, P (f |e), and

the a priori probability of e by itself, P (e). Since P (f) is independent of e, it acts

as just a normalization factor. Finding the sentence e that maximises P (e|f) is then

equivalent to maximise the likelihood:

T (f) = ê = argmaxe P (e|f) = argmaxe P (e) P (f |e) . (2.2)

The calculation of P (f |e) is in principle as hard as the calculation of P (e|f), so,

under this point of view, this longer path would not be worthy. The improvement

comes from the fact that we are now taking into account the language model P (e),

that is, a collection of probability scores of word sequences in a language that takes

care of the correctness and fluency of the output sentence with independence that it

is a good translation or not. That for instance penalises an output sentence which

is a translation of the input word by word but with an incorrect grammatical order.

These probabilities, P (e) and P (f |e), represent the language model and the

translation model respectively. The first one only needs data in the target language

to be estimated, the second one needs to extract relations from data in both the

target and the source language. The third task, finding argmax, requires a search

in a huge space which is exponential on the size of the input, and it is done by the

decoder.
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2.1.1.1 Language model

The language model is then the part that takes care of the fluency in the target lan-

guage. It could be easily calculated by a count on the corpus, being the probability

of a sentence e the number of times it appears in the corpus N with respect to the

total number of sentences, that is, the maximum likelihood estimate:

P (e) =
Ne

Nsentences

. (2.3)

Even though these models are not practical because the corpus is not going to

have all the possible sentences, some realistic models are based on this simple idea.

So as to avoid correct sentences with a null probability just because they do not

appear in the corpus, the counting is not done over the whole sentence, but over

small groups of n words, n-grams. The probability for each of these n-grams is the

number of times that these words are seen together divided by the number of times

the last n − 1 words appear together. The total probability of a sentence e is the

product of the probabilities of its n-grams.

The chances of finding all the n-grams within the corpus is higher that finding

the whole sentence, but of course it is not assured. Since P (e|f) ∝ P (e) the lack of

an n-gram in the corpus invalidates the sentence as an acceptable translation. This

is solved by smoothing techniques which keep part of the probability mass to unseen

n-grams.

We show as an example a trigram model. When smoothing the probability of

the trigram w1, w2, w3 is not only Nw1,w2,w3/Nw1,w2 but part of the probability mass

is given to the lower order n-grams (Eq. 2.4). The dominant term (with weight λ3)

is still Nw1,w2,w3/Nw1,w2, but the bigram w2, w3 and the word w3 do contribute as

well. In general, every word has a non-null probability even if it is not in the corpus

and therefore, P (e) is not going to be zero because of an unseen word in the training

corpus. The weights λ0, λ1, λ2 and λ3, the smoothing coefficients, are fit with the

development set.

P (w3|w1, w2) = λ3
Nw1,w2,w3

Nw1,w2

+ λ2
Nw2,w3

Nw2

+ λ1
Nw3

Nw
+ λ0 (2.4)
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There are several smoothing techniques. The one which just served as example

is a lineal interpolation where for every n-gram the lower order ones are also used.

Others such as the back-off models, only use the lower orders when the n-gram is

not in the corpus. The calculations in this work use an interpolation that discounts

an amount from each n-gram in the corpus. The probability of the low order terms

is in this case proportional to the number of the different words that precede it

(Kneser-Ney smoothing [22, 11]). That makes loose weight to words such as York

if they always appear preceded by the same word, as it happens with New.

2.1.1.2 Translation models: IBM models

The second component involved in the process of translation is the translation model

P (f |e) (see Ref. [5] for a review). To estimate it, it is necessary to extract the infor-

mation from an aligned parallel corpus with a one to one correspondence between

the source and target languages. In an intuitive way, one can see the important

ingredients to model the translation:

One needs to know the translation of every word and the number of words

necessary in the target language, the position they occupy within the sentence and

the number of words that need to be generated. So, the translation model has

several contributions:

• the probability that blava generates the translation blue t(blue|blava): lexical

probability,

• the probability that blava generates x words n(x|blue): fertility,

• the probability that blava in the i position generates blue in the j position

d(j|i, m, n): distortion (where m is the length of the input sentence and n of

the output one),
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• and the probability that a spurious word is generated p1. These words are

generated from the NULL position which is assigned as the zeroth position of

every input sentence.

Alignments

All of these contributions could be calculated by a straightforward counting with

parallel corpora aligned not only at a sentence level but at a word level too. Since

this kind of corpus is not available, one must construct the alignments as a first step

of every translation model.

An alignment is represented by a vector of integers, with length the number of

translated words and with every component indicating the position of the word in

the original sentence.

The probability of one alignment a, P (a, f |e), is a function of the words in the

sentence pair and the probability tables n, p, t, and d as introduced at the beginning

of the section [5]. The final translation probability of the sentence pair f -e is the

sum of that of every possible alignment and is estimated via unsupervised learning

from a corpus:

P (f |e) =
∑

a

P (a, f |e) (2.5)

Models

The firsts models for SMT defining P (f |e) were proposed at the beginning of the

90’s by Brown et al. [5]. These so-called IBM models are still widely used. The

models go from 1 to 5 in an increasing complexity. Given the prohibitive number

of parameters to be determined during translation, the first models, with strong

enough assumptions so as to allow exact calculations, are used as the seed for the

last and more reliable models.

Model 1 uses the translation probability alone t(fi|ei); the length of the trans-

lated sentence is fixed with all the possible lengths equiprobable, the fertility is

assumed to be 1 for every word, NULL included, and all distortions with the length
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of the sentence known are equiprobable. With these simplifications, the iterative

Expectation-Maximization algorithm [12] drives to an absolute and unique minimum

which does not lead to good alignment probabilities.

Model 2 introduces a slight improvement: it takes into account distortion and,

therefore, the position of the word within the sentence. Model 1 is just a particular

case where distortion is fixed to 1/(n+1)1. This way, Model 1’s results can be taken

as initial parameters for Model 2.

Model 3 uses a combination of translation probabilities, distortion and fertili-

ties. However, since the distortion probabilities are independent from one word to

another, some positions can be occupied by several words and others remain empty.

The initial values for t(fi|ei) and d(j|i, m, n) can be those given by Model 2.

Model 4 is already a step towards a translation based on phrases instead of

words. We define as a phrase a group of words that usually go together and must,

therefore, move together within the sentence. This changes the form of the distortion

probability and two components are needed: one indicating the position of the head

words and another one for the others.

Finally, Model 5 takes into account that two translated words cannot occupy the

same position.

2.1.2 Phrased-based SMT

The model introduced in the previous section is the core of the current state-of-the-

art of Statistical Machine Translation. However, it was soon noticed that translation

is not a word to word process, and that the information of surrounding words would

help and that one word could be translated into more than one element. This mo-

tivated the usage of phrases as translation units. Within this context, a phrase is a

sequence of words that appear together in the source sentence, but it is not neces-

sarily defined according to the syntactic structure of the sentence (see an example

in Figure 2.1).

1Distortion in Model 2 and the one defined in the previous section are defined as inverse con-
ditional probabilities.
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Figure 2.1: Example of all the extracted phrases which are coherent with the shown

alignments.

The firsts attempts to consider phrases as the atomic units defined the phrases

from word alignments, that is, two phrases are aligned when its words are only

aligned within its limits and never outside the phrase [37]. Once the alignment

between phrases is established, the word alignments are not necessary any more

[25].

Word alignment is an active field of research. There exist several heuristics used

to combine the alignments obtained from the two translation directions to improve

the final result:

• Intersection of the alignments in the two directions. It is the most restrictive

combination, and, therefore, gives high-precision alignments and the largest

number of extracted phrases.

• Contrary to the previous one, the union produces less phrases due to the larger

number of alignment points.

• Starting with the intersection and adding some additional alignment points,

some grow heuristics refine the final alignment. The heuristics grow [36] and

grow-diag-final [25] are used in this work and add those points belonging to

the union that connect at least one word which was not yet aligned.

Once selected all the phrases consistent with the alignments, the phrase trans-

lation probability can be calculated by relative frequency. Each source phrase f̄i is
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then translated into one phrase in the target language ēi, and afterwards the output

phrases are reordered according to the distortion probability.

There are several extensions to phrase-based models. In the following, we intro-

duce two of them, the ones being used in this work.

2.1.2.1 Log-linear Model

The Log-linear Model is an extension to the original phrase-based approach. It uses

the fact that the maximum likelihood estimate equals the maximum entropy one

in order to move from the product of probabilities, Eq. 2.2, to a linear sum of its

logarithms hm [34]:

argmax P (e|f) = argmax
∑

m

λmhm(f |e) . (2.6)

Rewritten in this way, it is easy to include additional information. Besides the

language and translation model, this extra information can be a distortion model

Pdi(e, f) accounting for the amount of reordering, or a word (phrase) penalty model,

accounting for the length of the output. Word penalty w(e) takes care of the length

of the whole translated sentence and phrase penalty ph(e) of the average length

of phrases [44]. In both cases negative values favour longer outputs. All these

additional models are described by a function h(·) and its corresponding weight λ is

adjust with an independent development set with the minimum error rate training

for instance.

2.1.2.2 Factored Translation Models

Another approach designed to include additional information are the so-called fac-

tored models [23]. This extension to phrase-based models considers instead of a

single word a vector of factors each of them representing a feature with some lin-

guistic information. This extra information might be morphological, syntactic or

semantic; it can include the lemma, part of speech, chunk label, statistically derived

word classes, case, gender or whatever feature relevant to the language pair to be

translated. This can be useful for morphologically rich languages such as Arabic;
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however, the larger the vector of factors the slower the translation process, and even

more important, it sometimes represents a prohibitive time for training.

The process of translation is divided here in several mapping steps of two kinds.

The first kind translates source factors into the target ones. The second kind gen-

erates the final surface form of the word in the target language given the set of

linguistic factors already in the target language. For example, one could first trans-

late lemmas and morphological information separately and then generate the surface

word given that translated lemma and morphology:

All the components are combined in a log-linear model. Every translation and

generation step is treated as a function h(f |e) as the language model or the re-

ordering model are. This kind of models, factored models and in general log-linear

models, have been implemented in the Moses package [26].

2.2 Hybrid Machine Translation

We have seen in the Introduction that SMT systems are not the only approach to

machine translation, and that the branch of transfer systems is as important and

effective at least in some language pairs. This is especially valid for languages with

very different syntax and rich morphology. It can be therefore interesting to get the

best aspect of each approach to improve the final result. Given the large amount of

models which combine both approaches or others available, we focus here in those

that make use of Word Sense Disambiguation techniques (WSD) to help in the

translation process within a SMT system.
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2.2.1 Discriminative phrase selection

The hybrid systems used in this work are based on a SMT one, but we use linguistic

information and the surrounding context in order to translate phrases. It is not a

Syntax-based System, but it uses WSD techniques to select the phrases. The general

WSD task tries to identify which sense of a word must be used in a given sentence.

Here, we understand the different translations of a phrase as different senses of

that phrase, and try to identify which one is the most adequate given the sentence.

Contrary to factored models, this allows to take into account the context of each

phrase to translate it, and phrase selection is treated as a classification problem

instead of a translation probability given by relative frequency counts.

There are several recent methods in the literature to integrate WSD techniques

into the translation process. In 2005, Carpuat and Wu [8] used the WSD predictions

to constrain the possible translations available in decoding time. In the same year

Vickrey et al. [42] applied discriminative models for word selection but used in a

blank-filling task instead of full translation. This work was first extended to the full

translation task [6, 7] and afterwards to translate phrases instead of words [9, 10].

Carpuat and Wu, the authors of Ref. [9], have developed a WSD system which

combines näıve Bayes, maximum entropy, boosting and kernel PCA-based models.

Bangalore et al. [3] rely on a maximum entropy model. Here, we use the model of

Giménez and Màrquez [19] based on the use of Support Vector Machines (SVM)

to solve the multi-class classification problem where every possible translation is a

class.

In that model, given the phrases extracted from the parallel corpus, each oc-

currence of a phrase is taken as a positive example for its current translation and

negative for the rest. This way the multi-class problem is binarized and converted

in a one-vs-all decision as it is graphically seen in Figure 2.2. The feature set for

each example contains information of the source phrase such as lemma, PoS, and

chunk labels for the phrase itself and a context, let’s say 5 words to the left and to

the right, by taking n-grams of the linguistic information.

The result of this model as to its application to machine translation is a proba-

bility table PDPT(e|f). However, not every phrase will have a DPT (Discriminative

Phrase Translation) prediction, since the number of examples must be reasonable
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Figure 2.2: Example of the translation of the phrase apuntis. The true translation is a

positive example to train the SMV; the other possible translations are negative examples.

to train the classifier and the table must be completed with the standard MLE

(Maximum Likelihood Estimation) table. The final probability is included in the

translation system as a component of a log-linear model:

log P (e|f) ∝ λlm log P (e) + λlg log lex(f |e) + λld log lex(e|f)

+λg log PMLE(f |e) + λd log PMLE(e|f) + λDPT log PDPT(e|f)

+λdi log Pdi(e, f) + λph log ph(e) + λw log w(e) , (2.7)

where P (e) is the language model probability, lex(f |e) and lex(e|f) are the gener-

ative and discriminative lexical translation probabilities respectively, PMLE(f |e) the

MLE generative translation model, PMLE(e|f) the discriminative one, PDPT(e|f) the

DPT model, Pdi(e, f) the distortion model and ph(e) and w(e) correspond to the

phrase and word penalty models.

2.3 Evaluation

Evaluation in MT is an active research field since it is difficult to define what makes

good a translation given that there is not a unique translation for an input. A



18 Chapter 2. Background

system can be evaluated both by humans or automatically.

Manual evaluation is slow and subjective, but one can qualify aspects which

cannot be evaluated by a computer. On the other hand, automatic evaluation uses

objective metrics that allow for a fast qualification of the translation, but not every

detail can be grasped by a metric. In order to compare in an objective and fast

way several systems, this work uses an automatic evaluation, but one must take into

account that that is just comparing the aspects that the used metric does.

There exists several metrics. We focus here in those based on the lexical simi-

larities (number of coincident n-grams) between the automatic translation and hu-

man reference translations. Just to name some WER [31], PER [41], NIST [14],

GTM [30], ROUGE [28], BLANC [29], METEOR [2] and BLEU [38] are n-gram

based metrics. BLEU (Bilingual Evaluation Understudy) is one of the most used

metrics and the one we use as a reference in our results. It calculates an score that

depends on the coincident n-grams up to order 4. As all these metrics have in com-

mon, this score only takes into account how fluent the output is and how equal to a

reference is, but it does not evaluate if the translation captures the meaning of the

input.

2.4 Language pair

All human beings are born free and equal in dignity and rights. They are endowed

with reason and conscience and should act towards one another in a spirit of

brotherhood.

(Article 1 of the Universal Declaration of Human Rights)

The nature of the language pair is an important aspect in the translation process,

and one should refine and adapt the general machine translation system in order
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to catch its peculiarities. In the following, we sketch the main features of the two

languages involved in our translation system. Due to the larger differences with

Latin languages, this section focuses on Arabic with just some insights into English.

2.4.1 Arabic

Arabic is a Semitic language belonging to the Afro-Asiatic family. More that 200

million people speak one of the numerous Arabic dialects, and all of them have as

a standard language the Koranic one. After some modifications the language in the

Koran has evolved from being the classical Arabic to the be considered the modern

literary language.

As all of the Semitic languages, Arabic is written from right to left and from top

to bottom. Numbers, however, are written from left to right in the right to left text.

In Modern Standard Arabic, numbers are usually written as Indian numerals while

it is in Moroccan Arabic that numbers are written as what we call Arabic numerals.

Corpora for MT mix both forms:

The syntax, contrary to Catalan or English for instance, follows a VSO structure

(verb-subject-objects). There are also copular sentences without any verb.

The Arabic script is an alphabet with allographic variants, diacritics and liga-

tures. Each character has four allographs depending on its position within the word:

initial, medial, final or as stand alone. The alphabet is composed by 25 consonants,

3 semi-consonants, 3 short vowels, 3 long vowels and 2 diphthongs. The short vow-

els, fatha, kasra and damma, are not letters themselves but diacritics written above

or below consonants. Other diacritics are also used as a non-vowel mark (sukun), as

a double consonant mark (shadda), or as a letter itself (hamza). Figure 2.3 shows

some examples of the diacritics when added to the letter baa.

However, diacritics are not usually seen in written texts. They appear in the
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Figure 2.3: Diacritics used in the Arabic script, here added to the letter baa.

Koran, in some other religious texts, classical poetry, textbooks or in complex texts

to avoid ambiguity. However, in most cases, when pronunciation is not especially

important, texts are non-vocalized and non-diacritized. This is mostly the case of the

corpora used for MT. Another character to comment is tatweel, used as elongation

for text highlight or justification. It can be therefore eliminated from the corpora

before training.

Appendix A lists the characters and shows the Arabic glyphs. The same table

shows the Buckwalter transliteration which will be introduced in Section 3.3.1 as

the commonly used romanization system in NLP. Romanization is useful to equate

Arabic and Latin scripts in order to be treated homogeneously by machines. Besides,

it eases the understanding for those not familiarised with the Arabic phonetics.

Words are formed by combination of the previous elements sometimes joined

together by ligatures. A full word agglutinates to the root affixes and clitics. Affixes

mark tense, genus and number. Clitics are divided in proclitics (before the root)

and enclitics (at the end of the word). Proclitics are prepositions, conjunctions and

determiners; enclitics are pronouns and possessives.

Let us see an example. The syntactic phrase and by their virtues is written in

Arabic as an only word ����� ��	 
��  (or wbHsnAthm using Buckwalter’s translitera-

tion). The word can be morphologically segmented as:

enclitic affix stem proclitics

hm At Hsn b w

(their) (s) (virtue) (by) (and)

where it is taken into account that Arabic is read from right to left. More examples

and the full set of clitics are introduced with the tokenization of the corpora in

Section 3.3.1.
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2.4.2 English

English is an Indo-European language with Latin writing. It is spoken by more

than 300 million people as first language and it is usually the target language for

translation when the system is not designed for a concrete purpose.

Besides the fact that, contrary to Arabic, English it is written from left to right,

syntax has SVO structure (subject-verb-objects). That makes reordering important

in the translation Arabic-to-English. At the level of words, the English grammar

has minimal inflection at least compared with such a morphologically rich language

as Arabic.

There are numerous syntactic details different between both languages and most

of them will be catch statistically. As we have said, one of the advantages of SMT

is that it is in principle a language independent system capable of capturing the

peculiarities of every language.
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Chapter 3

System design

This chapter describes the data at our disposal to build the Arabic-to-English trans-

lation system and the software used for the different tasks. It also reports the pre-

processing applied to the raw data and the architecture of the two systems used in

this work.

3.1 Parallel corpora

Parallel corpora are needed in order to estimate the translation models. In the

following, we use corpora belonging to two domains: news and transcriptions from

the United Nations.

3.1.1 News data compilation

The training set is a compilation of six corpora supplied by the Linguistic Data

Consortium (LDC) for the 2008 NIST Machine Translation Open evaluation. The

sources for these corpora are the Agence France Press News Service, An Nahar,

Assabah, Xinhua News Service, Language Weaver News, and Ummah Press Ser-

vice. From the whole corpus, lines1 with a length shorter than 100 words and not

1Each line corresponds to the minimum aligned unit. The aligments are given at a fragment
level, which is in most cases larger than one sentence.

23
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more than nine times longer in one language than in the other one are used in the

compilation. That is the optimal length for training the Moses decoder2 and the

length ratio limit for obtaining the alignments with GIZA++3. With this, 123,662

lines, a 99% of the total, have been obtained, resulting a medium size corpus under

the point of view of collecting alignments. Table 3.1 shows the corpora with the

corresponding identification, the number of lines used and the equivalence in words

for the English and the Arabic parts. The concrete specifications can be read from

the LDC Corpus Catalogue4.

For the development and test sets we selected 500 lines from the same corpora

with the exception of the Multiple-Translation Arabic and the TIDES MT2004 Ara-

bic evaluation data. The former is a collection of files with 7, 12 or translations only

used for training. The latter is a small compilation coming from sources included

in the other corpora as well. Table 3.2 shows the details of the samples and the

number of lines from each corpus which is proportional to the one in the training

set.

3.1.2 United Nations corpus

Outside the news domain, the corpus of the United Nations offers a great amount

of data ranging from year 1993 to 2002. We have neglected some damaged lines

corresponding to year 2001 and eliminated a fragment written in Russian instead of

Arabic in year 1997. After that we apply the same cleaning as for the news set, i.e.

cutting the lines with more than 100 words or more than nine times longer in one

language than in the other one. With this preprocess we obtain a parallel corpus

with 3,686,372 lines.

We have done three different partitions on the resulting corpus. An small one

with 20,000 lines used for studying the impact of translation with factored models

with information of lemma, PoS and chunks. A second corpus with 125,000 lines

comparable to the news corpus. Finally, we consider a large corpus with 3,400,000

lines. In the three cases we keep 500 lines for development and 500 more for testing.

2http://www.statmt.org/moses/
3http://www.fjoch.com/GIZA++.html
4http://www.ldc.upenn.edu/Catalog/
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3.2 Monolingual corpora

A monolingual corpus is needed in order to estimate the language model. Each of

the parts of a parallel corpus can be used as a monolingual data set, and we calculate

the language model from these data as explained in Section 3.4.

3.3 Linguistic processing

Before using the corpora for MT some linguistic preprocessing must be applied. We

divide the process in two steps. First, the input is converted to a unique codification.

The fact that Arabic and English have two different scripts makes the translation

process harder, and so, we choose to convert the Arabic glyphs to the Latin alphabet

as explained in the following. As a second step, we tokenize both of the input

languages and annotate them with the lemma, part of speech and chunk label for

each word. The concrete tools depend on the language as well.

3.3.1 Arabic

There exist several transliterations to convert Arabic characters to the Latin alpha-

bet. In NLP, the original text encoded in ISO-8859-6 or CP-1256 for example are

usually converted to the Buckwalter transliteration. That is a one to one correspon-

dence between Unicode and UTF-8 codification. Appendix A shows this correspon-

dence between the Arabic glyphs, the Unicode symbol and the Buckwalter UTF-8

character.

We alter the standard transliteration by using the XML-friendly version which

changes the characters <, > and & to I, O and W respectively. That allows to

generate the XML files necessary for the discriminative learning without problems.

The character for madda, | , is a reserved character in the Moses decoder that sepa-

rates the different factors for a word. Therefore, it has been substituted by L after

the annotation process.

Note as well that actual presentation glyphs vary with context as well as entering



3.3. Linguistic processing 27

into various ligatures. Some of these ligatures such as �,
�
�
�
, �
�
or
�
� have not been

detected in the automatic transliteration but converted afterwards.

The standard Buckwalter transliteration has been a prerequisite necessary to

annotate the Arabic part of the corpus using the ASVMTools [13]. This software

uses the Yamcha SVM tools [27] to tokenize, PoS tag and Base Phrase Chunk the

input text. ASVMTools includes models trained on the Arabic Penn TreeBank ATB

1 v3.0, ATB 2 v2.0 and ATB 3 v2.0, therefore on a news domain. Finally, since

the public version of ASVMTools does not separate the determiner Al (the), we have

separated it after the annotation process. This separation has been done over all the

words beginning with Al unless over those already appearing in the Arabic WordNet

as full words, keeping the information of lemma, part of speech and chunk label.

In the following, we show the annotation process and deep into the details for a

segment belonging to the Arabic English Parallel News Part 1:

< seg id = 18 >
�
�� ����� ��

�� �� ���� � !�" ��� ��� �� 	
#
� �� �� "$��

#
� ��� ��� ��

#
� ��� " �%&�� ��� ���%&�$��  � �&$ �� '( ��

�)
#
� ��

��
�� �
*��+" � �,�-$./0*" �1��2�� � '���

#
�� 34� �5�6 78 � �� �� �
���� �

#
�� �,�-$./0" � �9: �5;<� �
 	 #�� �1 =� ���

/��>	� �
!$./? �9�
�
� @A (�+" 
�� �� �� ����*� @BC ��D�

BAAA $E���� &�( ��
�F6 $.G�

� � ���/��>	�� �H���� ��" � �� ��
< /seg >

Using the standard Buckwalter transliteration, the above text is converted into:

wt>ty dwl frnsA wbryTAnyA wAyTAlyA w>lmAnyA w>yrlndA w>sbAnyA

wlwksmbwrj fy Almqdmp wbxlAf Al$rkAt Al>wrwbyp fqd wSl Hjm r’ws

Al>mwAl AlmSdrp ll$rkAt AlEAmlp fy mSr Hty dysbmbr 2000 Aly 126 mlyAr

jnyh lEdd 10 |lAf $rkp AstvmAryp m&ssp wfqA lqAnwn AlAstvmAr ..

Tokenization

The process of tokenization segments the words in proclitics, stems+affixes, and

enclitics. Punctuation is considered as an independent token as well. Arabic pro-

clitics are prepositions b (by/with), l (to) and k (as); conjunctions w (and) and f

(then); and the determiner Al (the). All of them unless the determiner Al which

is not separated in the Arabic TreeBank have been segmented by the ASVMTools
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tokenizer. The set of enclitics comprises the pronouns and possessive pronouns:

y (my/mine), nA (our/ours), k (your/yours), kmA (your/yours masc. dual), km

(your/yours masc. pl.), knA (your/yours fem. dual), kn (your/yours fem. pl.), h

(him/his), hA (her/hers), hmA (their/theirs masc. dual), hnA (their/theirs fem.

dual), hm (their/theirs masc. pl.) and hn (their/theirs fem. pl.).

An Arabic word may be composed by a conjunction, a preposition and the

determiner at the beginning of the word, as proclitics; the stem and its affixes and

one pronoun at the end, as enclitic. ASVMTools attack the tokenization task as a

1-of-6 classification task for each letter. As an example, our running text converts

into:

w t>ty dwl frnsA w bryTAnyA wAyTAlyA w >lmAnyA w >yrlndA w >sbAnyA w

lwksmbwrj fy Almqdmp w b xlAf Al$rkAt Al>wrwbyp f qd wSl Hjm r’ws

Al>mwAl AlmSdrp l Al$rkAt AlEAmlp fy mSr Hty dysbmbr 2000 Aly 126

mlyAr jnyh l Edd 10 |lAf $rkp AstvmAryp m&ssp wfqA l qAnwn AlAstvmAr

We have highlighted in blue the segmented clitics. Green is used to indicate other

segmentations learned from the Arabic Penn TreeBank, in this case the change from

ll to l Al.

Feminine lemmatization

We do not apply a true lemmatization to the corpus. The affixes are not sepa-

rated from the stem, but we only restore the feminine singular marker p instead of

a t after decliticization. We consider our final tokens the result of this step.

Part of Speech tagging

Following the Arabic TreeBank distribution, the ASVMTools use the 24 PoS tags

from the collapsed tag set. This is now a 1-of-24 classification task with class labels:
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CC Coordinating conjunction NUMERIC COMMA

CD Cardinal number PRP Personal pronoun

CONJ+NEG PART PRP$ Possessive pronoun

DT Determiner PUNC Punctuation

FW Foreign word RB Adverb

IN Prep./subord. conjunction RP Particle

JJ Adjective UH Interjection

NN Noun, singular or mass VBD Verb, past tense

NNS Noun, plural VBN Verb, past participle

NNP Proper noun, singular VBP Verb, present

NNPS Proper noun, plural WP Wh-pronoun

NO FUNC No function WRB Wh-adverb

Thus the tags account for the singular/plural distinction in nouns, but the dis-

tinction of number and gender in verbs is not reflected.

Base Phrase chunking

With the PoS tagged text, the last learning does a 1-of-19 classification task to

to chunk the phrases according to IOB tagging scheme (Inside-Outside-Beginning).

That applied to ADJP, ADVP, CONJP, NP, PP, PRT, SBAR, UCP and VP con-

forms the 19 tags.

Final annotated text

The labels of the two previous steps are added to the original word. We also repli-

cate the word in order simulate the position of the lemma which is not obtained

for Arabic but it is for English. As a result we rewrite the Arabic part of the cor-

pus with the format word|lemma|PoS|chunk suitable for factored models in Moses.

The separator “|” makes us substitute the character from | to L. Now, after the use

of the trained models from ASVMTools, one can convert the standard Buckwalter

Transliteration to the XML-friendly version as indicated in blue:

w|w|CC|O tOty|tOty|VBP|B-VP dwl|dwl|NN|B-NP frnsA|frnsA|NNP|B-NP

w|w|CC|O bryTAnyA|bryTAnyA|NNP|B-NP wAyTAlyA|wAyTAlyA|JJ|I-NP
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w|w|CC|O OlmAnyA|OlmAnyA|NNP|B-NP w|w|CC|O OyrlndA|OyrlndA|NNP|B-NP

w|w|CC|O OsbAnyA|OsbAnyA|NNP|B-NP w|w|CC|O

lwksmbwrj|lwksmbwrj|NNP|B-NP fy|fy|IN|B-PP Almqdmp|Almqdmp|NN|B-NP

w|w|CC|B-PP b|b|IN|B-PP xlAf|xlAf|NN|B-NP Al$rkAt|Al$rkAt|NNS|B-NP

AlOwrwbyp|AlOwrwbyp|JJ|I-NP f|f|CC|B-ADVP qd|qd|RP|B-PRT

wSl|wSl|VBD|B-VP Hjm|Hjm|NN|B-NP r’ws|r’ws|NN|B-NP

AlOmwAl|AlOmwAl|NN|B-NP AlmSdrp|AlmSdrp|JJ|B-ADJP l|l|IN|B-PP

Al$rkAt|Al$rkAt|NNS|B-NP AlEAmlp|AlEAmlp|JJ|I-NP fy|fy|IN|B-PP

mSr|mSr|NNP|B-NP Hty|Hty|IN|B-PP dysbmbr|dysbmbr|NN|B-NP

2000|2000|CD|B-NP Aly|Aly|IN|B-PP 126|126|CD|B-NP mlyAr|mlyAr|NN|I-NP

jnyh|jnyh|NN|I-NP l|l|IN|B-PP Edd|Edd|NN|B-NP 10|10|CD|B-NP

LlAf|LlAf|NN|I-NP $rkp|$rkp|NN|I-NP AstvmAryp|AstvmAryp|JJ|I-NP

mWssp|mWssp|NN|B-NP wfqA|wfqA|NN|B-NP l|l|IN|B-PP qAnwn|qAnwn|NN|B-NP

AlAstvmAr|AlAstvmAr|NN|B-NP .|.|PUNC|O .|.|PUNC|O

Finally, we have manually separated the determiner Al. We keep the annotation

labels obtained from ASVMTools for all the words beginning with Al-, but in case the

full word does not appear in the Arabic WordNet we segment out the determiner and

adapt the chunk label as adequate. We have extracted 309 words from the Arabic

WordNet beginning with Al-. However, since we are comparing the stem and not

the lemma with those words, there is a loss in the precision of the segmentation.

For illustration purposes, we have highlighted in blue the segmented words:

w|w|CC|O tOty|tOty|VBP|B-VP dwl|dwl|NN|B-NP frnsA|frnsA|NNP|B-NP

w|w|CC|O bryTAnyA|bryTAnyA|NNP|B-NP wAyTAlyA|wAyTAlyA|JJ|I-NP

w|w|CC|O OlmAnyA|OlmAnyA|NNP|B-NP w|w|CC|O OyrlndA|OyrlndA|NNP|B-NP

w|w|CC|O OsbAnyA|OsbAnyA|NNP|B-NP w|w|CC|O

lwksmbwrj|lwksmbwrj|NNP|B-NP fy|fy|IN|B-PP Al|Al|DT|B-NP

mqdmp|mqdmp|NN|I-NP w|w|CC|B-PP b|b|IN|B-PP xlAf|xlAf|NN|B-NP

Al|Al|DT|B-NP $rkAt|$rkAt|NNS|I-NP Al|Al|DT|I-NP

Owrwbyp|Owrwbyp|JJ|I-NP f|f|CC|B-ADVP qd|qd|RP|B-PRT wSl|wSl|VBD|B-VP

Hjm|Hjm|NN|B-NP r&apos;ws|r&apos;ws|NN|B-NP Al|Al|DT|B-NP

OmwAl|OmwAl|NN|I-NP Al|Al|DT|B-ADJP mSdrp|mSdrp|JJ|I-ADJP l|l|IN|B-PP

Al|Al|DT|B-NP $rkAt|$rkAt|NNS|I-NP Al|Al|DT|I-NP EAmlp|EAmlp|JJ|I-NP

fy|fy|IN|B-PP mSr|mSr|NNP|B-NP Hty|Hty|IN|B-PP

dysbmbr|dysbmbr|NN|B-NP 2000|2000|CD|B-NP Al|Al|DT|B-PP y|y|IN|I-PP
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126|126|CD|B-NP mlyAr|mlyAr|NN|I-NP jnyh|jnyh|NN|I-NP l|l|IN|B-PP

Edd|Edd|NN|B-NP 10|10|CD|B-NP LlAf|LlAf|NN|I-NP $rkp|$rkp|NN|I-NP

AstvmAryp|AstvmAryp|JJ|I-NP mWssp|mWssp|NN|B-NP wfqA|wfqA|NN|B-NP

l|l|IN|B-PP qAnwn|qAnwn|NN|B-NP Al|Al|DT|B-NP AstvmAr|AstvmAr|NN|I-NP

.|.|PUNC|O .|.|PUNC|O

Notice that the separation of determiners increases the length of the sentence.

Before any processing, the original sentence has 42 tokens. The number grows up to

54 when the clitics are segmented out, and up to 64 when also are the determiners.

This is just a representation of the global behaviour. The mean length of a sentence

in the news corpus is initially of 27.4 words increasing to 31.8 in the first case and

to 38.2 in the second. That has consequences when cleaning the corpus because

the length of the English sentence remains the same, a mean of 34.5 tokens per

sentence. The limit of GIZA++ for the ratio between the lengths of the sentences

for calculating the alignments eliminates more sentences the more we segment the

original text. In this second case where both clitics and determiners have been

separated from the stem, we have kept sentences shorter than 120 words instead of

the 100 words limit of the other cases. With this we obtain three corpora in the

news domain differentiated by the level of segmentation:

lines tokens toks/line

punct. 124,154 3,402,824 27.4

punct.+clitics 123,662 3,939,726 31.8

punct.+clitics+Al 123,498 4,718,933 38.2

3.3.2 English

The preprocessing with the English language is simpler than for Arabic since it is its

codification the one used as a reference. Then, the only preprocess before annotating

the corpus has been to lowercase and tokenize the sentences.

As before, the linguistic information is added to the probabilistic translation by

considering the lemma, part of speech and chunk position of every word. First,

lemma and PoS have been obtained with SVMTool [18], and Yamcha [27] is used

afterwards for BP chunking. These tools have been trained with the Wall Street

Journal (WSJ) corpus.
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The corresponding translation to the example sentence in Arabic is a line com-

posed by three sentences:

France, Britain, Italy, Germany, Ireland, Spain, and Luxembourg came

first. A part from the European companies, the issued capital of

companies operating in Egypt reached LE126 billion up till December

2000. Such capital is of 10,000 investment companies set up under

the investment law.

Tokenization

Since in English there is no difference between lowercase and uppercase letters as

there is in the Buckwalter transliteration, all the English corpus has been lower-

cased. The text has been tokenized using the perl script of Josh Schröder provided

by the ACL 2007 Second Workshop on Statistical Machine Translation5. This script

separates punctuation keeping it together in numbers and some abbreviations.

france , britain , italy , germany , ireland , spain , and luxembourg

came first. a part from the european companies , the issued capital

of companies operating in egypt reached le126 billion up till

december 2000. such capital is of 10,000 investment companies set up

under the investment law .

Lemmatization

On the contrary to Arabic, the English corpora have been lemmatized. We use

a table with with 185,201 entries where each word is listed with its lemma according

to its part-of-speech.

france|france ,|, britain|britain ,|, italy|italy ,|, germany|germany

,|, ireland|ireland ,|, spain|spain ,|, and|and luxembourg|luxembourg

came|come first.|first. a|a part|part from|from the|the

5http://www.statmt.org/wmt07/
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european|european companies|company ,|, the|the issued|issue

capital|capital of|of companies|company operating|operate in|in

egypt|egypt reached|reach le126|le126 billion|billion up|up till|till

december|december 2000.|2000. such|such capital|capital is|be of|of

10,000|10,000 investment|investment companies|company set|set up|up

under|under the|the investment|investment law|law .|.

Part of Speech tagging

Although being a less rich language than Arabic, the tagset labels for English is

larger than the collapsed tagset we use for Arabic. This is because using the full

Buckwalter’s tagset for Arabic increases too much the sparsity and better results

were obtained with a collapsed set obtained from a mapping from the Arabic POS

tagset to Penn English. However, for English we can use de full tagset from the

Wall Street Journal with 36 labels:

CC Coordinating conjunction PP$ Possessive pronoun

CD Cardinal number RB Adverb

DT Determiner RBR Adverb, comparative

EX Existential there RBS Adverb, superlative

FW Foreign word RP Particle

IN Prep./subord. conjunction SYM Symbol (mathematical or scientific)

JJ Adjective TO to

JJR Adjective, comparative UH Interjection

JJS Adjective, superlative VB Verb, base form

LS List item marker VBD Verb, past tense

MD Modal VBG Verb, gerund/present participle

NN Noun, singular or mass VBN Verb, past participle

NNS Noun, plural VBP Verb, non-3rd ps. sing. present

NNP Proper noun, singular VBZ Verb, 3rd ps. sing. present

NNPS Proper noun, plural WDT wh-determiner

PDT Predeterminer WP wh-pronoun

POS Possessive ending WP$ Possessive wh-pronoun

PRP Personal pronoun WRB wh-adverb
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BP chunking

The set of chunk labels is the same as for the Arabic corpus, also following the

IOB tagging scheme.

Final annotated text

That is the whole process we need to do for English. So, for the final version of

the corpus we just compile all the information and write it in the format for the

Moses decoder:

france|france|NN|B-NP ,|,|,|I-NP britain|britain|NN|I-NP ,|,|,|O

italy|italy|RB|B-ADVP ,|,|,|O germany|germany|NN|B-NP ,|,|,|O

ireland|ireland|NN|B-NP ,|,|,|O spain|spain|NN|B-NP ,|,|,|O

and|and|CC|O luxembourg|luxembourg|NN|B-NP came|come|VBD|B-VP

first.|first.|RB|B-ADVP a|a|DT|B-NP part|part|NN|I-NP

from|from|IN|B-PP the|the|DT|B-NP european|european|JJ|I-NP

companies|company|NNS|I-NP ,|,|,|O the|the|DT|B-NP

issued|issue|VBN|I-NP capital|capital|NN|I-NP of|of|IN|B-PP

companies|company|NNS|B-NP operating|operate|VBG|B-VP in|in|IN|B-PP

egypt|egypt|NN|B-NP reached|reach|VBN|B-VP le126|le126|NN|B-NP

billion|billion|CD|I-NP up|up|RP|B-ADVP till|till|IN|B-PP

december|december|NN|B-NP 2000.|2000.|CD|I-NP such|such|JJ|I-NP

capital|capital|NN|I-NP is|be|VBZ|B-VP of|of|IN|B-PP

10,000|10,000|CD|B-NP investment|investment|NN|I-NP

companies|company|NNS|I-NP set|set|VBN|B-VP up|up|RP|B-PRT

under|under|IN|B-PP the|the|DT|B-NP investment|investment|NN|I-NP

law|law|NN|I-NP .|.|.|O

3.4 Bare SMT System

Once the data have been prepared and before starting the training process we calcu-

late the language model using the SRILM Toolkit [40]. For words we build the 5-gram

language model by interpolated Kneser-Ney discounting. For linguistic factors such
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as lemma, part-of-speech and chunk label we generate 5-gram models without ap-

plying any discounting.

As for the translation model, we need to obtain the word alignments before calcu-

lating the probability tables. We use the GIZA++ Toolkit [35] for that purpose. This

software implements the IBM models but here it is only used to obtain the align-

ments in the two directions of translation. The word classes demanded by GIZA++

are calculated with the mkcls program [32] by Franz Josef Och as well. The final

alignment is obtained by applying the grow-diag-final heuristic (see Section 2.1.2).

From these alignments the maximum likelihood lexical translation tables in both

directions are estimated. On the other hand, all the phrases compatible with the

alignment are extracted and the phrase translation probabilities, again in both di-

rections, estimated. All these steps are done with the training script provided with

the Moses distribution.

As we have said we use the Moses decoder [26, 24]. The decoder implements

a beam search where the output sentence is generated from left to right in form

of hypotheses. Among all the hypothesis, that with the lowest cost (or highest

probability) is selected as best translation.

Finally, we optimise the weights of every probability table by optimising trans-

lation performance on a development set. That sums up to 8 weights λi: 1 corre-

sponding to the language model λlm, 2 for the two directions of the lexical translation

tables λlg and λld, 2 for the two directions of the phrase translation tables λg and

λd, the distortion model λdi, and the phrase and word penalties λph and λw. For

this optimisation we use a minimum error rate training (MERT) [33] where BLEU

is the reference score.

3.5 Hybrid MT System

The hybrid system is obtained by adding a machine learning component to the bare

SMT system. Language models and the MLT translation models are estimated in

the same way, but now we use the methodology in Giménez and Màrquez [19] to

estimate the discriminative phrase translation model.
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For every selected phrase, we use linear SVMs and train the classifier for every

possible translation phrase as explained in Section 2.2.1. For that we use the SVMlight

package6 [21]. This stage gives a SVM score for each instance of a phrase, and

that score is converted into a probability using the softmax function as defined in

Ref. [4]. Since this is done for every instance of a phrase, the probability tables

would be enormous, and before calculating them it is convenient to filtrate for only

the phrases appearing in the test.

This new translation table is added logarithmically to the full model as shown in

Eq. 2.7. That allows to use a standard decoder as Moses with the only modification

of a new score in the translation model. The optimisation process is again the same,

a minimum error rate training is applied but now 9 weights must be fit: the 8 from

the bare SMT system plus λDPT.

6http://svmlight.joachims.org/
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Experiments and evaluation

The following issue is to evaluate the systems described in the previous chapter.

Some of the experiments are addressed to explore the effects of the preprocessing

in the translation and others those of linguistic factors. Finally, we evaluate the

improvements given by a discriminative phrase selection.

4.1 Word segmentation of Arabic

The first experiment is devoted to study the impact of word segmentation in Arabic.

For this, we use the three data sets introduced in Section 3.3.1 with three different

levels of tokenization. With the coarser tokenization the sparsity of the vocabulary

increases and the mean length of an Arabic sentence is 0.80 times the English one.

The first level of clitic segmentation diminishes the sparsity and equals the ratio

between lengths to 0.92. With the second level, Arabic sentences are already longer

than the English ones with ratio 1.11. In all these cases we use a language model

computed from each training set without adding data out of domain.

We see in Table 4.1 that the best results are obtained when the sentence length

in both languages is comparable, where only punctuation marks and all the clitics

except Al are segmented. The additional separation of the determiner worsens

the BLEU score by several possible reasons. First, because the method used to

segment out Al can be segmenting true full words. Second, because Arabic has

some determiners which have no analogy in English such as those before adjectives

37
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that are added when the noun is determined as well. Finally, the difference in the

sentence length can make worse the quality of the alignments.

Arabic→English English→Arabic

dev test dev test

punct. 25.76 23.46 23.50 16.17

punct.+clitics 26.25 23.81 26.54 19.67

punct.+clitics+Al 25.28 23.21 32.46 26.68

Table 4.1: BLEU scores for the translation of the NIST’s news compilation with three

different levels of segmentation (see text).

In fact, El Isbihani et al. [15] tested different segmentation methods and obtain

the best results for the segmentation obtained with ASVMTools, that is without

separating Al-, for a corpus built from the corpora of the Arabic-English NIST task.

The worst results in their case correspond to the method that most segmentates the

corpus with a ratio between the mean Arabic sentence length and the English one

of 1.20.

With these results in mind, we use in the following the Arabic part of the corpus

with the clitic segmentation of ASVMTools. At this point it is worth noticing that

in this work segmentation is useful for the Arabic-to-English translation. In order

to be used for the English-to-Arabic direction, on would need an algorithm to join

the clitics again. This is not a trivial step and should be learned independently.

Since the aim of the work has been the Arabic-to-English task of the NIST 2008,

we postpone this issue for the future. For completeness, Table 4.1 shows the BLEU

scores in this direction of translation too, but higher values must be attributed to

the level of segmentation of the sentences: the more segmented a phrase is, the

higher the number of correct words that involves a correct translation.

4.2 SMT system: combination of models with lin-

guistic information

In this section, we describe a näıve way to include linguistic information within a

statistical framework. For that purpose we use the small training set of the United
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Nations corpus with 20,000 lines. The language model is estimated from the same

training set.

In the first approach, each word of the corpus is concatenated with its lemma

(l), part-of-speech (p) or chunk labels (c). For example, the word books can be

converted into just one token if we include the lemma (wl): books##book, two

options appear for the addition of the part-of-speech (wp): books##NNS and

books##VBZ, and the larger number of alternatives is given with the chunk la-

bels (wc): books##B-NP, books##I-NP, books##B-VP, and so on. The main

disadvantage of this method is that it increases the vocabulary size for a same cor-

pus size:

Words
Vocabulary

word word##lemma word##PoS word##chunk

Arabic 805,458 28,356 − 33,912 38,988

English 642,386 19,612 19,951 22,535 29,622

We see that the inclusion of the lemma hardly increases the information, the vocab-

ulary does not augment tremendously. However, the part-of-speech and above all

the chunk label increase the vocabulary size and therefore the sparsity.

The upper part of Table 4.2 shows the BLEU score for a baseline indicated

by w where the translation is done with the standard SMT system, and for the

combinations wl, wp and wc inserted in the corpus. In general, the Arabic-to-

English direction gets slightly better results than from English to Arabic.

The addition of the lemma into the English part of the corpus –remember that

the Arabic one has not been annotated with lemmas– improves the BLEU score in

both the Arabic-to-English direction and the opposite one. This is because the spec-

ification of lemmas in English can improve the word alignments, and therefore the

global translation. The additional information into the language model contributes

to the improvement as well. The part-of-speech improves the quality only in the

English-to-Arabic translation. The increment of sparsity is more important in the

English part, since the number of tags in Arabic is 24 and in English 36. Then,

the possible improvement in the alignments which is given in both directions can

be compensated by a too sparse English language model. As for the case where the

chunk label is included, wc, the gain in information is widely compensated by the
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consequent augment of sparsity. That worsens the results in both directions, espe-

cially in the Arabic-to-English direction where again the language model reflects the

effect of a larger vocabulary.

Arabic→English English→Arabic

dev test dev test

w (baseline) 24.70 23.82 26.83 22.85

wl 24.74 24.28 26.95 23.34

wp 23.93 23.18 27.00 23.12

wc 22.93 22.07 25.97 22.25

wlfac 25.06 24.24 26.74 22.72

wpfac 24.70 23.69 27.00 22.97

wcfac 23.79 22.97 27.04 23.05

w+l 24.40 23.41 25.53 22.13

w+p 23.07 22.14 25.98 22.06

w+c 23.08 22.03 23.08 19.62

w+wl 24.86 23.98 27.17 23.01

w+wp 24.52 23.53 27.18 22.97

w+wc 23.77 22.69 26.64 22.75

w+wl+wp 23.90 23.74 23.08 19.40

Table 4.2: BLEU scores obtained with a training set of 20,000 lines of the United Nations

corpus. Linguistic information is added to the baseline w by modifications of the token

(wl, wp and wc) or by the addition of translation tables (w + x).

As a second experiment, we combine two translation models as extra components

in a log-linear model. For this, we use the translation table corresponding to the

translation of the words as a single factor with one corresponding to the linguistic

features or combinations of them. We use the sum symbol + to mark this kind

of systems. None of the combinations surpasses the best result given by a direct

concatenation of the word with a feature (Table 4.2).

The combination of one translation table corresponding to the direct translation

of tokens and another one corresponding to one linguistic factor (w + l, w + p and

w + c) is one BLEU point below that obtained for the concatenation of the word

with the feature. The Moses decoder allows for a similar combination with factored

models. In that case there are two language models too, one for each feature, but
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Figure 4.1: BLEU score for the combination of models w⊕wlfac, w⊕wpfac and w⊕wcfac

by a global weight of every individual model. None of the combinations improves the

individual scores.

an only translation table with two factors in a similar way we did in the previous

experiment. We indicate this case with the subindex fac. The use of one translation

table instead of two diminishes by five the number of weights to fit in the tuning

process, and that eases the finding of the absolute minimum. With this, results

improve our combinations w + l, w + p and w + c, but still the concatenations wl,

wp and wc reach better translations under the point of view of the BLEU score.

Table 4.2 also shows other combinations of translation tables, each one with each

correspondent language model, but none of the combinations is better than the use

of the lemma alone wl. With these results, one would expect that the lemmatization

of Arabic is going to help in the translation too.

We have just explained that the combination of two translation tables increases

the number of weights and therefore makes harder the tuning process. As a final

check and focusing again into the Arabic-to-English translation, we combine cou-

ples of translation tables giving a global weight to each of them with the already

optimised λ’s. We indicate this direct sum of translation tables with the symbol ⊕.

Table 4.2 shows and example of this for a case where the translation is done giving

different percentages to the w and wcfac translation tables.
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We have done this analysis with three combinations, w ⊕ wlfac, w ⊕ wpfac and

w⊕wcfac, and show the corresponding BLEU scores graphically as a function of the

proportion of each component in Figure 4.1. One can see that the combination of

both sources improves the result of the lowest translation table but hurts the score

reached by the most informative feature or combinations of features alone.

4.3 Hybrid system: discriminative phrase trans-

lation

Next, we analyse in more detail the steps and results obtained with the hybrid

system. The whole training is done using the news compilation corpus with 123,662

lines.

4.3.1 Phrase extraction

Since the system is a phrase-based translation system, the phrase extraction step

is important for the final result. A larger number of phrases gives more translation

options available to the decoder, and therefore it is usually better recall in front of

precision in what refers to the quality of the extracted phrases. So, phrase align-

ments obtained by the intersection of words alignments produce in general better

translation results than the union, which, on the other hand, leads to the subset of

more precise phrases.

Here, we use two different heuristics to extract the phrases. For the extraction

done with the MLT package we apply the heuristic diag-and as explained in Refs. [25,

36]. The heuristic grow-diag-final is used with the Moses software. Both of the

heuristics complement the intersection points with some points belonging to the

union, but the second one generates more phrases due to an additional final step

that adds some extra alignment points. Table 4.3 shows the number of phrases

extracted by the two methods according to the number of occurrences of the phrase

in the corpus. Besides the different heuristics, we further increase the number of

phrases corresponding to those extracted with the Moses software by considering

phrases up to a length of 7 words instead of 5 words as with MLT. The distribution

is seen in Table 4.4. The proportions through partitions are the same for both
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MLT Moses

Occurrences phrases % phrases %

2-5 239617 74.2 449660 76.8

6-10 43228 13.4 80261 13.7

11-50 30806 9.5 45066 7.7

51-100 4360 1.4 5009 0.9

101-500 3937 1.2 4299 0.7

501-1000 521 0.2 565 0.1

1001-10000 378 0.1 421 0.07

> 10000 22 0.007 26 0.004

Total: 322869 100 585307 100

Table 4.3: Number of phrases extracted according to the number of occurrences in the

corpus, for both the MLT and Moses systems.

heuristics but we obtain a higher number of phrases with grow-diag-final. With

these differences we end up with two sets of phrases. We call MLT set the small set

with 322,869 phrases and Moses set the larger one with 585,307 phrases.

All of these phrases will be used to construct the translation tables by frequency

counts, but we consider only those appearing more than 100 times in the corpus to

be representative enough to train the classifiers. That represents about 1% of the

total amount of phrases, but since they are the most frequent ones they will cover

most of the test set if it belongs to the same domain.

4.3.2 Discriminative phrase selection

Before approaching the full task of translation we show some details of the subtask

of phrase selection. The strength of this method is its capability of using the context

of each phrase and the linguistic information available in order to select the best

translation. This is especially useful to solve ambiguities, a very common semantic

phenomenon in Arabic.

As an archetypical example we comment the different meaning of the word

transliterated as Elm. Due to the non-vocalization of written texts, one can find

Elm meaning “science” (Eilom), “flag” (Ealam) or “to know” (Ealim). These three
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MLT Moses

Length phrases % phrases %

1 30971 9.6 29949 5.1

2 102710 31.8 127878 21.8

3 94084 29.1 132874 22.7

4 62389 19.3 107589 18.4

5 32715 10.1 84527 14.4

6 - - 61775 10.6

7 - - 40718 7.0

Total: 322869 100 585307 100

Table 4.4: Number of phrases extracted according to its length, for both the MLT and

Moses systems.

words are perfectly distinguishable when speaking but not when reading. The same

happens with ktb, a word that can be read as katab (“to write”), kitab (“book”)

or katib (“writer”). This kind of ambiguity is to be added to homonyms. Besides,

verbal declinations can further increase the number of meanings.

We have trained linear SVMs to solve this problem. The features for training the

classifier are extracted from both the source phrase and source sentence in Arabic but

not from the target in English. From the phrase we consider word, part-of-speech,

coarse part-of-speech and chunk labels n-grams. The same features are extracted

from the full sentence with the addition of the bag-of-words which keeps the words

at the right and at the left of the phrase.

The word Elm is found in the corpus together with the article: AlElm. This token

is seen in 114 examples with 10 possible translations, being the most frequents:

AlElm :

Translations flag science knowledge mind the flag

# examples 47 26 15 9 6

We extract the features for each of the examples that occur as translation at

least a 0.5% of the times. In a case like this with 114 examples, all translations are

considered. For instance, for one example where AlElm is translated as “knowledge”:
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Sentence :

w tAbE mr$d AlIxwAn “ In AlElm AlmTlwb fy dyn nA hw kl Elm nAfE tbqY
l AlnAs vmrt h , swA’ kAn ElmAF $rEyAF Ow ElmAF tjrybyAF .

Phrase features :

word n-grams AlElm
PoS n-grams NN
coarse PoS n-grams N
chunk n-grams B-NP

Sentence features :
word (AlmTlwb)1, (fy)2, (dyn)3, (nA)4, (hw)5,
n-grams (” In)−2, (AlIxwAn)−3, (mr$d)−4, (tAbE)−5,

(AlmTlwb fy)1, (fy dyn)2, (dyn nA)3, (nA hw)4,
(In AlmTlwb)−1, (AlIxwAn ”)−3, (mr$d AlIxwAn)−4, (tAbEmr$d)−5

(AlmTlwb fy dyn)1, (fy dyn nA)2, (dyn nA hw)3,
(In AlmTlwb fy)−1, (” In AlmTlwb)−2, (AlIxwAn ” In)−3,
(mr$d AlIxwAn ”)−4, (tAbE mr$d AlIxwAn)−5

PoS (JJ)1, (IN)2, (NN)3, (PRP$)4, (PRP)5,
n-grams (PUNC IN)−2, (NN)−3, (NN)−4, (VBD)−5

(JJ IN)1, (IN NN)2, (NN PRP$)3, (PRP$ PRP)4,
(IN JJ)−1, (NN PUNC)−3, (NN NN)−4, (VBD NN)−5

(JJ IN NN)1, (IN NN PRP$)2, (NN PRP$ PRP)3,
(IN JJ IN)−1, (PUNC IN JJ)−2,
(NN PUNC IN)−3, (NN NN PUNC)−4, (VBD NN NN)−5,

coarse PoS (J)1, (I)2, (N)3, (P)4, (P)5, (P I)−2, (N)−3, (N)−4, (V)−5

n-grams (J I)1, (I N)2, (N P)3, (P P)4, (I J)−1, (N P)−3, (N N)−4, (V N)−5

(J I N)1, (I N P)2, (N P P)3,
(I J I)−1, (P I J)−2, (N P I)−3, (N N P)−4, (V N N)−5

chunk (I-NP)1, (B-PP)2, (B-NP)3, (I-NP)4, (B-NP)5,
n-grams (O B-SBAR)−2, (B-NP)−3, (B-NP)−4, (B-VP )−5

(I-NP B-PP)1, (B-PP B-NP)2, (B-NP I-NP)3, (I-NP B-NP)4,
(B-SBAR I-NP)−1, (B-NP O)−3, (B-NP B-NP )−4, (B-VP B-NP )−5

(I-NP B-PP B-NP)1, (B-PP B-NP I-NP)2, (B-NP I-NP B-NP)3,
(B-SBAR I-NP B-PP)−1, (O B-SBAR I-NP)−2, (B-NP O B-SBAR)−3,
(B-NP B-NP O)−4, (B-VP B-NP B-NP )−5

bag-of-words left: AlIxwAn, mr$d, tAbE
right: $rEyAF, AlmTlwb, AlnAs, Elm, ElmAF, dyn, kAn, kl,

nAfE, swA’, tbqY, tjrybyAF, vmrt
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MLT phrases Moses phrases

Occurrences # Acc.DPT Acc.MFT # Acc.DPT Acc.MFT

(%) (%) (%) (%)

100-500 3952 68.8 62.0 4310 66.5 58.7

501-1000 521 70.3 63.5 565 68.8 62.3

1001-5000 346 76.2 69.2 393 73.0 66.7

5001-10000 31 77.3 69.0 27 79.5 72.2

10001-50000 15 75.1 66.7 19 74.8 66.6

> 50000 7 75.4 65.8 7 80.7 76.2

Total: 4872 69.6 62.8 5321 67.3 59.8

Table 4.5: Mean accuracy obtained in the phrase translation task by the most frequent

translation (MFT) and with SVMs (DPT) for two sets of phrases. Results are given for

subsets of phrases grouped according to its frequency.

Since this phrase is an only word the phrase features are just unigrams. As for

the sentence, one considers up to trigrams of features for tokens ranging from the

position of the phrase minus five to the position plus five.

Training the classifier with the help of the previous features, we obtain, after a

10-fold cross-validation, an accuracy of 71.3%. The most frequent translation does

it well the 49.6% of times. That is to say, one gets a 40% of relative improvement on

the selection of the phrase translation. In general, the accuracy in the translation

of phrases is improved with respect to that corresponding to the most frequent

translation, but the amount of improvement depends on the phrase, the number of

translations and the number of examples.

Table 4.5 shows the comparison of the accuracy obtained by SVMs, the Discrim-

inative Phrase Translation (DPT), and that given by the Most Frequent Translation

(MFT) for both the set of phrases extracted with MLT and Moses. The most fre-

quent phrases of the MLT set get a larger improvement, but the low frequency ones

improves one point more in the Moses set than in the MLT set. This is why, globally,

the Moses set gets more benefits from the SVM classification. An increment of 7.5%

in accuracy is obtained in this case for DPT.
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4.3.3 Full translation

Finally, we integrate DPT predictions into the SMT system. To do this, we calculate

the DPT predictions for all possible translations of all source phrases appearing

in the test (or development) set. The input text is transformed by introducing

identifiers in order to distinguish every distinct instance of every distinct phrase.

These identifiers correspond to the number of occurrences of the word seen in the

test set before the current one. For instance, the second time1 the transliterated

word AlElm appears in the set is annotated as AlElm1:

wywm AlAHd8 ,371 $hdt3 Edp8 mdn1 AfgAnyp tZAhrAt AHtjAj ElY456

Alrswm39 Alms}yp l873 Alnby (186 S )186 ,372 Hyv28 tm22 AHrAq AlElm1

AldnmArky .1128

For those words without subindex there is not DPT prediction.

In a similar way, translation tables must be modified. Now, each occurrence of

every source phrase has a distinct list of phrase translation candidates with their

DPT predictions. DPT predictions are only estimated for the phrases appearing

in the test set. Still, indexing increments tremendously the size of the translation

table, and, even when filtered for only the phrases in the test set, the resulting tables

become larger than 1GB and do not fit into memory in decoding time. Therefore,

we only keep the first 50 translations2 for every phrase. Translations were ordered

according to the discriminative probability or by weighting all the scores. This

second method showed to be most robust with respect to the ordering done without

the DPT prediction, although this way its addition changes the phrases to be kept

for decoding.

Table 4.6 shows all the translations available for the phrase AlElm the second

time it appears in the test set. In this case, the chosen translation would be the

same both according to PDPT (e|f) and to PMLE(e|f), but one can already see in the

table that the distribution of the probability mass is different for both predictions

and that can alter the best choice.

1Indexing begins at 0.
2Using more than 20 translations per phrase during decoding was found to provide no im-

provement when applied to our baseline with respect to the case where only 20 translations are
available.
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fi ej PDPT (e|f) PMLE(f |e) lex(f |e) PMLE(e|f) lex(e|f)

AlElm1 flag 0.1986 0.6438 0.5417 0.3241 0.2826

AlElm1 the 0.0419 0.0001 0.0001 0.0207 0.0217

AlElm1 mind 0.0401 0.0608 0.0425 0.0620 0.0543

AlElm1 the flag 0.0397 0.4000 0.5417 0.0414 0.0786

AlElm1 flag during 0.0394 0.6667 0.5417 0.0138 0.0001

AlElm1 knowledge 0.0392 0.0846 0.0798 0.1103 0.0924

AlElm1 flag caused 0.0387 1.0000 0.5417 0.0138 0.0001

AlElm1 science 0.0377 0.1529 0.1477 0.1793 0.1413

AlElm1 education 0.0377 0.0018 0.0029 0.0138 0.0163

AlElm1 in mind 0.0371 0.0571 0.0425 0.0138 0.0004

Table 4.6: Example of a fragment of the translation table indexed in order to take into

account DPT predictions.

In case we do not have a DPT prediction for a phrase, we complete the translation

table by using the MLE prediction. We realised that the normalization of the DPT

scores is not equal to one anymore, and that could be damaging the final results. In

the future, we are planning to do a discounting and complete the translation table

by assigning a small probability to the undetermined DPT predictions.

Notice that we make available to the decoder several scores. Therefore, the

decoder does not always use the DPT prediction as the best translation. DPT is

competing with the MLE prediction and the remaining features shown in Equa-

tion 2.7. The weight of every score is determined during the tuning process. In our

results, the DPT prediction always has a larger weight than the MLE one, being

λDPT ∼ 3λMLE. We checked another configuration as well, where the discriminative

probabilities PDPT (e|f) replace PMLE(e|f) instead of being added as an additional

feature. We denote by DPT this last system where the DPT prediction replaces the

MLE one, and by DPT+ the system where the DPT prediction is added.

In order to study the impact of DPT predictions we perform a deep analysis

by using an heterogeneous set of metrics for evaluation. In previous sections, we

only used lexical metrics to evaluate the quality of the translation. Here, we use the

IQMT package [17], which provides a rich set of more than 500 metrics at different
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Level Metric SMT DPT DPT+

1-PER 0.5248 0.5224 0.5221
1-WER 0.3166 0.3075 0.3081
1-TER 0.3679 0.3606 0.3613
BLEU 0.2388 0.2387 0.2396
NIST 6.4044 6.3263 6.3225
GTM (e=1) 0.5708 0.5730 0.5705
GTM (e=2) 0.2166 0.2154 0.2161

Lexical GTM (e=3) 0.1756 0.1743 0.1750
RG-L 0.5290 0.5305 0.5276
RG-S� 0.3442 0.3443 0.3410
RG-SU� 0.3634 0.3635 0.3604
RG-W-1.2 0.3085 0.3111 0.3091
MTR-exact 0.4948 0.4991 0.4974
MTR-stem 0.5142 0.5164 0.5153
MTR-wnstm 0.5183 0.5207 0.5193
MTR-wnsyn 0.5396 0.5430 0.5413
SP-Op-� 0.4150 0.4218 0.4185
SP-Oc-� 0.4193 0.4237 0.4214

Shallow SP-NISTl 6.5745 6.4771 6.4790
Syntactic SP-NISTp 5.6618 5.6225 5.6161

SP-NISTiob 4.7187 4.6627 4.6795
SP-NISTc 4.1460 4.0858 4.1047
DP-Ol-� 0.2019 0.2057 0.2049
DP-Oc-� 0.3344 0.3314 0.3318
DP-Or-� 0.2347 0.2319 0.2319
DP-HWCw 0.0575 0.0556 0.0574

Syntactic DP-HWCc 0.2118 0.2168 0.2181
DP-HWCr 0.1422 0.1474 0.1484
CP-Op-� 0.4133 0.4183 0.4158
CP-Oc-� 0.3823 0.3868 0.3847
CP-STM 0.2150 0.2144 0.2128
NE-Me-� 0.2963 0.2979 0.2933
NE-Oe-� 0.3518 0.3515 0.3472

Shallow NE-Oe-�� 0.4161 0.4217 0.4185
Semantic SR-Mr-� 0.0868 0.0841 0.0848

SR-Or-� 0.2073 0.2059 0.2048
SR-Or 0.4143 0.4076 0.4104
DR-Or-� 0.2101 0.2192 0.2157

Semantic DR-Orp-� 0.3139 0.3272 0.3204
DR-STM 0.1563 0.1508 0.1591

Table 4.7: Automatic evaluation of MT results
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linguistic levels3. We have selected a representative set of metrics, based on different

similarity criteria:

• Lexical n-gram similarity (on word forms).

• Shallow-syntactic similarity (on part-of-speech tags and base phrase chunks).

• Syntactic similarity (on dependency and constituent trees).

• Shallow-semantic similarity (on named entities and semantic roles)

• Semantic similarity (on discourse representations).

A deeply detailed description of the metric set may be found in the IQMT tech-

nical manual [16].

Table 4.7 shows the results for the two systems with DPT prediction (DPT and

DPT+) together with a baseline where there is no DPT prediction (indicated by

SMT in the table). In general, improvements are not significant for lexical metrics,

except for the case of semantic metrics based on discourse representations and some

syntactic metrics based on constituent and dependency parsing.

At the lexical level, while metrics based on rewarding longer n-gram matchings

tend to prefer the SMT baseline, variants of ROUGE and METEOR tend to prefer

the DPT system. Interestingly, the DPT+ attains the highest score only according

to BLEU, although not significantly.

At the shallow-syntactic level, metrics based on lexical overlapping over parts-of-

speech and base chunk phrases prefer the DPT and DPT+ alternatives, with a slight

advantage in favour of the DPT system. However, NIST variants over sequences of

lemmas, parts-of-speech, chunk labels and chunk types consistently prefer the SMT

baseline.

At the properly syntactic level, metrics exhibit very different behaviours. For

instance, with respect to metrics based on lexical overlapping over dependency trees,

while the ‘DP-Ol-�’ metric (i.e., overlapping between lexical items hanging at the

same level of the tree) gives a clear advantage to DPT systems, the ‘DP-Oc-�’ (i.e.,

3The IQMT software is available at http://www.lsi.upc.edu/∼nlp/IQMT.
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lexical overlapping between grammatical categories) and ‘DP-Or-�’ (i.e., lexical over-

lapping between grammatical relations) metrics prefer the SMT baseline. In con-

trast, metrics based on head-word chain matching (HWC) over dependency trees and

metrics based on lexical overlapping over constituent trees clearly prefer the DPT

alternatives. Finally, the syntactic tree matching (STM) metric confers a similar

score to the three systems.

At the shallow-semantic level, whereas metrics based on lexical overlapping and

matching between named entities (NE) seem to prefer the DPT system, metrics

based on semantic roles (SR) prefer the SMT baseline.

Finally, at the semantic level, metrics based on lexical overlapping between dis-

course representations (DR) confer a significant advantage to the DPT alternatives,

specially in the case of the DPT system. The semantic tree matching (STM) metric

gives a slight advantage to the DPT+ system.
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Summary and conclusions

This work has been a first approach to the Arabic-to-English translation task. We

have built a news training set from the compilation of six corpora supplied by the

Linguistic Data Consortium (LDC) for the 2008 NIST Machine Translation Open

evaluation. For complementary tests, we use parts of the United Nations corpus as

well.

The final corpora have been enriched by annotating the sentences with linguistic

information such as part-of-speech, chunk, and lemmas for the English part. This

allowed us to include linguistic information within a standard SMT system.

As a first step, we explore the effects of the Arabic preprocessing in the translated

output. Since Arabic is an agglutinative language, the level of segmentation is

important to optimize the learning during the training process. The best results

have been obtained for a clitic segmentation that do not separate the Al- determiner.

This way, the source and target language have similar sentence lengths and the

higher quality of the alignments due to that fact improves the BLEU score of the

translation.

In a second part, we checked the impact of the inclusion of the linguistic in-

formation given by several methods. A direct concatenation of every word with its

corresponding lemma gave the best translation results, despite only the English part

of the corpus was annotated with lemmas. For the addition of parts-of-speech and

chunks, the higher sparsity of the data compensated the increment in information,

and we obtained no significant improvement.

53
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The last part and our final proposal for the Arabic-to-English translation task

for the 2008 NIST Machine Translation Open Evaluation corresponds to an SMT

system that uses WSD techniques to select the best translation of a phrase given a

source sentence. This method allowed us to take into account the context of each

phrase. Phrase selection is treated here as a classification problem and linear SVMs

are used to select the most adequate translation by using the context of the phrase

and the linguistic information associated as features.

Although we get an increment of a 7.5% in accuracy for the subtask of phrase

selection, the full translation task does not obtain significant improvements. Within

the NIST 2008 evaluation context, our system has obtained a BLEU score (30.31)

in the middle of the way of the best system (BLEU=45.57) and the worst one

(BLEU=14.15). Nevertheless, most of the systems outperformed our results, being

the mean BLEU score of 37.32.

However, we believe that the increment of 7.5% in accuracy in phrase selection is

indicative of the possibilities of the method and we attribute the lack of improvement

to a bad integration of the DPT predictions into the SMT system. According to

this, we consider these results just preliminary results and propose several steps to

improve the performance in a future work:

• Starting with the integration of the DPT predictions into the SMT system, we

will further study different methods to complete the DPT probability scores in

the translation table in the cases where there is not DPT estimation because

of the lack of examples.

• Just as one uses both the MLE generative and discriminative translation

model, PMLE(f |e) and PMLE(e|f), the discriminative learning in the Arabic-to-

English and the English-to-Arabic directions would provide us with the equiv-

alent probability scores for the DPT predictions: PDPT(f |e) and PDPT(e|f). We

expect this additional feature to further improve the translation.

• Since other metrics can be more sensible to WSD than BLEU, the tuning of

the λ parameters in the mert optimization with respect to the BLEU score is

maybe not the best option. We will check other metrics. The optimization

algorithm itself could be also substituted by another minimization method

that explores more deeply the parameter space.
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• Finally, a better preprocess of Arabic should help the training process. Up

to now, we do not know of any free full Arabic lemmatizer, but given the

positive impact of English lemmas in the second part of this work, the Arabic

ones should be also important for the final result, especially in this Arabic-to-

English direction. We plan to explore the effect of Arabic lemmas when added

as a feature for the SVMs, together with the inclusion of other features.
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Appendix A

Buckwalter transliteration

Arabic alphabet and the Buckwalter transliteration of each of the Arabic glyphs in

its stand alone form. The Unicode symbol is given as well.

Name Unicode name Unicode Buckwalter Glyph

hamza-on-the-line Arabic letter hamza U+0621 ’

madda Arabic letter aleph

with madda above U+0622 |
hamza-on-’alif Arabic letter aleph

with hamza above U+0623 >

hamza-on-waaw Arabic letter waw

with hamza above U+0624 &

hamza-under-’alif Arabic letter aleph

with hamza below U+0625 <

hamza-on-yaa’ Arabic letter yeh

with hamza above U+0626 }
bare ’alif Arabic letter alef U+0627 A

baa’ Arabic letter beh U+0628 b

taa’ marbuuTa Arabic letter teh marbuta U+0629 p

taa’ Arabic letter teh U+062A t

thaa’ Arabic letter theh U+062B v

jiim Arabic letter jeem U+062C j

Haa’ Arabic letter hah U+062D H

continued
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Name Unicode name Unicode Buckwalter Glyph

khaa’ Arabic letter khah U+062E x

daal Arabic letter dal U+062F d

dhaal Arabic letter thal U+0630 *

raa’ Arabic letter reh U+0631 r

zaay Arabic letter zain U+0632 z

siin Arabic letter seen U+0633 s

shiin Arabic letter sheen U+0634 $

Saad Arabic letter sad U+0635 S

Daad Arabic letter dad U+0636 D

Taa’ Arabic letter tah U+0637 T

Zaa’ (DHaa’) Arabic letter zah U+0638 Z

cayn Arabic letter ain U+0639 E

ghain Arabic letter ghain U+063A g

taTwiil Arabic letter tatweel U+0640

faa’ Arabic letter feh U+0641 f

qaaf Arabic letter qaf U+0642 q

kaaf Arabic letter kaf U+0643 k

laam Arabic letter lam U+0644 l

miim Arabic letter meem U+0645 m

nuun Arabic letter noon U+0646 n

haa’ Arabic letter heh U+0647 h

waaw Arabic letter waw U+0648 w

’alif maqSuura Arabic letter alef maksura U+0649 Y

yaa’ Arabic letter yeh U+064A y

fatHatayn Arabic fathatan U+064B F

Dammatayn Arabic dammatan U+064C N

kasratayn Arabic kasratan U+064D K

fatHa Arabic fatha U+064E a

Damma Arabic damma U+064F u

kasra Arabic kasra U+0650 i

shaddah Arabic shadda U+0651 ∼
sukuun Arabic sukun U+0652 o

dagger ’alif Arabic letter superscript alef U+0670 ‘

waSla-on-alif Arabic letter alef wasla U+0671 {
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